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1. Devices Studied and Characterization 

We primarily studied two devices for this article, which we call “Device 1” and 

“Device 2.”  SEM images for both are displayed in Fig. S1. 

 

Device 1          Device 2 

  
Fig. S1. Device 1 (left) and Device 2 (right).  Scale bars are 10µm.  Graphene is 

suspended over a square (Device 1) or circular (Device 2) trench in SiO2.  An additional 

trench extends vertically from the top and bottom of each square/circular trench to allow 

liquid to drain from beneath the graphene after transfer.  Platinum source and drain 

electrodes contact the graphene from the underside.  A gate electrode lies along the 

bottom of each trench. 

 

Device properties are listed in Table S1.  The density ρ and initial tension σ0 are 

determined by fitting frequency as a function of gate voltage, as described in Section 7.  

All other data are measured experimentally.  We measure the distance d between the 

graphene and the electrode in the absence of a gate voltage using an optical profilometer.  

We measure the length L along the side of Device 1 and the radius a of Device 2 from 

SEMs. 

 

Table S1. Graphene device properties 

Device Dimension (µm) d (µm) ρ / ρgraphene σ0 (N/m) 

1 L/2 = 7.0 ± 0.1 1.96 4.6 ± 0.3 0.013 ± 0.001 

2 a = 5.5 ± 0.1 1.37 2.9 ± 0.2 0.010 ± 0.001 
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2. Fabrication 

The procedure for fabricating devices was based on an earlier article (1).  

Fabrication began with the thermal growth of 240 nm SiO2 on a 10 kΩ·cm Si wafer.  

Trenches were patterned in the SiO2 / Si using photolithography followed by reactive ion 

etching.  Etching of the trenches consisted of two steps: first, a directional CHF3 / O2 or 

CF4 etch was used to etch the SiO2 and Si; then, an isotropic SF6 / O2 etch was used to 

create an undercut profile in the Si beneath the oxide (~200 nm undercut).  The undercut 

was designed to prevent shorting between the source/drain and gate electrodes during the 

following metal evaporation step.  After the etch, an additional 220 nm of oxide was 

thermally grown.  Next, source, drain, and gate electrodes were patterned in a single 

photolithography step, followed by e-beam evaporation of 5 nm Ti / 25 nm Pt.   

Graphene was grown by CVD on copper foil and transferred using the method 

developed by Li et al. (2).  To make Device 1, graphene on Cu foil was patterned into 50 

µm x 50 µm squares using photoresist and contact lithography followed by O2 plasma 

etching (1).  The resist was removed by sonication in Microposit Remover 1165 (n-

methyl-pyrrolidinone), and 4% 495k MW poly(methyl methacrylate) (PMMA) in anisole 

was spun onto the surface of the graphene/copper.  The copper was etched in ferric 

chloride; the graphene was rinsed by transferring it to several water baths and finally 

transferred to the substrate.  The squares of graphene landed randomly in this procedure.  

The PMMA was removed in dichloromethane, and the devices were rinsed in IPA and 

critical point dried to prevent stiction. 

Device 2 was patterned via a novel procedure designed to improve yield.  

Graphene grown on Cu foil was transferred directly to the substrate using PMMA as the 

support layer as described above.  Importantly, however, after spinning PMMA onto the 

graphene on Cu foil, the foil was baked on a hotplate at 170°C for 5 minutes.  After 

transfer, a layer of Shipley 1813 resist was spun on top of the PMMA and the resist was 

patterned using optical lithography.  Then, oxygen plasma was used to etch the pattern 

into the PMMA and graphene.  Finally, the resist and PMMA were both removed using 

Microposit Remover 1165.  The chip was transferred to IPA and critical point dried. 

 

3. Derivation of the Photon-Induced Rigidity 

 According to (3), the effective frequency ωeff and damping Γeff should follow: 
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Here, we derive dzdFF pthpth /≡∇  for our optomechanical system, where Fpth is the 

photothermal force felt by the membrane.  We use the model illustrated in Fig. S-2, in 

which a fully clamped circular graphene membrane with radius a and initial tension per 

unit length along the perimeter σ0 is suspended a distance d away from a gate electrode. 

Let z denote the vertical displacement of the center of the graphene membrane, and z0 its 
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equilibrium displacement from the flat membrane case due to an applied gate voltage.  

Our goal is to find the photothermal spring constant for small oscillations about z = z0. 

 We start by assuming that heating from the laser causes a tension change in the 

graphene proportional to the power of the electric field at position z: 
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where P is the incident laser power and λ is the laser wavelength.  Assuming the tension 

arises from laser-induced heating, the proportionality constant A depends on many 

theoretical factors such as graphene’s light absorption, thermal conductivity, and thermal 

expansion coefficient, but it can also be determined empirically (see Section 4).   

The external force that the contact exerts on the membrane is given by the z-

component of the tension induced by the laser: θσπ sin2 pthcont aF −= , where θ is the 

contact angle (a function of z and gate voltage). The gradient is then 
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The first term is pthF∇  and has a time constant τpth associated with it, which depends on 

the thermal conductivity and specific heat capacity of graphene. The second term is 

related to the change in the contact angle as the membrane moves, which happens 

instantaneously and serves only to offset the mechanical spring constant K. 

Thus, the photothermal spring constant is given by 
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where θ0 = θ(z0). Note that pthF∇ = 0 when θ0 = 0, meaning that the membrane must start 

with a nonzero displacement in order to experience optomechanical effects. In other 

words, a gate voltage must be applied to the membrane to break the symmetry; if the 

membrane were perfectly flat, the tension change due to the laser would act perpendicular 

to the degree of freedom and would not affect the motion. For the optomechanical system 

described in Ref. 4, this asymmetry condition is satisfied by making the resonator from 

two different materials to act as a bimetallic strip. 

 

 Next, we find the equilibrium position of the membrane as a function of gate 

voltage. Assume that the shape of the membrane forms a spherical cap as it is pulled 

down by the electrostatic force from the gate (5). The position of the center of the 

membrane is related to the contact angle by 
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The net external force on the membrane must be zero, so the upward force of the contact 

is equal to the downward force of the gate voltage. The total stress is 
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two sides of a parallel plate capacitor,
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. We arrive at an equation for the 

equilibrium position of the membrane: 
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where z0 is given by Eq. S-5. 

 Expanding this equation to first order in θ0 gives 
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We can solve Eq. S-6 numerically by using specific parameters from one of our devices, 

and we find that the first order approximation of θ0 departs from the exact value quickly, 

at around Vg = 5 V for Device 2. 

 Note that when Vg is small, 
2

gpth PVF ∝∇  (see Fig. S-5).  Hence, the observed 

optomechanical effects depend strongly on gate voltage.  In addition, by using the gate 

voltage to pull the graphene membrane through a node in the optical field, we can cause 

pthF∇  to change sign, thereby enhancing or reducing the damping. 

 

 
Fig. S-2. Schematic of the model used to estimate the size of the photothermal effect.  

The color of the incident light beam represents the energy density in the electric field, 

which is proportional to the absorbed energy flux Wa(z).  The photothermal spring 

constant is proportional to the gradient of the field. 

 

4. Estimating Photon-Induced Rigidity 

 

Determining the Constant A Experimentally 

 

We use the frequency of the graphene as a function of laser power at low gate 

voltage to obtain an experimental measure of A for Device 2.  The frequency of a circular 

drumhead resonator is given by: 



5 

 

 

 
ρ
σ

πa
f

2

404.2
=   

where we assume σ = σ0 + σpth is the stress in the resonator in the absence of gate voltage.  

In the limit of σpth << σ0, we can expand this to find: 
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In order to get an estimate for A, we measure the frequency versus laser power at a gate 

voltage (Vg = 0.8 V) that is too low to significantly affect the tension or cavity length, but 

high enough to make the device resonate at a detectable amplitude (Fig. S-3).  Fitting Eq. 

S-8 and Eq. S-3 to the data in Fig. S-3 yields 
ρ
σ

π
0

0
2

404.2

a
f ≡ = 5.042 ± .005 MHz and A 

= 15 N/(m·W) using the values from Table S-1. 

 
Fig. S-3. Frequency of Device 2 at Vg = 0.8 V as a function of laser power.   

 

We can also estimate A from thermal expansion.  Assuming pure thermal 

expansion in a circular membrane and absorption πα (see Section 9), we find that in the 

cavity A = -2 α E αg / t κ (1 – υ) = 4 N/m·W, where α is the fine structure constant, κ = 

5000 W/m·K is the thermal conductivity (6), E ≈ 60 N/m is the Young’s modulus of CVD 

graphene (7), t = 0.335 nm is the thickness of graphene, αg ≈ -7×10
-6

 is the thermal 

expansion coefficient of graphene (8), and υ = 0.16 is the Poisson ratio for graphene.  

This value is in reasonable agreement with the experimentally determined value of A = 15 

N/m·W considering the assumptions and the uncertainty in the theoretical numbers, 

especially Young’s modulus (7). 

 

Estimating τ 

In order to compare the size of the observed optomechanical effect to that 

predicted by Eq. S-2 and S-4, we must estimate τ.  Assuming a circular membrane 

resonator, the thermal equilibration time constant can be approximated as τ = a
2
ρC/2κ, 

where C = 700 J/(kg·K) is the specific heat of the graphene and κ = 5000 W/(m·K) is the 

thermal conductivity.  For the circular membrane resonator observed here, τ = 5 ns.   

 

Estimating Photon-Induced Rigidity 
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We can compare these values to the experimentally obtained values for Device 2 

in Fig. 3c-d.  The slope of Fig. 3d together with Eq. S-2 yields an experimental value of 

dP

Fd∇
= 0.7 N/(m·W).  The value predicted by Eq. S-4, using Eq. S-7 to find θ0, is 

dP

Fd∇
= 

4.4 N/(m·W).  For Fig. 3c, the experimental number is 
dP

Fd∇
= -17 N/(m·W), while the 

theoretical estimate is 
dP

Fd∇
=  -202 N/(m·W), where this time Eq. S-6 must be solved to 

find θ0.  This agreement is reasonable considering the important dependence on θ0 and z0, 

which must be estimated theoretically, and the approximations involved in our model (we 

ignore the curvature of the membrane in the light field and the finite laser spot size). 

 

5. Photon-Induced Rigidity: λ and Vg Dependence 

 

Dependence on Wavelength λ 

The above theory for photothermal optomechanical coupling makes several 

predictions that can be tested experimentally.  First, the optomechanical damping ΓOM 

should depend sinusoidally on laser wavelength.  We use a tunable-wavelength 

Ti:Sapphire laser to test this hypothesis on Device 2 from λ = 700nm to λ = 840 nm.  

Figure S-4 shows that the theory (Eq. S-2 and S-4) predicts the damping accurately over 

this range.  To fit the frequency, we use a modified version of Eq. S-1 that takes into 

account both static absorption-induced stress and optomechanical back-action: 
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where B and C are proportionality constants.  This modified version captures the trend in 

the data.  We note that according to theory, B = A P / σ (Eqs. S-3 and S-8), and C = 4π
2
a 

A P sinθ0 K
-1

 (1 + ω0
2
τ

2
)
-1 

(Eq. S-4).  If we leave B, C, and ω0 as fit parameters, we find B 

= 1.13, C =400 nm, and ω0 = 12 MHz.  These numbers agree well with the theoretical 

values of B = 0.71 and C = 800 nm, where we have used σ = (ω0/2.404)
2
a

2
ρ = 0.064 N/m 

to find B theoretically.   
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Fig S-4. (A) Damping of Device 2 at Vg = 16 V, P = 3 mW as a function of wavelength.  

The dotted line indicates the intrinsic damping measured at low laser power.  The black 

line is a fit to Eq. S-2 with d-z = 1330 nm (measured at Vg = 16 V from where dR(λ)/dz = 

0).  (B) Frequency as a function of wavelength for the same measurement.  The black line 

is a fit to Eq. S-1a with d-z = 1330 nm.   

Equation S-4 also predicts a dependence of the optomechanical damping on gate 

voltage, since θ0 is a function of Vg.  For small Vg and P, we find that 
2

0 gV∝θ , and 

therefore 
2

gOM PV∝Γ .  Figure S-5 shows the measured optomechanically-induced 

damping as a function of Vg
2
 for two different laser powers, which agrees well with this 

prediction.   

 

Fig S-5. Optomechanically induced damping ΓOM for Device 1 at a given laser power 

(shown for 0.3 mW, green; and 2 mW, pink) depends on gate voltage roughly as Vg
2
.  We 

determine ΓOM = Γeff - Γ by assuming the intrinsic damping Γ can be measured at low 

laser power.  We use Γ = Γeff  (P = 100 µW).  Black lines are linear fits to the data with a 

y-intercept of ΓOM(Vg = 0) =  0. 

 

 

6. Radiation Pressure Effects 

We also consider the possibility of an optomechanical effect from radiation 

pressure.   According to Ref. 3, the maximal force gradient due to radiation pressure is: 
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where g
2
 = 4R/(1 – R)

2
 is the coefficient of finesse, R = (Rg Re)

1/2
, Rg is the reflectance of 

the graphene, and Re ≈ 1 is the reflectance of the platinum electrode.  Using Rg ≈ π
2
α

2
(1 – 

πα)/4 = 1.3 × 10
-4 

(see Section 9), at P = 5 mW and λ = 633 nm, we find radF∇ ≈ 5 × 10
-7

 

N/m, which is too small compared to the resonator spring constant K = 0.1 N/m to be of 

significance. 

 

7. Fitting to Frequency versus Gate Voltage 

 

 We are able to infer the mass and initial tension of the resonators by fitting a 

tensioned membrane model to the frequency versus gate voltage data, taken at low laser 

power such that optomechanical effects are negligible. We apply the theory in Ref. 5 to a 

fully clamped 2D membrane in the shape of a spherical cap. Let S be the radius of 

curvature of the spherical cap. Equating the force from the contact to the electrostatic 

force from the gate gives the total tension: gateF
a

S
22π

σ = . The additional tension 

induced by stretching is
2
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0
611 S
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=− , assuming the strain ∆L/L is small. 

Combining these equations to eliminate S gives a cubic equation for the tension: 
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The frequency of a tensioned circular resonator is given by
ρ
σ

πa
f
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404.2
= , where ρ is the 

2D mass density. Assume the electrostatic force is that of a parallel plate capacitor: Fgate 

= ε0πa
2
Vg

2 
/ 2d

2
. Note that in the limit of low tension ( 0σσ ≈ ), Eq. S-10 suggests that f 

scales as Vg
2
, while in the limit of high tension ( 0σσ >> ) it scales as Vg

2/3
. 

We fit the following model to our frequency versus gate voltage data, using a 

nonlinear least squares method: 
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where c1, c2, and c3 are fitting parameters. In terms of the theory outlined above, 
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c . Hence, we can extract initial tension σ0 

and density ρ from these two parameters. We add in the parameter c3 to represent an 

offset to the spring constant proportional to Vg
2
, which matches our data at low gate 

voltages. This term can arise from capacitive softening (9), however, if we use the 

density derived from c2, we predict that c3 should be much larger than what we observe. 

We suspect that there are other physical mechanisms that determine c3, such as regions of 

initial slack (10). 

The data and fits for our two devices are plotted in Fig. S-6. The model fits well at 

low gate voltage and gives us reasonable values for σ0 and ρ, but at high gate voltage the 
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frequency continues to increase when the model’s Vg
2/3

 dependence rolls off. This is the 

subject of ongoing research. 

 

 

A      B 

 
Fig. S-6. Frequency versus gate voltage for Device 1 (A) and Device 2 (B). The blue dots 

are the data and the red lines are the fits. We only fit to Vg
2
 < 40 V

2
 for Device 1, and Vg

2
 

< 20 V
2
 for Device 2.  At higher gate voltages the tensioned membrane model diverges 

from the data. 

 

 

8. Injection Locking Behavior 

 

When the graphene is self-oscillating and a small electrical drive signal is applied, 

the graphene membrane motion locks to the drive signal (Fig. S-7).  The jump in 

frequency near Vg = 5 V appears only at high laser power and is likely related to 

previously observed interactions between the photothermal force and the electrical force 

governing the length of the cavity (11). 

 

 
Fig. S-7. Injection locking behavior in Device 1.  (A) No drive; the self-oscillation 

frequency of the device tunes with gate voltage.  (B) An electrical driving force (-60 

dBm) is applied between the gate and the drain.  (C) Amplitude and phase versus 

frequency at Vg = 6.17 V from the data in (B). 

 

We also observe injection locking to a modulated optical signal, with no 

modulated voltage applied to the graphene (Fig. S-8). 
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Fig. S-8. Locking to an optical signal in Device 1.  (A) An optically modulated signal (λ 

= 405 nm, P = 1.8 mW) is used to drive the graphene motion; a red laser (λ = 633 nm, P 

= 2 mW) is used to read the motion.  The reflected light is filtered so that only the λ = 633 

nm light is detected by the photodiode.  For Vg > 10V, the graphene exhibits self-

oscillation and locks to the drive signal.  (B) Amplitude and phase versus frequency at Vg 

= 15 V from the data in (A). 

 

9. Derivation of Reflectivity and Absorption 

 

Cavity Reflectivity 

 

 The amplitude and phase of the reflected light is what we measure experimentally 

using a photodiode and network analyzer, in order to determine the graphene resonator’s 

amplitude of motion. Here we calculate the overall cavity reflectivity in terms of the 

electric field of the incident and reflected plane waves, 
22

incidentreflected EER
vv

= , as a 

function of position of the graphene membrane. We start by assuming the graphene is an 

infinitely thin conducting sheet with a reflection coefficient rg, a transmission coefficient 

tg, and a distance d away from a perfectly conducting back plane (the platinum gate 

electrode). Summing over contributions from every reflected wave, the reflection 

coefficient of the cavity is given by 
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where φ = 4 π d / λ is the phase difference obtained from one round trip inside the cavity. 

The minus sign accounts for the π phase shift due to reflection off a conducting surface; 

each wave contributing to the sum reflects an odd number of times. The cavity 

reflectivity is then given by the magnitude of the reflection coefficient squared: 
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The transmittance and reflectance of graphene can be derived by applying 

Maxwell’s equations and the appropriate boundary conditions at the graphene, while 

assuming the conductivity is small (12,13): Tg = (1+πα/2)
-2

, Rg = (πα)
2
T/4, where α = 
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1/137 is the fine structure constant. The reflection and transmission coefficients are then 

found by taking the square root: 

πα
πα
+

=
2

gr  
πα+

=
2

2
gt  

Plugging these into Eq. S-12 gives the cavity reflectivity as a function of cavity detuning, 

which we have plotted in Fig. 2c. 

 

Graphene Absorbed Energy 

 

 The amount of energy the graphene absorbs from the spatially varying electric 

field can be calculated from the interaction between light and Dirac fermions, and is 

proportional to the magnitude of the electric field squared: Wa = παcε0|E|
2
, where c is the 

speed of light, and ε0 is the permittivity of free space (12). Because the reflection 

coefficient of graphene is small (rg ~ 0.01), we can assume that the total electric field is 

mostly determined by the sum of a single incident plane wave moving toward the back 

plane, and a single reflected plane wave moving away from it. The result is |E|
2
 = 4|E0|

2
 

sin
2
(2πd/λ), where E0 is the complex amplitude of the incoming plane wave. The factor of 

4 comes from the fact that the incident and reflected waves combine constructively, 

doubling the amplitude of the electric field. We normalize Wa by the energy flux of the 

incident plane wave, Wi = cε0|E0|
2
, to get the absorption as a function of position: 

 ( )λππα /2sin4/ 2
dWW ia =  (S-13) 

Equation S-13 is also plotted in Fig. 2c. 

 

10. Minimum T from Photothermal Cooling 

 

 We include a brief discussion of the prospects for photothermal cooling of 

membrane resonators to the quantum ground state.  First, we note that the effective 

temperature Teff  reached using laser cooling from a bath temperature T is given by (3): 
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We assume the optimal cooling condition ω0τ = 1.  The photon-induced rigidity for 

arbitrary cavity detuning )(
4

00 zd −=
λ
π

ϕ  is PF )sin( 0ϕη=∇ , where 

0

2 sin)/4( θλπη Aa≡ denotes the linear power dependence of F∇ .  In this work, we 

measured 0sinϕη = -17 N/(m·W) for Device 2 at Vg = -10V.  To obtain a conservative 

estimate, we assume that this value corresponds to the maximal optomechanical force 

gradient, i.e. η = 17 N/(m·W).  Thus we have: 
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The minimum Teff is limited by the fact that the laser heats the entire membrane as it is 

cooling a single mechanical mode.  To account for this effect, when the laser causes a 

temperature rise ∆T, we must replace the bath temperature T with T + ∆T.  Following 
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Ref. 3, the absorbed laser power Pa causes a temperature rise ∆T =  βPa, where β is a 

proportionality constant given by β = (2 π t κ)
-1

.  From Eq. S-13, Pa = 4πα sin
2
(2πd/λ) P.  

Thus we have  
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As an example, we will use the resonator from (1), which had ω0 = 2π×75 MHz and Q = 

9000 at a temperature of T = 9K.  Taking a typical K = 0.1 N/m and a detuning of φ0  = 

π/10, P = 15 mW leads to an effective temperature Teff = 3.4 mK, comparable to the 

ground state temperature of TQ = 3.6 mK while satisfying the stability condition 

1/ <∇ KF . 

 

Note that S-16 favors detuning the cavity toward the point of minimal absorption, which 

increases the size of the optomechanical effect relative to the amount of absorbed laser 

power.  The ability to detune the cavity with gate voltage is a crucial advantage in this 

respect. 
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