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 Carbon nanotubes are arrangements of carbon atoms in the form of thin, 

hollow tubes. Their physical and electrical properties have attracted much interest in 

recent years – carbon nanotubes are among the strongest materials currently known 

and they can perform both as active and passive components in nanoscale circuits. 

Their electrical properties are the focus of this thesis. The work presented here shows 

that carbon nanotube transistors can operate in the gate quantum limit and can be used 

as high-frequency mixers. 

 In the first experiment, an aqueous electrolyte solution was used as the gate 

electrode of a carbon nanotube transistor. This approach accomplishes the task of 

efficiently increasing the electrostatic capacitance between the nanotube and the gate 

via a thin, high-κ dielectric (water). The total capacitance is shown to reach the 

quantum limit where charging is dictated by the energy level spacing in the nanotube. 

Additionally, the gate coupling is nearly ideal, as found from the subthreshold swing 

of ~ 80 mV. The coupling results in record transconductances of ~ 7 µS/nm, a result 

important to applications of carbon nanotubes as chemical and biological sensors. 

 The second experiment measures the high-frequency properties of carbon 

nanotube transistors by means of frequency mixing. A dc current results from the 

response of the device to an ac voltage. The amplitude of the current is measured as a 

function of the frequency of the input, revealing the existence of a cutoff between 1 

and 10 GHz. The origin of the cutoff is not completely understood yet, since it is in 



 

order-of-magnitude agreement with the cutoff obtained from the contacts while its 

value does not seem to vary substantially from device to device, suggesting an 

external limiting factor. Despite the cutoff, the mixing response was measured up to 

50 GHz. This is the highest frequency at which the electrical properties of carbon 

nanotubes have been measured to date. 
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 CHAPTER 1 

 

 INTRODUCTION 
 

1.1 Carbon nanotube history 

The two naturally occurring atomic configurations of carbon are graphite and 

diamond. Man-made carbon forms were developed throughout history as a result of 

demand for new materials driven by diverse applications. The first carbon fibers were 

developed in the 19th century by Thomas Edison as the filament for an electric light 

bulb (Saito 1998), which were quickly replaced by tungsten. A renewal of interest in 

carbon fibers occurred in the 1950’s following demand from the space and aircraft 

industry for strong lightweight materials with superior mechanical properties. Carbon 

fiber research has greatly diversified since then, with improvements made to the 

quality of the material and fabrication methods. Among the latter, the drive for better 

control of the fabrication process led to the development of catalytic chemical vapor 

deposition (CVD). In this method, fibers grow out of a catalyst in a chamber under 

controlled conditions such as feedstock gas flow and temperature. 

Advancements in chemistry in the last 20 years have resulted in the synthesis 

of new forms of carbon with nanometer-scale dimensions. First came the fullerenes, 

also called buckyballs (Kroto, Heath et al. 1985), consisting of self-terminated 

spheroids made of carbon, an example being C60. Years later, Iijima (Iijima 1991) 

reported observing “helical microtubules of graphitic carbon” by transmission electron 

microscopy (TEM). These tubules were micrometers long and displayed nanometer-

wide diameters. They would soon be known as carbon nanotubes. 
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1.2 Electrical properties1 

In order to understand the electrical properties of a carbon nanotube, we start 

with graphite. Graphite has a honeycomb lattice structure and is a semimetal. This is 

better explained by inspecting Figure 1.1, which shows the band structure of graphene 

– a single sheet of atomic graphite – as a function of wavevector k. Along certain 

directions, the band gap between the valence and conduction bands goes to zero at the 

Fermi level. This means that graphene behaves as a metal or a semiconductor 

depending on the direction of k. 

A single-walled carbon nanotube2 can be thought of as a single sheet of 

graphene rolled into a tube. Due to its graphitic origins, a carbon nanotube should 

have mechanical and electrical properties very similar to graphite. Yet because of the 

nanotube being only a few nanometers in diameter, quantum-mechanical electron 

confinement should produce other unusual electrical properties related to one-

dimensional transport. As a consequence, when graphite is rolled into a carbon 

nanotube, the allowed k’s become locked. Nanotubes are either metallic or 

semiconducting depending on how they were rolled. 

The electrical character of a nanotube is specified by a set of two numbers that 

determine the chirality of the nanotube. These quantities are defined from the 

honeycomb lattice of graphene in Figure 1.2 such that the chiral vector is Ch = 

na1+ma2 = (n, m) and the chiral numbers n, m are integers (the chirality convention 

requires 0 ≤ |m| ≤ n). The length3 of the unit vectors is a and the angle they enclose is 

60°. We can express the diameter of the nanotube as: 

                                                           
1 This section follows Saito (Saito 1998). 
2 A nanotube made of several coaxial shells is known as a multi-walled nanotube. Nanotubes with 
several walls may have different properties when compared to their single-walled counterparts. 
3 This is approximately 2.46 Å. In comparison, the nearest-neighbor distance of two carbon atoms in 
graphite is 1.42 Å. 
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Figure 1.1. Band structure of a single graphene sheet. (a) 3D representation of the 
band structure of graphene, energy versus wavevector k. The valence and conduction 
bands at the Fermi level meet at the so-called K points. The dispersion about these 
points is conical. (b) Contour plot corresponding to the valence band of part (a), 
wavevectors in units of the parameter a = 2.46 Å. Darker regions correspond to lower 
electron energies. The bright regions correspond to the K points. The hexagon drawn 
by these defines the first Brillouin zone of graphene. Two of the K points (labeled K 
and K’) are physically inequivalent. See Saito (Saito 1998) and Minot (Minot 2004) 
for details. 
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Figure 1.2. Honeycomb lattice of graphene, after Saito (Saito 1998). A nanotube can 
be constructed by connecting the sites O to A and B to B’. The vectors OA and OB 
define the chiral vector Ch. The rectangle OABB’ defines the unit cell for the nanotube. 
The chiral angle θ is measured with respect to the standard direction given in the 
figure (zigzag direction, see also Figure 1.3). The figure corresponds to Ch = (4, 2) and 
tube diameter d = 1.7a = 4.14 Å. Other quantities displayed are discussed at the source 
reference. 
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Due to the hexagonal symmetry of the lattice, the chiral angle can only take on values 

between 0 and 30°. 

When the sheet is rolled, the electron wavevector along the circumference of 

the nanotube is quantized. It can be shown that this condition leads to a metallic 

nanotube (zero band gap) only when the difference n-m is a multiple of 3 (Saito 1998). 

Figure 1.3 illustrates the metal and semiconductor occurrence as a function of the 

chiral coordinates. Statistically, there should be twice as many semiconductors as there 

are metals (Saito 1998). Notice that the quantization condition along the 

circumference also predicts additional subbands. The electronic character of a 

nanotube (metallic or semiconducting), however, depends only on the first subband. 

 

1.3 Carbon nanotube field-effect transistors 

Experimentally, the main difference between metallic and semiconducting 

carbon nanotubes is in their electrical transport properties. Semiconducting nanotubes 

have an energy band gap in their band structure and should conduct poorly when the 

Fermi level lies within the gap. 

The position of the Fermi level in a semiconducting nanotube can be tuned 

capacitively by a nearby charged conductor. This is analogous to the gate electrode 



6 

 6

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.3. Electronic character as a function of chiral vector, after Saito (Saito 1998). 
(a) The possible unique ways of rolling the honeycomb lattice repeat every 30° of 
chiral angle. The (n, m) coordinates of the chiral vector are given at each lattice site 
chosen. The open circles correspond to metallic nanotubes and the dark ones 
correspond to semiconducting nanotubes. The zigzag direction is given its name by the 
way the carbon atoms alternate along that direction. The same can be said for the 
armchair direction – the carbon atoms appear to be drawing armchairs along that 
direction. All armchair nanotubes are metallic. Statistically, there are twice as many 
semiconducting nanotubes as metallic nanotubes. (b) Representations of an armchair 
nanotube (always metallic) and a zigzag semiconducting nanotube. The armchair and 
zigzag can be seen around the circumference of the nanotube. 
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of a metal-oxide-semiconductor4 field-effect transistor (MOSFET). Negative 

(positive) charge builds up in the nanotube as a result of attraction towards the positive 

(negative) charge in the conductor. The additional charge changes the position of the 

top of the valence and conduction bands relative to the Fermi level in the nanotube. 

Gate operation is discussed in detail in Figure 1.4. 

Under typical experimental conditions, as-made nanotubes are p-type. They are 

doped with an excess of positive charge. This is attributed to nearby charges on the 

substrate which are left over from sample preparation (Martel, Schmidt et al. 1998). 

Additionally, metals such as Au make p-type contacts. For this reason, transport in 

semiconducting nanotubes happens primarily due to holes. Generally, it is often the 

case that at zero gate voltage the Fermi level is found within the valence band. 

Sweeping the gate voltage, however, can deplete the semiconducting nanotube and 

turn it off. See Figure 1.5 for an example of a semiconducting nanotube. 

 At larger positive gate voltage, another possibility arises that is similar to the 

creation of an inversion layer in a MOSFET (see Figure 1.4 (d)). Given enough 

positive gate voltage, the bottom of the conduction band can be pulled below the 

Fermi level in the nanotube. This corresponds to n-type behavior. Since the Fermi 

levels of the metal leads in direct contact with the nanotube tend to be within the 

valence band (or nearby), there is typically an intrinsic built-in barrier to n-type 

conduction. This results in a higher resistance to n-type transport relative to p-type 

transport. The band model for n-type transport is detailed in Figure 1.6 for an 

ambipolar device, whereas Figure 1.5 illustrates the experimental results of one such 

device. 

                                                           
4 In general, this is a metal-insulator-semiconductor junction, but we will mostly talk about oxides. 
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Figure 1.4. Carbon nanotube MOS capacitor band diagram. The nanotube of diameter 
d is represented without the metal contacts. These leads, assumed ohmic, are grounded 
at all times and hold the position of the Fermi level of the semiconducting nanotube, 
EFs, constant. A voltage Vg is applied to the gate conductor, changing the position of 
its Fermi level EFm. The potential barrier for electrons to cross the dielectric (of width 
h) from the gate conductor is φB. (a) Initial condition: we assume that there is no built-
in potential due to the work function difference between the nanotube and the gate 
conductor. The Fermi levels align and no voltage drops in the dielectric. We also 
assume that the nanotube is heavily p-doped by its surrounding environment, so EFs is 
lower than the top of the valence band Ev, and there are already electronic states 
available for transport. (b) Increasing conduction by application of a negative gate 
voltage. The voltage drops partially in the dielectric. The nanotube becomes more 
positively charged, and more states are made available for conduction. (c) Band gap: a 
positive gate voltage depletes the nanotube of carriers and drives EFs into the band 
gap. Conduction can only happen as a result of thermally excited carriers. (d) N-type 
transport (equivalent of inversion): for sufficiently large positive gate voltage, EFs can 
be found above the bottom of the conduction band Ec and the nanotube behaves as an 
n-type FET. Tunnel or Schottky barriers at the contacts can prevent current flow. 
Nanotubes with appreciable p- and n-type conduction are called ambipolar. 
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Figure 1.5. Conductance of a real ambipolar device. (a) Experimental setup for the 
measurement of the conductance of a carbon nanotube FET. The terminals are called 
source and drain. A voltage Vsd is applied to the source and the current is detected at 
the drain, which is connected to ground. The dielectric is SiO2 and the conducting 
substrate functions as a back-gate electrode, to which a voltage Vbg is applied. More 
details about FETs will provided in Chapter 3. Device fabrication will be discussed in 
Chapter 5. (b) Conductance in units of e2/h (~ 38.8 µS) versus back-gate voltage, 
measured at Vsd = 10 mV. The p-type, band gap and n-type regions are indicated. 
Notice that the maximum n-type conductance is ~ 8 times less than the maximum p-
type conductance. As explained in Figure 1.6, this is mainly due to tunnel barriers for 
electrons in the n-region. Since the contacts (Pd in this case) are typically p-type, there 
is no barrier for holes in the p-region. 
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Figure 1.6. Band diagrams along the length of a carbon nanotube attached to contacts 
at both ends, adapted from Minot (Minot 2004). Key: Ec = conduction band edge; Ev = 
valence band edge; EF = Fermi level of metal contacts; S = source contact; D = drain 
contact. Typical metals make ohmic p-type contacts to carbon nanotubes. Assume a 
similar initial condition as in Figure 1.4 for the gate capacitor and the nanotube. In this 
case, (a) represents zero gate voltage. There are no voltage drops either at the contact 
regions or in the gate dielectric. Any small bias applied between source and drain will 
make carriers flow across the device. Negative gate voltage pulls the bands above the 
Fermi level, as shown in Figure 1.4 part (b). (b) A positive gate voltage pulls the 
bands below the Fermi level, and the nanotube is depleted of carriers in the bulk (see 
Figure 1.4 (c)). Thermally activated carriers may aid transport (see discussion of the 
subthreshold region in Chapter 3). (c) A more positive gate voltage pulls the 
conduction band edge below the Fermi level (see also Figure 1.4 (d)). The main 
mechanisms for n-type conduction are now tunneling from valence band states to 
conduction band states (horizontally) and thermal activation of electrons over the band 
gap barrier (vertically). Both become more relevant in large-diameter nanotubes, since 
the band gap is inversely proportional to diameter (Saito 1998). The barrier for n-type 
conduction can be interpreted as a series contact resistance, explaining why 
experimentally observed p-type conduction is larger than n-type conduction (for p-
type contacted nanotubes as in the figure). Carbon nanotubes with comparable p- and 
n-type conductance are called ambipolar. See Figure 1.5 for pertaining experimental 
data. 
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1.4 Overview of carbon nanotube field-effect transistors  

 To date, carbon nanotube field-effect transistors (FETs) have been produced 

with near-ideal properties. The two factors limiting their performance are the contact 

resistances and the gate capacitance. Real contact resistances have been found only a 

factor of two higher than the ideal value of 6.5 kΩ (Javey, Guo et al. 2003; Yaish, 

Park et al. 2004) when short nanotubes contacted with gold or palladium were used 

(see theory in Chapter 2).  Although these metals were found to make p-type ohmic 

contacts, other groups have found carbon nanotubes to also perform as Schottky 

barrier transistors (Heinze, Tersoff et al. 2002; see theory in Chapter 3), a different 

class of devices with their own set of applications (Appenzeller, Knoch et al. 2004; 

Chen, Appenzeller et al. 2005; Lin, Appenzeller et al. 2005). 

 The gate capacitor has also been shown to operate at the ultimate quantum 

limit (Rosenblatt, Yaish et al. 2002; Lu, Fu et al. 2004), see e.g. Chapter 6 (see also 

Chapter 2 for theory). An ideal gate has important applications not only in high-

performance electronics (Javey, Kim et al. 2002) but also in chemical and biological 

sensing (due to the high sensitivity to the surrounding electrical charges). 

 Furthermore, substantial progress towards air-stable n-type carbon nanotubes 

has been made. This is necessary in order to achieve complementary logic capabilities, 

such as fabricating multistage circuits that can perform operations such as NOT and 

NAND. One route towards this goal is to make air-stable contacts using metals with 

low work functions (Javey, Tu et al. 2005; Nosho, Ohno et al. 2005). A similar result 

can be obtained if instead the gate strongly n-dopes the nanotube (Bockrath, Hone et 

al. 2000; Kaminishi, Ozaki et al. 2005). This was first done by probing nanotube FETs 

in a chamber filled with potassium gas. In this case, the K ions strongly change the 

electrochemical potential of the nanotube, even near the contacts, lowering 

substantially the barrier for n-type conduction. 
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 The advancements in carbon nanotube low-frequency characterization of the 

last few years have made it possible to turn the focus of research to high-frequency 

characterization. Technologically speaking, a carbon nanotube operating in the one-

dimensional ballistic limit (no scattering along its length, see Chapter 2) should be 

able to pass high-frequency signals in the terahertz range (Burke 2002). Scientifically 

speaking, this operating regime has direct implications towards the experimental 

understanding of Luttinger liquids (Tans, Devoret et al. 1998; Bockrath, Cobden et al. 

1999). 

 We have chosen to tackle high-frequency characterization of carbon nanotubes 

through their nonlinear properties using a technique called frequency mixing. 

Although measurements in the terahertz range are experimentally challenging, it is 

possible to access frequencies up to 50 GHz with standard high-frequency equipment. 

Furthermore, the diffusive regime of operation (dominated by scattering off the 

nanotube lattice) is also more accessible than the ballistic regime. As preparation for 

the challenges of operating nanotubes at high frequencies in ideal conditions, the 

experiment reported in Chapter 7 is concerned with operation of carbon nanotube 

FETs in the diffusive regime. 

 

 1.5 Summary and outline  

 Carbon nanotubes come in two flavors, metallic and semiconducting. The 

latter are of immediate interest towards applications in field-effect transistors and 

sensing. Such carbon nanotube FETs have already been made with near-ideal 

properties. Chapter 2 addresses the fundamental properties of carbon nanotubes. 

Chapter 3 presents a model for transport in a carbon nanotube FET. Chapter 4 

discusses a model for the high-frequency mixer operation of these FETs. Chapter 5 

presents the fabrication and standard characterization of our carbon nanotube FETs. In 
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Chapter 6 we deal with high-performance electrolyte-gating of carbon nanotubes as an 

experimental proof of the ultimate limits for dc gate operation. Chapter 7 presents and 

discusses the experimental results of using a carbon nanotube FET as a high-frequency 

mixer up to 50 GHz, the highest frequency used to date to probe a single or a few 

carbon nanotubes. Finally, a summary of the work and future directions is given in 

Chapter 8. 
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 CHAPTER 2 

 

 ELECTRICAL PROPERTIES OF CARBON NANOTUBES 
 

2.1 Introduction 

Prior to discussing device physics and applications of carbon nanotubes, we 

must understand their fundamental electrical properties. This chapter marks the 

beginning of a three-part theoretical discussion of carbon nanotube devices. In the 

current chapter, we will review the basic electrical properties of carbon nanotubes. 

These are characterized by the resistance, capacitance and inductance of the device 

(see Figure 2.1). Chapter 3 will deal with carbon nanotube field-effect transistors 

(FETs), while Chapter 4 describes one particular kind of high-frequency application, 

mixing. 

 

2.2 Nanotube density of states1 

When graphene (single-sheet graphite) is rolled into a carbon nanotube, the 

electron wavelength becomes quantized in the circumferential direction, giving rise to 

subbands of allowed electron energy states. The general2 dispersion relation of the first 

subband is that of relativistic fermions, given by: 
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1 This section follows Datta (Datta 1997) and Kittel and McEuen (Kittel and McEuen 2005). 
2 Since the effective mass is given by the inverse curvature of the band, it is zero for a metallic carbon 
nanotube. In this case, we obtain directly that the energy is equal to the kinetic energy of the electrons 
in the band. The dispersion is then linear in k with slope given by the Fermi velocity in graphene.  
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Figure 2.1. Carbon nanotube fundamental electrical parameters. We can represent the 
nanotube as a distributed network with a resistance R, inductance L and capacitance C 
(to ground) per unit length. 
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where v0 = 8×105 m/s, the Fermi velocity in graphene, plays the role of the speed of 

light and represents the velocity at high energies, k is the electron wavevector, and ħ is 

Planck’s constant. The effective mass (for semiconducting nanotubes) is related to the 

diameter d of the nanotube by3 (Saito 1998): 
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m h
±= . (2.2) 

The carrier velocity is then given by: 

 

( )

( )
22

0
*

0

2
0

**

1

)(1
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⇒

+
=

∂
∂

=

E
vmvEv

vmkm
k

k
Ekv

h

h

h

. (2.3) 

Notice that the velocity becomes a constant at large energy, with v → v0. 

 In 1D reciprocal space, the ratio of the total region with wavevector less than 

the Fermi wavevector k to the level spacing4 gives the total number of carriers in the 

subband: 

 ( )
ππ
kL

L
kkN 4

2
222 =⋅⋅= , (2.4) 

where L is the length of the nanotube, one factor of two accounts for both spins, the 

additional factor of 2 comes from the two sublattices of graphene5, and the numerator 

                                                           
3 The diameter determines the band gap energy, which in turn determines the parabolic behavior of the 
dispersion relation at low energies. 
4 It is 2π/L in reciprocal space. 
5 One corresponding to a bonding configuration and another to an antibonding configuration. See details 
in Minot (Minot 2004). 
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is 2k because this is the allowed wavevector range in one dimension (from -k to +k). 

Finally, we can write the DOS per unit energy and unit length of the first subband in a 

nanotube using Equations 2.3 and 2.4. We obtain: 
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At the bottom of the band v = 0, from which we obtain a van Hove singularity – the 

DOS diverges (see Figure 2.2). At high energies, the DOS is a constant due to the 

maximum limiting velocity. The fact that the DOS ~ v-1 is a general property of one-

dimensional systems and is applicable to quasi-1D wires as well6. The DOS will be a 

critical parameter for determining the conducting properties of the nanotube. 

 

2.3 Conductance 

 We can now calculate the current flow in a perfect nanotube caused by 

application of a positive bias V across the conducting channel. This is given by the net 

density per unit length δne of electrons moving towards the contact with the higher 

voltage (or lower electron potential energy). We obtain: 
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6 In addition to spin, the total DOS in 1D must account for all subbands (S) and additional modes (M) 
up to the Fermi energy (or momentum), 
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Figure 2.2. Energy versus wavevector, velocity and density of states of a 
semiconducting carbon nanotube. Band structure (a), carrier velocity (b) and density 
of states (c) of the first subband of a semiconducting carbon nanotube. The energy 
follows a linear relation with the momentum away from the band edges, with E → 
ћkv0 (also, k0 = |m*|v0/ћ). Also, at high (hole or electron) energies, the velocity quickly 
goes to the constant value v0 = 8×105 m/s (same as Fermi velocity in graphene). 
Finally, the density of states (DOS) has a van Hove singularity at the band edges and 
quickly becomes a constant after that, with g0 = 8/hv0. 
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where we used that the DOS of the electrons moving in one direction is ½ of the total 

DOS7 at the Fermi level. The quantity GQ = 4e2/h is known as the quantum 

conductance of the nanotube. Its value depends only on fundamental constants due to 

the exact cancellation of the carrier velocity v in 1D, and is GQ ≈ 155 µS. We often use 

the quantum resistance of the nanotube, that by definition is RQ = GQ
-1 = 6.45 kΩ. 

 This derivation implies a transmission probability of unity through the carbon 

nanotube, something known as ballistic conduction. The voltage drop associated with 

the quantum resistance arises from the contacts. There is an inherent resistance to 

electronic flow from a 3D metal lead (high conductance) to a 1D conductor (finite 

conductance). We can draw an analogy with a pipeline: there is a pressure drop 

associated with the gas flow from a wide pipe to a narrow pipe, and the stream 

velocity subsequently increases (in order to maintain constant particle flow), similar to 

ballistic transport. 

If the probability of transmission at the Fermi level T(E) through the nanotube 

is not unity, the conductance is reduced according to the Landauer formula8: 
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 We can use this result to rewrite the resistance of a nanotube as: 
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7 Take either k > 0 or k < 0, for instance, in Equations 2.4 and 2.5. 
8 If there are multiple channels or subbands, their conductances add in parallel, such that the equivalent 
transmission probability is given by (i and j are the corresponding quantum numbers): 
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where Γ is the reflection probability and T+Γ = 1. This shows the two contributions to 

the resistance. The first term is the quantum resistance, while the second term 

corresponds to resistance from scattering in the nanotube. 

 Both of these contributions are important when studying transport in carbon 

nanotubes. In particular, for incoherent, diffusive propagation9, the scattering term 

reduces to Ohm’s law in one dimension, a classical result. We can associate a mean 

free path l0 with it to quantify the probability of scattering. Then, Equation 2.8 can be 

written as a series combination of the quantum and classical resistances: 
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When l0«L, the classical resistance dominates. In the ballistic limit, on the other hand, 

l0»L and this Equation reduces to the quantum result of Equation 2.6. The ballistic 

conduction limit has been observed at low temperatures10 in well-contacted 

(transparent contacts with low contact resistances) and short nanotubes (Kong, 

Yenilmez et al. 2001). Room-temperature measurements have come to within a factor 

of 2 of this limit (Javey, Guo et al. 2003). 

 

2.4 Capacitance 

 We will now see that the DOS of the carbon nanotube limits the amount of 

charge that can be statically added to the device: the capacitance of the nanotube has a 

quantum component as well as a classical one. The electrostatic classical part CE is a 

result of the electric field between conductors, and thus depends on the geometry and 
                                                           
9 Electrons lose phase information in between collisions. See Datta (Datta 1997) and Kittel (Kittel and 
McEuen 2005). 
10 In order to minimize scattering by acoustic phonons.  
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the dielectric surroundings. On the other hand, the chemical/quantum part CQ is a 

result of the constraints introduced by the discrete electronic states and should be 

directly related to the DOS and independent of electrostatics. 

Let us start by defining this DOS contribution. The amount of energy required 

to add one electron to the next available k-state of a carbon nanotube is calculated 

using Equation 2.5 as follows: 
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We can then calculate a capacitance per unit length (prime denotes per unit length) for 

adding an amount of charge δq = δNe in the usual way11: 
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This is the quantum capacitance12. We see that it is directly proportional to the DOS. 

In the limit v → v0 = 8×105 m/s we obtain CQ
’ → CQ0

’ ≈ 3.86×10-16 F/µm. Notice that 

due to the van Hove singularity in the DOS, CQ
’ → ∞ at the band edge. 

 If the nanotube is deposited on a conducting substrate with a dielectric in 

between, there exists an electrostatic contribution to the capacitance. We will just 

quote the value of the capacitance between a wire and a ground plane (Ramo, 

Whinnery et al. 1984): 

                                                           
11 Using that C = dq/dV, by definition. Dividing E by e results in the electric potential (neglecting the 
sign). 
12 In this derivation, four modes were taken into account in Equation 2.10, two from spin and two from 
the sublattices of graphene. The quantum capacitance per mode is CQ

’/M = 2e2/(hv). 
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where κ is the relative dielectric constant, ε0 = 8.85 ×10-12 F/m is the permittivity of 

vacuum, h is the distance from the center of the wire to the plane and d is the diameter 

of the wire. We used that cosh-1x = ln[x+(x2-1)½] ≈ ln[2x] for large x (distance from 

plane much larger than diameter of wire) in order to approximate the expression. 

For practical purposes, let us assume h = 200 nm, κ ~ 4, d = 2 nm (typical 

parameters for silicon dioxide insulator and nanotube diameter). Then Equation 2.12 

gives us CE
’ ~ 3.7×10-17 F/µm. This is within a factor of 10 of CQ0

’. A perhaps 

surprising result comes when instead h = 10 nm: CE
’ ~ 7.4×10-17 F/µm, just twice the 

capacitance of the thicker dielectric despite it being two orders of magnitude thinner. 

This is a consequence of the logarithm. It shows that the only effective way of 

increasing the capacitance is by choosing a different dielectric with higher κ. 

 In the special case in which the outer conductor surrounds evenly the wire, we 

can use the textbook result of the capacitance of a coaxial cable: 

 ( )dh
CE 2ln

2 0' πκε
= . (2.13) 

As will be seen in Chapter 5, a wrap-around dielectric/conductor described by this 

Equation can be implemented by use of a liquid or gel electrolyte. These comprise of 

ions (dissociated salt) dissolved in a liquid or gel matrix. Let us look at salty water, for 

example. Bulk water has a dielectric constant of ~ 80 at room temperature13, quite 

large compared to silicon dioxide (~ 4). When ions are dissolved into water, their 

equilibrium distribution establishes the Debye screening length λD. In general, 

                                                           
13 Bulk value. Actual value could be lower by a factor of 2 (Teschke, Ceotto et al. 2000). 
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where kb = 1.38×10-23 J/K is Boltzmann’s constant, T is the absolute temperature, ci
b is 

the concentration of the ith ionic species in the bulk of the water, and zi is the valence 

number of the ith species. The electrical potential in the water can be extracted by 

combining Poisson’s equation with a Boltzmann distribution of the charged species in 

solution (Grattarola and Massobrio 1998). The main result is that the potential decays 

exponentially away from a conducting plane held at a potential V relative to the water 

(ground) with the characteristic Debye length, as φ(x) = V·exp(-x/λD). This shows that 

the greatest voltage drop occurs over a distance equal to one Debye length from the 

conductor. In the case of a nanotube, this is equivalent to having a cylindrical 

capacitor with the outer shell radius h = (d/2)+λD. For NaCl, a common salt, Equation 

2.14 reduces to: 

 XnmD 30.0=λ , (2.15) 

where X is the molar concentration of the salt14. For a 10 mM solution of NaCl, λD = 3 

nm, and Equation 2.13 gives us (for d = 2 nm) CE
’ ~ 3.2×10-15 F/µm, roughly a factor 

of 10 larger than CQ0
’. 

Because the quantum and electrostatic capacitances compete with each other 

directly for the charge filling the electronics levels, their addition rule is that of 

                                                           
14 Even pure water has an ionic character, since a small fraction of the molecules dissociate. The 
concentration of H+ ions equals that of OH- ions in equilibrium with 10-7 M (which in turn specifies the 
neutral pH of a solution). The Debye length using Equation 2.15 is ~ 1 µm. 
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capacitors in series15: Ctotal = (CQ
-1+ CE

-1)-1. This rule predicts that the smaller of the 

two contributions will dominate. This can be better understood from Figure 2.3. When 

SiO2 is used as the dielectric, CE
’ dominates the total capacitance except at short 

distances, when it becomes comparable to CQ0
’. If a high dielectric constant material 

such as water is used, then CE
’ > CQ0

’ and C’
total → CQ0

’. The quantum capacitance 

then corresponds to the ultimate charging limit of a nanotube. In Chapter 5, we will 

show by means of a liquid electrolyte that this limit can be reached. 

 

2.5 Inductance 

 We will now study the inductive effects of a nanotube. Conceptually, an 

inductance opposes a change in the current. By means of inductive effects, a current 

lags in phase with its response to an external field. Similarly to the conductance and 

the capacitance, there will be a classical and a quantum contribution to the inductance. 

Classically, Faraday’s law of induction states that a change in the flux of 

magnetic field through a conducting loop causes a voltage to build up around it. This 

voltage produces a current that in turn produces an opposing flux, offering resistance 

to the original flux change. If the magnetic flux through the loop is generated by 

electric current, the voltage drop around the loop is related to the current according to 

V = LM·dI/dt. We will call the proportionality factor between the voltage and the 

current change that originates from Faraday’s law the magnetic inductance in order to 

distinguish it from the other inductive component that we will talk about. As we did 

with the electrostatic capacitance, we will quote the result of the magnetic inductance  

                                                           
15 The rigorous demonstration of the capacitance addition rule is as follows. We define the 
electrochemical potential as µE = EF+eV, where V is the electric potential. By definition, the 
capacitance is calculated as the inverse of the change in µE when an amount of charge δq is added: 
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Figure 2.3. Total capacitance per unit length of a carbon nanotube versus distance. 
The distance from the axis of the nanotube’s cylinder to the surface of the other 
conductor is h, and the radius of the nanotube is (d/2). When the insulator is silicon 
dioxide (κ ~ 4), the electrostatic capacitance dominates the total capacitance, except 
for a gate very near the surface of the nanotube. On the other hand, the electrolyte 
configuration should have the quantum capacitance of the nanotube dominate the total 
capacitance, even at low concentrations – the concentration determines the Debye 
screening length through Equation 2.14, which relates to the distance h through h = 
(d/2)+λD. This might be an overstatement due to the fact that the dielectric constant of 
the electrolyte is lower than the one in the bulk at short distances. The limiting value 
CQ0

’ = 3.86×10-16 F/µm is shown by a dotted line. 
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LM
’ (per unit length) of a wire of diameter d in proximity with a ground plane a 

distance h away from the wire’s axis (Ramo, Whinnery et al. 1984): 
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The magnetic permeability of the medium is µ, which we will consider non-magnetic 

(µ = µ0 = 4π×10−7 N A−2). For d = 2 nm, LM
’ ~ 1.2×10−3 nH/µm when h = 200 nm and 

LM
’ ~ 6×10−4 nH/µm when h = 10 nm – it increases with distance. 

At the electronic level, an additional inductance exists that can be regarded as a 

resistance to a change in kinetic energy of the electrons in the conductor. Such 

opposition would make the electrons’ velocities lag in phase with regard to the 

external field. This quantum inductance is called kinetic inductance due to its origins. 

First, we consider the electric force acting on all the electrons in the carbon nanotube 

when a voltage V is applied (simply Newton’s law): 
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where P is the total momentum of the electrons, n is the total number of electrons in 

the nanotube per unit length L (determined by the Fermi energy), and we used 

Equation 2.4 and that the Fermi wavevector is related to the Fermi velocity16 by ћk = 

m*v, where m* is the effective mass in the band. 

The total momentum acquired by the electrons through application of the 

electric field is simply m*vd per electron, where vd is the drift velocity, so that: 

                                                           
16 For consistency, we refer to the Fermi wavevector and velocity without a subscript. 
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 dvnLmP *= . (2.18) 

This can be related to the electric current I produced by the electric field by: 

 *LmPenevI d == , (2.19) 

which we substitute into Equation 2.17 to end up with: 
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which concludes our derivation of the kinetic inductance L’
K (per unit length, hence 

the prime). We obtain L’
K0 ~ 4 nH/µm for the four modes of a nanotube17 in the limit v 

→ v0 = 8×105 m/s (corresponding to high energies or metallic nanotubes). Also notice 

that L’
K is proportional to v-1, and therefore to the DOS. It diverges at the band edge.  

The magnetic and kinetic inductances follow the addition rule of inductors in 

series, that is, Ltotal = LK+LM. This means that the larger contribution dominates. 

The value that we calculated for the magnetic inductance in typical 

experimental conditions is several orders of magnitude lower than the kinetic 

                                                           
17 For one mode, 
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which equals to 16 nH/µm in the ballistic regime or at high energies. Notice that since the different 
modes of propagation conduct in parallel, the inductances per mode also add as inductors in parallel. 
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inductance. The kinetic inductance is always18 the dominant inductance in a carbon 

nanotube19. 

The inductive effect causes electrons to travel in the bulk as they would in a 

transmission line (more on this in Chapter 4). A ballistic nanotube would correspond 

to a lossless line, with characteristic impedance Z0 and wave velocity v that depend on 

its capacitance and inductance, Z0 = [L/C] ½ and v = [L·C]-½. The wave velocity of the 

plasma waves in the nanotube would generally be larger than the Fermi velocity, 

except in the quantum capacitance limit, when v = v0 = [LK0CQ0]-½. In general, v0 is 

smaller20 than the plasmon velocity by a constant factor g, which characterizes the 

effect of electron-electron interactions (that is, the amount by which electrostatics 

changes the capacitance). Tunneling experiments have put the value of g at ~ 0.3 in 

carbon nanotubes (Bockrath, Cobden et al. 1999; Postma, Teepen et al. 2001), but no 

direct evidence ac measurement of the kinetic inductance has yet been made. The 

main obstacle is that until recently it was not possible to obtain nanotubes of suitable 

length which could be practically probed as transmission lines at experimentally 

feasible frequencies. Long nanotubes are now routinely grown (Huang, Cai et al. 

2003), and some groups have proposed different techniques to probe them at high 

frequencies (Appenzeller and Frank 2004; Yu and Burke 2005). We have developed a 

technique which is very promising towards achieving this ultimate goal, as described 

in Chapter 7. 

 

                                                           
18 Using Equation 2.16, we only arrive at LM = LK for ln(h/d) ~ 20000, which for d = 2 nm implies h ~ 
1010000 nm!!! That is much larger than the observable universe (of order 1024 km) by any measure. 
19 There is little to be gained from a wrap-around geometry such as that of an electrolyte capacitor. The 
medium is non-magnetic and all potential for improvement is in the logarithmic function. 
20 Notice that the total capacitance is generally less than the quantum capacitance, increasing the 
plasmon velocity in turn. 
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Figure 2.4. Summary of the electrical properties of a carbon nanotube. 
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2.6 Conclusions 

 As 1D systems, carbon nanotubes possess several unusual properties – 

quantum resistance, quantum capacitance and kinetic inductance (see Figure 2.4): 

a) The quantum resistance is a direct result of a “funnel” effect, in which a 

large number of electrons living in 2D or 3D metal contacts flow into a 1D 

system. This resistance exists even if the bulk 1D material is ballistic, and 

it should correspond to the ultimate limit for conduction. When incoherent 

scattering in the bulk dominates the resistance, though, the nanotube 

operates in the diffusive limit. This will be our assumption in developing 

the theory of the next two chapters. 

b) The quantum capacitance is a chemical limit to the ability to add charge to 

the nanotube. Under appropriate circumstances, such as a high-κ insulator 

or optimal geometry, it becomes the dominant mechanism that limits 

charge accumulation. We will see direct evidence of the quantum 

capacitance in Chapter 6. 

c) The kinetic inductance is associated with the inertia of the electrons in the 

nanotube. It limits the ability to change a current under a sudden increment 

of the applied bias. The kinetic inductance is always stronger than its 

magnetic counterpart in a carbon nanotube, and it should be relevant at 

high frequencies. 

 The resistance and the capacitance dictate the operation of carbon nanotubes as 

field-effect transistors (FETs), which will be the subject of next chapter. The kinetic 

inductance will not be addressed in our experiments, but we will comment on its 

consequences briefly in Chapter 4. 
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 CHAPTER 3 

 

 THEORY OF CARBON NANOTUBE FIELD-EFFECT TRANSISTORS 
 

3.1 Introduction 

 In the previous chapter, we have discussed the electrical properties that are 

likely to play a role in transport in nanotubes. In this chapter, we will quantify the use 

of semiconducting nanotubes as the active ingredient of field-effect transistors (FETs). 

The resistive and capacitive properties of semiconducting carbon nanotubes will be 

used to predict their low-frequency performance in this particular application. 

 

3.2 Generic one-dimensional field-effect transistor 

 In this section, we will derive the transport characteristics of a 1D field-effect 

transistor (FET). The initial derivation corresponds to the general case of a diffusive 

one-dimensional material and is similar to the derivation of a 3D FET. Special 

attention to p-type FETs will be given, since this relates directly to carbon nanotube 

operation. In Section 3.3, a more accurate model applying the band structure 

properties derived in Chapter 2 will be used to describe carbon nanotube FETs in 

particular. Nonetheless, the methods and results obtained via the study of a generic 1D 

FET will constitute the basis for analysis of transistor operation.  

 

3.2.1 Linear region 

 An FET can be interpreted as a variable conductor, in which the number of 

carriers at the semiconductor’s interface is a function of the voltage Vg applied to the 

gate electrode. This is the geometry of a metal-oxide-semiconductor (MOS) capacitor, 

as introduced in Chapter 1. A voltage threshold Vg0 separates the operation modes. For 
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a p-type FET, the off-state (zero conductance) is characterized by Vg > Vg0. At Vg ≤ 

Vg0, the semiconductor starts to look like a conductor, and the total charge per unit 

length is given by 

 ogggg VCVVCneq '
0

' =−== , (3.1) 

where n is the charge density per unit length, Cg
’ = Cg/L is the gate capacitance per 

unit length, and Vo will be referred to as the gate overvoltage (semiconductor is 

grounded). A p-type FET with Vg0 ≤ 0 is said to be normally off or in enhancement 

mode; otherwise, it is normally on or in depletion mode. 

 In order to include transport in this description, we must consider how the local 

charge density is affected by the potential landscape induced by the bias voltage 

applied between the terminals, called source and drain. Intuitively, a positive voltage 

V locally applied to the semiconductor side of the gate capacitor will increase the 

potential difference between the two plates of the gate capacitor (just as with a MOS 

capacitor), and we end up, locally, with (gate electrode is at fixed overvoltage): 

 ( ) ( ) ( )( )xVVCexnxq og +== ' , (3.2) 

where x is the distance measured relative to the biased end of the semiconductor. 

Assume all metal contacts have low resistance and are ohmic. 

 We can now write Ohm’s law for this device (diffusive regime): 

 ( ) ( ) ( )( ) ( )
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xVexnxxj hµεσ , (3.3) 
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where j in the current density in 1D, σ is the 1D conductivity, ε is the electric field and 

µh is the hole mobility. Notice that because the current density is a constant for the 

device (since there is no alternate path for the current at dc), the product between σ 

and E implies a constraint to the voltage profile V(x). Also notice that the conductivity 

has dimensions of length/resistance in one dimension. 

 Next, we calculate the actual current flow from source to drain. The current 

density is numerically equivalent to the current in one dimension, so Isd ≡ j. In order to 

eliminate specific knowledge of V(x) in Equation 3.3, we integrate both sides of the 

Equation from source (x = 0) to drain (x = L), with the boundary conditions V(0) = Vsd 

and V(L) = 0 1(which gives the desired convention that positive current flows towards 

the more negative terminal): 
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This result states that the correction to the carrier concentration due to the source-drain 

bias is given by addition of the average bias between source and drain to the 

overvoltage. For |Vsd| « Vo, the current depends linearly on the bias voltage Vsd. This is 

                                                           
1 The textbook convention for biasing a p-type FET is that the source is grounded while the drain is 
kept at a negative bias Vds. The reason for doing this is that the FET saturation mode, of interest for 
applications, can only be reached through pinch-off, when Vds = -Vo. The biasing convention ensures 
that the current still flows from source to drain. For Vds < 0, the current flowing from source to drain is 
given by: 

 ( ) dsdso
gh

sd VVV
L
C

I 2
1

'

+−=
µ

. 

We see that the carrier density is now lowered by the average potential along the device. This is the 
appropriate expression for comparison with standard textbooks. 
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called the linear region. The current versus bias characteristics of the p-type 1D FET 

are shown in Figure 3.1 (a). 

The voltage profile can now be calculated by performing integration of 

Equation 3.3 from 0 to x (or for Vsd dropping to the value V(x) instead of 0) and using 

the result of Isd of Equation 3.4. We arrive at: 
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At small bias (|Vsd| « Vo), Equation 3.5 becomes simply a linear profile: 

 ( ) ( ) sdVLxxV /1−= . (3.6) 

The voltage profile in the p-type 1D FET is shown in Figure 3.1 (b). 

We can calculate the conductance of the device from its definition, G ≡ Isd/Vsd, 

and we obtain2,3: 

 ( )sdo
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. (3.7) 

                                                           
2 In this version, the contacts are assumed to have low resistance, resulting in little additional voltage 
drop. The voltages applied to the contact regions are, therefore, the same voltages experienced by the 
device. 
3 The standard textbook derivation of these equations (3D case) is that of an n-type FET. In this case, 
the on-state is characterized instead by Vg > Vg0. With the drain grounded and the source with positive 
Vsd bias, the positive voltage now decreases the carrier concentration. The current which flows from 
source to drain is now given by: 
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. 

Notice that the electron mobility µe was used instead of µh. 
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 We will now define a field-effect mobility µFET from Equation 3.7. This is 

given by4: 

 
gg

FET V
G

C
L

∂
∂

−≡ 'µ . (3.8) 

We see that the mobility is directly proportional to ∂G/∂Vg, a quantity that will be 

important later. We will introduce explicitly this quantity in the results to come 

whenever we can. 

For completeness, the small-bias approximation (zeroth order) of the 

conductance can be written simply as: 
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. (3.9)  

As a last note, we will define the experimentally-relevant transconductance gm: 

 sd
g

sd
gh

constVg

sd
m V

V
GV

L
C

V
Ig

sd
∂
∂

=−=
∂
∂

≡
=

'

.

µ
. (3.10) 

This quantity is very important because it describes how the current changes with the 

gate voltage for a given bias. It can be used to measure the sensitivity of the device to 

nearby charges – a property desired in chemical and biological sensors. 

 

 

                                                           
4 Negative sign reflects holes. Use + ∂G/∂Vg for electrons. 



36 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Field-effect operation of a 1D-FET. (a) Current versus voltage 
characteristics of a p-type 1D FET according to Equation 3.4. The current first rises 
linearly (linear region) and then, at negative bias, it becomes constant when Vsd = -Vo 
due to pinch-off, as explained in Section 3.2.2 (saturation region). For low-resistance 
contacts, the amplitude of the current is calculated once given the mobility, the gate 
capacitance and the length of the 1D semiconductor. Notice that the current amplitude 
increases quadratically with the overvoltage in the saturation region. This is the 
amplification effect which transistors are well-known for. (b) Voltage profile along a 
1D FET according to Equation 3.5. For low bias, the profile becomes linear. At higher 
bias, eventually pinch-off happens at the source and the profile becomes 
approximately constant for Vsd < - Vo, with a rapid voltage drop at the source end. The 
right-side axis shows conversely the charge distribution, which is zero at the source 
when pinch-off happens. Any additional bias results in a local voltage drop at the 
source end that leaves the voltage profile unchanged in the bulk. (c) Schematic of a 1D 
FET in a typical wire-on-plane gate arrangement, as described in Chapter 2. 

Drain Source 
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3.2.2 Saturation region 

 Something interesting happens when Vsd = -Vo, according to Equation 3.2. The 

carrier concentration at the source end becomes zero. Any attempt at pushing the bias 

further (more negative) will only expand the extent of the region with zero charge 

until at some distance x from the source the voltage “drops”5 once more to the limit-

value V(x) = -Vo. This condition is known as pinch-off. 

 Quantitatively, if we set V(x) = -Vo in Equation 3.5, the resulting equation for 

Vsd has only one solution, for x = 0 and Vsd = -Vo. We cannot simply describe the 

spatial profile of the voltage from the contact until it drops to - Vo, since this requires 

specific knowledge of the depletion region induced in the semiconductor by both gate 

and source voltages. Nevertheless, if we assume the width of this region ∆L « L, we 

can substitute Vsd = -Vo in Equations 3.4, 3.7 and 3.10, and we obtain the current, 

conductance6 and transconductance in the saturation region7: 

 

( ) ( )

( )

o

satg
o

gh

constVg

sd
m

o

satg

ogh

o

sd

o

satg

ogh
sd

V
V
GV

L
C

V
Ig

V
V
GV

L
C

V
IG

V
V
GV

L
C

I

sd
∂
∂

−==
∂
∂

=

∂
∂

−==
−

=

∂
∂

=−=

=

2

2

2

'

.

'

2
2'

µ

µ

µ

. (3.11) 

                                                           
5 Voltage drop will be used in the current context to describe a decrease of the absolute value. The 
voltage will start negative at the source and end at zero at the grounded drain end, so its magnitude 
drops along the device’s length. 
6 This is the conductance of the bulk of the device excluding the pinch-off region. Now Vsd becomes the 
applied source-drain bias and the total conductance is simply Gtotal = Isd/Vsd, with Isd given by Equation 
3.11. 
7 Once pinch-off is reached, the condition Vsd = -Vo effectively ties the bias experienced by the bulk 
semiconductor at the source end to the gate voltage, no matter what the total bias applied to the source 
is. This has a serious implication to ∂G/∂Vg, which transitions locally from -µhCg

’/L to –(½)µhCg
’/L due 

to the additional modulation of the source bias experienced by the bulk of the device (excluding pinch-
off region). The transconductance, on the other hand, retains the same functional form given by 
Equation 3.10 when going from the linear to the saturation regime. 
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The voltage profile in the bulk of the 1D semiconductor, obtained from 

Equation 3.5 with Vsd = -Vo, is approximately given by: 

 ( ) ( )LxVxV o −−≅ 1 , (3.12) 

where it is assumed that the width of the pinched-off region is ∆L « L. This profile 

predicts a rapid voltage drop at the source end (V = -Vo/2 at x = L/4) and a gradual 

profile thereafter. Figure 3.1 parts (a) and (b) also show the saturation region current 

versus bias characteristics and voltage profile at pinch-off8. The saturation region is 

key for current amplification. 

  

3.2.3 Subthreshold region 

 At finite temperatures, in the off-region (band gap), a small amount of carriers 

can be thermally excited even before the threshold voltage Vg0 is reached. The carrier 

population is simply given by the Fermi-Dirac distribution f(E) for electrons, [1-f(E)] 

for holes. The total number of carriers is given by the integration of the density of 

states times the distribution function. We can instead define an effective density of 

states at the valence band edge Nv such that the population of holes can be written as 

(Streetman and Banerjee 2000): 
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8 In practical MOSFETs, the length ∆L of the pinch-off region increases proportionally to Vsd, to first-
order. Since Isd in Equation 3.11 is inversely proportional to the channel length L-∆L, it can be seen that 
the saturation current continues to increase as (1+(∆L/L)Vsd). 
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where Ev is the valence band energy level, EF is the Fermi level of the semiconductor, 

k is the Boltzmann constant and T is the absolute temperature. The approximation in 

the last line is valid as long as the Fermi level is a few kT above the valence band 

edge. Thermally excited carriers can then contribute to the current even before the gate 

threshold is reached by means of the gate voltage Vg. 

 The relationship between Vg and the energy scale is a function of the 

electrochemical potentials of the metal plate and the semiconductor and is better 

characterized by the subthreshold swing S, defined as 
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, (3.14) 

where we assumed a simple exponential profile for Isd from Equation 3.13 and that 

∆Ev = αe∆Vg. The constant α measures how effectively Vg changes Ev. Ideally, α = 1 

and S ~ 60 mV/decade (at room temperature). This subthreshold current is only 

important for Vg > Vg0 (p-type FET) and the derivation was performed in the low-bias 

approximation. 

 The subthreshold swing is an important parameter for characterizing gate 

performance in FETs because it quantifies the steepness of the switching response. A 

sharp transition from off- to on-state makes for high on/off current ratio, and 

consequently for two very distinct logic states. 

 

3.3 Carbon nanotube field-effect transistor 

 The model proposed in Section 3.2 assumed little regarding the band structure 

of a nanotube. The main hidden assumption was that the conductivity increased 
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linearly with respect to energy/overvoltage. This is a consequence of another 

assumption, that the hole mobility was a constant. But as we will see next, the band 

structure of a carbon nanotube limits its maximum conductivity, and the mobility is a 

function of energy. As seen in Section 2.2, the density of states (DOS) of a carbon 

nanotube becomes a constant at high energies as a result of a constant velocity at high 

energies, since g(E) ~ v-1 in 1D. We will now see that this implies a cap to the 

conductivity. 

 Under biasing conditions, the carrier density is a function of position along the 

nanotube according to Equation 3.2, and then the wavevector becomes: 

 ( ) ( )( )xVV
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44
ππ , (3.15) 

where we used Equation 2.4 and once more we assumed the voltage convention of a p-

type FET with positive voltage on the source. 

The major consequence of this result is that the carrier velocity, from Equation 

2.3, will also be a function of position, and ultimately the phonon scattering rate τ-1(x) 

and the phonon mean free path l(x) as well, through the relation l(x) = v(x)τ(x). 

Using Fermi’s Golden Rule (Datta 1997), it can be shown that the scattering 

rate in 1D is proportional to the DOS (Equation 2.5): 
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where τ0
-1 is the scattering rate at high energies and v0 = 8×105 m/s, the Fermi velocity 

in a carbon nanotube at high energies as introduced in Chapter 2. 
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Now we define the position-dependent conductivity, following Equation 2.9: 
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where we used Equation 3.16, and σ0 and l0 are the high-energy conductivity and 

mean free path, respectively. The quadratic dependence of the conductivity on the 

velocity is a general property of 1D systems, as long as Equation 3.16 holds. Also 

notice that the conductivity is limited by the velocity. 

 Next, we use specific knowledge of the band structure of a carbon nanotube, 

Equations 2.3 and 3.15, in order to write: 
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where a = 8e/(3πdCg
’) becomes the relevant voltage scale for transport in the FET.  

 Now we are ready to calculate the conductance of the nanotube FET. We use 

3.3, 3.17 and 3.18 to write: 
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where we assumed that Vo is a constant, just as we did in Section 3.2.1 (so spatial 

variations of the gate voltage profile, specially near the contacts, are neglected). 

 With a change of variables to y = [(Vo + V(x))/a], the indefinite integral 

∫[y2/(1+y2)]dy = y - tan-1y (it can be shown by trigonometric substitutions), and the 

maximum conductance defined as G0 = σ0/L, we integrate Equation 3.19 from source 

(V(0) = Vsd) to drain (V(L) = 0) to eliminate the voltage profile: 
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The voltage profile can now be calculated, by integrating from 0 to x on both sides 

(Vsd drops to V(x)), with the constant Isd now given by 3.20. This leads to a 

transcendental equation. 

 We can now directly write down the conductance of the nanotube, just as done 

in Equation 3.7: 
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We can see from this expression that G ≤ G0. Notice that this derivation is for a 

diffusive nanotube FET (l(x) « L, Equation 2.9). 

 

3.3.1 Nanotube FET in the saturation regime 

 Equation 3.20 accurately describes the current in a nanotube FET in the 

diffusive regime. Saturation and subthreshold operation follow the same treatment of 

Sections 3.2.2 and 3.2.3. We will now elaborate on the saturation region. Pinch-off 

still happens at a bias Vsd = -Vo, as seen from Equation 3.15, but now the current 

profile leading to this point given by Equation 3.20 differs from Equation 3.4 (the 

relative agreement depends on the diameter of the nanotube). See Figure 3.2 for more 

detail. 

For the sake of completeness, we present the corresponding current, (bulk) 

conductance and transconductance in the saturation region for comparison with 

Equation 3.11: 
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At large overvoltage (V0 » a), assuming only one subband, G = gm = G0. That is, both 

the conductance and the transconductance have the same maximum value. This result 
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has a special consequence for the transconductance since it imposes a limit on the 

maximum rate of current change induced by a gate. Then G0 characterizes the ultimate 

sensitivity of a nanotube sensor9. 

 

3.3.2 Nanotube FET at low bias 

 Although the main application of a transistor is operation in the saturation 

regime, other applications can arise from the use of small source-drain bias, especially 

for high-frequency operation. So now we expand the results of Section 3.3 for low 

bias. 

 We start with the source-drain current and the conductance, derived from 

Equations 3.20 and 3.21: 
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The arrangement of the variables in Isd was done so as to facilitate its comparison to 

Equation 3.4. The source-drain bias “correction” to the overvoltage is now weighed by 

the factor [1 + (Vo/a)2]-1, which equals ½ when Vo = a. The voltage profile can be 

shown to match exactly that of Equation 3.6 when the expansion of tan-1 is done to 

first order in Vsd.  

 The zero-order value of the conductance is just: 
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= , (3.24) 

                                                           
9 A ballistic nanotube has G0 = GQ = 4e2/h ~ 155 µS, which is the ultimate and ideal sensitivity of a 
nanotube sensor, as seen in Section 2.3. 
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Figure 3.2. Current versus source-drain voltage of a carbon nanotube FET. The 
current is normalized by the maximum conductance G0 and the parameter a. This 
parameter sets a voltage scale which does not exist for the constant-mobility 1D FET. 
By definition, G0 depends on the mean-free-path, which can be shown to be 
proportional to the diameter (Suzuura and Ando 2002; Zhou, Park et al. 2005). The 
result of this is that the product aG0 is nearly diameter-dependent (a depends on the 
diameter as well through the gate capacitance, which is a weak function of diameter 
when the gate plate is placed far from the nanotube’s surface). If we use a typical 
wire-on-plane gate geometry with 200 nm of silicon oxide as the dielectric and the 
definition of a, we find that a = 1 V when the diameter is d ~ 4 nm. This converts the 
horizontal axis in the figure in units of Volts. A smaller diameter results in a larger 
voltage scale, shifting in turn pinch-off at a given bias voltage towards lower absolute 
currents. As a consequence, thinner carbon nanotubes should carry less current at the 
same bias. The diameter can therefore directly modify the I-V characteristics. 
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showing once more that the conductance has a maximum value Go 10. This expression 

is extremely useful for low-bias measurements. A comparison between the low- and 

high-bias conductances (along with the corresponding field-effect mobilities, to be 

discussed next) is shown in Figure 3.3. 

 

3.3.3 Field-effect mobility 

 Let us study the field-effect mobility of a carbon nanotube FET, as defined in 

Equation 3.8. It is then straightforward to apply it to Equation 3.24 to obtain the zero-

order approximation11: 
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where the constants a and l0 were re-expressed in order to show the familiar pre-factor 

eτ0/m*. 

 Since µFET is proportional to ∂G/∂Vg, and we know that the conductance stops 

increasing at large overvoltages, the mobility should have a peak12. If we set ∂µFET/∂Vg 

= 0 we find: 
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10 Notice that the no-bias conductance of Equations 3.24 and 3.9 have the same functional dependence 
as the high-bias transconductance of Equations 3.22 and 3.10, respectively. This is because both are 
independent of Vsd and, from the definition of gm, the derivative with respect to Vg is equivalent to a 
derivative with respect to Vsd in the saturation regime. 
11 It is not possible to compare directly Equations 3.4 and 3.23 because it is not clear how to take into 
account the weighing/averaging factor outside the square brackets.  
12 In contrast, Equation 3.7 has a constant mobility. In reality, the mobility of 3D FETs degrades at 
higher gate voltages, resulting in a similarly peaked function. 
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Figure 3.3. Low-bias versus saturation regimes for a carbon nanotube FET. Left axis: 
conductance G and transconductance gm (saturation transconductance only) versus 
overvoltage scaled by the device-dependent voltage scale a, according to Equations 
3.22 and 3.24. The conductance, defined as the ratio Isd/Vsd, increases slowly in the 
saturation regime (the maximum value is still G0). The saturation transconductance 
has the same functional form (and units) as the low-bias conductance. Right axis: 
field-effect mobility versus overvoltage at low bias (Equation 3.25) and in saturation 
(by differentiation of Equation 3.22 for G). It follows the derivative of the 
conductance, and as such, it peaks when the conductance change is the steepest. 
Notice that the peak moves towards larger overvoltage for higher bias. As expected, 
the mobility goes to zero at low and large overvoltage. 
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For a nanotube without defects, one could think of using the position of the peak of 

∂G/∂Vg to estimate the tube diameter. 

 

3.4 Simple analysis of effect of the contacts 

 When the contact resistances at source and drain are comparable to the bulk 

resistance of the nanotube, the voltage drop at the contacts cannot be neglected 

anymore. The two conductances we are trying to compare are the contact conductance 

Gcs (both contacts included) and the nanotube conductance G. The total conductance 

measured in an experiment will be Gtot = (G-1 + Gcs
-1)-1. This will be a function of the 

bulk conductance of the nanotube if Gcs is low and constant13 (as a function of Vsd and 

Vg). Typical experimental contact resistances of nanotubes FETs can range from ~ 10 

kΩ to MΩ. Bulk resistivities, on the other hand, have been seen in the range 4-20 

kΩ/µm when the nanotubes are in the on-state (Zhou, Park et al. 2005). The 

magnitudes of the bulk and contact contributions in the on-state are therefore 

comparable. Contact resistances are typically a very important part of the total on-state 

conductance. 

 A prediction can be made regarding how the contacts affect the peak of 

∂Gtot/∂Vg when compared to ∂G/∂Vg of the bulk. The first derivative of the total 

conductance is: 

 

                                                           
13 The voltage drops at the individual contacts in fact matter, due to their relation to the gate threshold. 
If the drain resistance is much smaller than the source resistance, the voltage applied to the drain of the 
nanotube will be at ground, while the one at the source will be lower than Vsd by a certain amount. If the 
source resistance becomes much smaller than the drain resistance, then the nanotube source will be at 
Vsd while the drain will be above ground by a certain amount. Although these situations are irrelevant to 
a resistor, they are not equivalent when there is a gate capacitor nearby. The induced charge profile, and 
with it the voltage profile, become distinct. Since we will be concerned mostly with small bias 
throughout the rest of the chapter, these nuances will be neglected.   
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where we used that Gcs is a constant. 

We now set the second derivative to zero to find the peak, from which we 

obtain the equation: 
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Use Equation 3.24 (low-bias conductance) and we end up with the equation: 
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where η0 = (Gcs/G0) and x = (Vo/a). The solution is: 
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For low-resistance contacts (Gcs → ∞), we recover Equation 3.26. So we see that the 

overvoltage for the peak of ∂Gtot/∂Vg to happen is smaller than that of ∂G/∂Vg. This 

means the conductance becomes steepest at a more positive Vg (smaller overvoltage; 

see mobility plot of Figure 3.4). 

 This entire derivation was done in the low-bias regime. It is not possible to 

obtain an analytical solution to the peak overvoltage including the effect of bias. This  
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Figure 3.4. Effect of ohmic contacts to the low-bias conductance of a carbon nanotube 
FET. Left axis: low-bias conductance versus overvoltage scaled by parameter a. 
When the contact resistances increase, the total conductance is limited by the rule Gtot 
= (G-1 + Gcs

-1)-1, where G is the conductance of the nanotube bulk and Gcs is the 
conductance of the two contacts together. In this particular case, the maximum 
conductance is G0/2. Right axis: scaled derivative of the conductance, or alternately 
the scaled field-effect mobility. The mobility peaks at lower overvoltages (more 
positive gate voltages in a p-type FET) when the contacts become more resistive. 
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will not be a concern, since we will be interested only in the low-bias regime in the 

following chapters. The importance of ∂G/∂Vg at high frequencies will be then 

demonstrated. 

 

3.5 Schottky barrier 

If we put a metal and a nanotube in contact, they exchange charge14. Let us 

start with the equilibrium situation (no bias applied), and let us assume that the 

nanotube (the semiconductor) is grounded by means of an ohmic contact with low 

resistance. In equilibrium, the Fermi level of the metal and the nanotube must align. 

Charge equilibration, on the other hand, modifies the shape of the bands near the 

interface. Precisely at the interface, the work function mismatch is translated into a 

built-in potential. Furthermore, as argued in Chapter 1, carbon nanotubes are typically 

heavily p-doped and their Fermi level should be found below the valence band edge at 

zero gate voltage. This is the situation in the bulk of the nanotube. 

 The mismatch between the chemical potentials of the metal and the nanotube 

can result in two different outcomes, as shown in Figure 3.5 (a) through (c) and (d). 

For a p-type contact15, when the Fermi level of the metal pins into the valence band of 

the semiconductor at the interface, there will be no barrier for holes – the majority 

carriers in the nanotube – to move from the metal to the nanotube. This is an ohmic 

contact (part (d); see Yaish, Park et al. 2004 and Javey, Guo et al. 2003). Otherwise, if 

the metal pins the interface with Fermi level inside the band gap, there will be a 

barrier, called a Schottky barrier (Heinze, Tersoff et al. 2002; Heinze, Radosavljevic et 

al. 2003). 
                                                           
14 This happens differently from the MOS capacitor, where charge cannot flow directly from the gate to 
the semiconductor. In this case, the voltage drops along the interface in the materials (no dielectric). In 
fact, since the density of states in the nanotube (away from band edge) is orders of magnitude lower 
than that in the Fermi sea of the metal, the voltage drop happens almost entirely in the nanotube. 
15 All the rules discussed here for holes are also true for electrons in n-type semiconductors, with the 
appropriate considerations applied. These can be found in standard device physics textbooks.  
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Figure 3.5. Types of metal-nanotube contacts. Schottky barriers – (a) At zero bias, the 
Fermi levels EFm (metal) and EFs (nanotube) align. The work function difference 
establishes a built-in potential barrier VB for holes to flow from the metal to the 
nanotube (assumed heavily p-doped and grounded at the opposite contact) and vice-
versa. (b) Negative bias applied to the metal decreases the potential barrier from the 
nanotube to the metal to VB-V. (c) Barrier increases when bias is positive. Notice that 
the barrier from the metal to the nanotube remains at VB. Furthermore, the electrical 
potential is constant in the metal. The metal-nanotube junction behaves like a reverse-
biased diode. (d) An ohmic contact has low resistance and does not change with bias. 
In the figure, there is no barrier for transport either way. 
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Under applied bias, the ohmic contact will immediately conduct. The Schottky 

contact, on the other hand, will have a barrier height that depends on the sign of the  

applied bias. The rules for biasing the Schottky junction are given as follows. Assume 

the nanotube is kept grounded by an ohmic contact not shown in the figure. At zero 

bias, the energy barrier for diffusion of holes from the nanotube to the metal is 

measured as eVB from the top of the valence band at the junction to the Fermi level of 

the nanotube (part (a)). When a negative bias voltage V is applied to the metal, it 

draws holes towards the interface of the nanotube. The Fermi level of the metal is 

raised relative to its original grounded position by an energy eV (and so are the 

valence and conduction bands at the interface). The barrier for holes in the nanotube is 

lowered (part (b)) to e(VB-V). Notice a tendency for the bands to become flattened 

spatially. Finally, if a positive bias voltage V is applied to the metal, holes are depleted 

from the nanotube. Now the barrier for holes in the nanotube increases (part (c)) to 

e(VB+V). 

The energy barrier for holes moving from the metal to the nanotube is eVB at 

all times, despite the bias. This means that the hole current flowing into the nanotube 

provides an offset to the opposing hole current flowing into the metal, even when the 

latter is negligible, such as for large positive bias. This is a reverse current similar to 

the one in p-n junction diodes. Although the details are somewhat different, the current 

through a Schottky contact has the same functional form of the current of a diode: 

 ( )1−= V
Sat eII α , (3.31) 

where ISat is the reverse saturation current and α determines the voltage scale over 

which the device behaves nonlinearly. The convention used for the voltage V and the 
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current I is the same as that of a p-n junction, with the nanotube as the p-type 

semiconductor. 

 

3.6 Conclusions 

 In this chapter, we have developed the theory of dc conductance of carbon 

nanotube FETs at both low and high biases. We started by assuming a constant 

mobility, similar to the analytical treatment of a standard MOSFET. Later, we relaxed 

this assumption by taking into consideration the band structure of a 1D material 

(carbon nanotube). Although we did an entirely dc analysis, these properties will be of 

fundamental importance in understanding the high-frequency behavior of carbon 

nanotube FETs. This will be the scope of the next chapter. 
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 CHAPTER 4 

 

 MIXING THEORY OF CARBON NANOTUBES 
 

4.1 Introduction 

As seen in Chapter 2, a carbon nanotube’s electrical properties are determined 

by its resistance, capacitance and inductance. In dc measurements, the resistance of the 

nanotube is finite, while the capacitive reactance to ground of the gate is infinite (XC = 

[ωC]-1) and the series inductive reactance is zero (XL = ωL). This picture must change 

in the ac regime. At high enough frequencies, ac current flows to the gate (for ω > 

[RC]-1), and the inductance increases the series ac impedance (for ω > R/L). In 

particular, when the series resistance is negligible, we obtain a standard lossless 

transmission line (characteristic impedance Z0 = [L/C]½ (Pozar 1998)). This would be 

the case of a ballistic nanotube, for example. Such a nanotube transmission line would 

have a wave velocity dominated by the kinetic inductance, as defined in Chapter 2. 

A direct measurement of the high-frequency properties of a carbon nanotube 

consists of transmitting a signal down the device and measuring the output at the same 

frequency of the input. This is challenging due to the high impedance of a nanotube 

(as seen in Chapter 2, Rmin = RQ = 6.45 kΩ) when compared to the impedance of 

typical measurement equipment (50 Ω). Any transmitted signals become too small and 

difficult to detect (poor signal-to-noise-ratio).  

Indirect measurements, on the other hand, involve the use of nonlinear effects. 

Semiconducting nanotubes, in particular, present themselves with an intrinsic 

nonlinearity: a gate-controlled resistivity. It happens that nonlinearities such as the 

field-effect from the gate or Schottky contacts also add to the ac response by means of 

an effect called frequency mixing, or mixing for short. This can be observed at low 
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frequencies, which makes for detection that is within reach of standard experimental 

equipment. This is in contrast with direct measurements, which necessitate specialized 

high-frequency equipment. Mixing is therefore a technique to measure the high-

frequency response of a device.  But the nature of this technique also makes it a probe 

of the device’s nonlinear characteristics, a welcome bonus feature. 

In this chapter, we will introduce the theory of mixing and apply it to carbon 

nanotube field-effect transistors (FETs). For most of the discussion, the nanotube will 

be treated as a single mixing unit. At the end of this chapter, we will model mixing of 

a carbon nanotube in the RC limit of a transmission line, much resembling a very lossy 

cable. Using this model, we will make predictions about the frequency response of 

mixing. We will then use this model in Chapter 7 to analyze mixing from 

semiconducting nanotubes in the diffusive regime. 

 

4.2 General theory of mixing 

The current produced by a bias applied to a diode or transistor will generally 

be a nonlinear function of the same applied bias1. For a small modulation δV applied 

to a pre-existing constant bias Vsd, we can simply express this current as an infinite 

series: 
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1 For a transistor, the nonlinearity comes from the gate response. 
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If we set Vsd = 0, further simplifications are possible2: 
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where G = (∂Isd/∂V)|V=0 is the low-bias conductance. 

If this modulation is additionally time-dependent, of the form δV = Vac cos(ωt), 

and neglecting higher-order terms, we obtain: 
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where the terms were arranged in order of the harmonics of the frequency ω. In 

obtaining the last line, we used the trigonometric relation cos2(ωt) = ½(1 + cos(2ωt)). 

What is remarkable about the last result is that although the input oscillates at a 

fixed frequency ω, the output also contains a dc and a 2ω component (if the whole 

series were used, all harmonics of the fundamental would appear). The dc component 

corresponds to rectification and is directly related to the high-frequency properties of 

the device, since Vac is the amplitude of the input at ω and ∂G/∂V might be ω-

dependent. We will refer to this as the dc mixing current Imix
 3: 

                                                           
2 Without bias, Isd(0) = 0. 
3 The term mixing refers to generating an output of linear combinations of the input frequencies. In this 
case, ω mixes with itself by means of the power of 2, producing the frequencies ω ± ω. Something 
similar can be done with an amplitude modulated (AM) input as well. In this case, δV = Vac·(1 + 
m·cos(ωmt))·cos(ωct), where ωm is the modulation frequency, ωc is the carrier frequency (typically 
higher than ωm) and m is the modulation index. Because cos(ωmt)·cos(ωct) = ½( cos((ωc - ωm)t) + 
cos((ωc + ωm)t)), we will see already in first order an output current at the lower frequency ωc - ωm, and 
in second order the even lower ωc - 2ωm, and so on. By tuning the frequency difference, we can use this 
frequency mixing to perform ac detection at reasonably low frequencies, improving signal-to-noise ratio 
related to 1/f noise. 
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where we inserted a possible frequency dependence of ∂G/∂V. It should be noted that 

this derivative should be evaluated in the zero-bias limit whenever it appears from 

now on. This current provides means of measuring the high-frequency properties of a 

device by performing dc detection, which is easy to implement experimentally,4. 

A few special cases will now be analyzed. 

 

4.2.1 The Schottky diode 

A biased Schottky junction such as that described in Chapter 3 (Equation 3.31) 

will output a current of the form5: 

 ( )1−= V
Sat eII α , (4.5) 

where V is the voltage difference between the metal and the semiconductor. The 

convention is such that forward current flows from the metal to an n-type material or 

from a p-type material to the metal. The constant α is the inverse of the voltage scale 

over which the device is nonlinear, and it equals e/kT for an ideal diode. The current 

ISat is the reverse saturation current (I → -ISat for negative V). See Streetman 

(Streetman and Banerjee 2000) for more. 

                                                           
4 Without going into details, a special case can happen with an FET. If the conductance of the device is 
tuned by a gate voltage Vg, then the application of a modulation δVg = Vg,ac cos(ωgt) to the gate will 
make G → (∂G/∂Vg)· δVg to first order in δVg. Then, the first-order term in δV in Equation 4.3 will 
generate mixing of the two input frequencies (output will contain ω ± ωg). This kind of control is 
particularly useful when the device is suspended, in which case mechanical vibrations can be set to 
resonate at a high frequency ω, with the driving force given by the gate’s electrostatic tunable pull.   
5 This corresponds to the metal-semiconductor contact of Chapter 3. Such a contact can also be thought 
of as a p-n junction with the metal behaving as a p+ contact or n+ (+ denotes high doping), depending on 
the relative majority carrier sign. 



59 

 

Using the expansion of Equation 4.3 for small bias, we obtain: 
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where Rj0 = (ISatα)-1 is the zero-bias junction resistance (by definition, Rj = (∂I/∂V)-1). 

We can directly extract the dc mixing current from Equation 4.4 by time-

averaging the second-order term of Equation 4.6: 
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The frequency dependence may exist in ISat, Rj0 or α. We will soon return to the 

subject of Schottky barrier mixing with carbon nanotubes in this chapter. 

 

4.2.2 Mixing with an FET 

An FET will output a dc mixing current from Equation 4.4 given by the 

binomial expansion of the current, Equation 3.4 of Chapter 3:  

 ( ) ( ) 22
'

4
1

4
1, ac

g
ac

gh
acmix V

V
GV

L
C

VI
∂

∂
−==

ωµ
ω , (4.8) 

where we have included phenomenologically a frequency dependence in the 

conductance. Comparison with Equation 4.4 shows that we have simply replaced 

∂G/∂V with -∂G/∂Vg. This can be understood qualitatively from Equation 3.2 of 

Chapter 3. A positive δV(x) increases the local charge distribution in the same manner 
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that a negative δVg does, in the limit of low-resistance contacts. Thus follows ∂G/∂V = 

-∂G/∂Vg 6,7. 

 

4.3 Theoretical mixing with a nanotube FET 

With this reasoning in mind, we can write down the expected dc mixing 

current of a nanotube FET, using Equation 4.8 and Equation 3.25 of Chapter 3: 
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The immediate consequence is that this mixing current should exhibit all the 

interesting properties of the mobility as described in Chapter 3. It should peak as a 

function of gate voltage and tail off to zero at large enough overvoltage. 

 

4.4 Contact resistances and Schottky mixing 

Real devices have contact resistances, and these could affect mixing. As 

discussed in Chapter 3, the contacts can be either ohmic or Schottky. Ohmic contacts 

do not generate any mixing current and can be introduced as constant resistances in 

addition to the resistance of the nanotube. Their main role is in attenuating the mixing 

current Imix as follows. We take the nanotube mixer shown in Figure 4.1 as consisting 

of a dc current source Imix,bulk in parallel with the resistance R of the bulk of the 

nanotube. Although the dc current source is a result of the high-frequency nonlinearity, 

the dc current flowing through the entire circuit depends on the resistance of the dc  

                                                           
6 In contrast, a positive δV(x) decreases the local charge distribution in the same manner that a negative 
δVg does for an n-type FET, as seen in Equation 3.2 of Chapter 3. Again it follows that ∂G/∂V = -
∂G/∂Vg, and Equation 4.8, remarkably, is valid for both n and p-type FETs.  
7 This equality is only valid in the limit of low-resistance contacts. It fails when the voltage drop is split 
among bulk and contacts. 
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Figure 4.1. Nanotube dc mixer model with constant contacts. Imix,bulk is the ac-
generated mixing current of the nanotube mixer of length L. A dc voltage Vdc(z) builds 
up across the device in order to keep the total mixing current at each node constant 
and equal to Imix. The dc current that builds up across the resistance R of the device is 
given by IR = [Vdc(z = 0)-Vdc(z = L)]/R. The resistances of the source and drain are Rs 
and Rd, respectively. The dc boundary condition in this case is that source and drain 
are grounded. 
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path. If the ends are grounded and the contacts do not mix, a dc voltage Vdc(z) will 

build up across the bulk of the nanotube to compensate for the excess mixing current 

generated. 

Using Kirchhoff’s current law at the nodes/contacts under the condition of 

grounded ends, the total mixing current measured becomes: 
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where the bulk of the nanotube extends from z = 0 at the source end to to z = L at the 

drain end, Rs and Rd are the resistances of the source and drain contacts, respectively, 

and  Rtot = Rs + R + Rd. This shows that the contacts behave as a current divider. This 

rule should be used whenever dc mixing current appears in the bulk. 

Now let us calculate Schottky mixing as a function of frequency in the special 

case of a highly conductive nanotube. This can be used to describe either a metallic 

nanotube or a semiconducting nanotube at high overvoltage (on-state), as long as the 

resistances of the contacts are much larger than that of the bulk of the nanotube8. The 

circuit model is shown in Figure 4.2. We label the ac voltage at the source Vin = Vsd, 

the drain is grounded, and the ac voltage on the nanotube is Vout. We assume the low-

bias approximation, in which case the junction resistances can be approximated by  

                                                           
8 Any model of mixing using the voltage drop along the nanotube at high frequencies has to take into 
account the distributed resistances and capacitances of the bulk. As a limiting case, when the resistances 
of the contacts are much larger than that of the bulk, the voltage drop on the nanotube becomes 
negligible, and we can represent it simply as a capacitor to ground in a small-signal ac model. We will 
analyze the complete mixing problem in the next section.  
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Figure 4.2. Schottky mixer model at ac, in the limit of negligible nanotube resistance. 
The source and drain contacts are represented by reverse-biased diodes with junction 
resistances Rs and Rd, respectively. The ac voltage Vout is assumed to be uniform in the 
nanotube. The voltage drops across each contact depend on how the input ac voltage 
Vin = Vsd divides. 
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their bias-independent values Rs (reverse-biased diode) at the source and Rd (forward-

biased diode) at the drain10 (see Equation 4.6). 

In the ac picture, both the drain resistance Rd and the gate capacitor Cg are seen 

as impedances in parallel connected to ground. The voltage gain is simply given by the 

impedance ratio of Rd||Cg (“||” denotes equivalent parallel impedance, between the 

resistance and the capacitive impedance in this particular case) and the total 

impedance to ground: 
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where j is the imaginary constant (engineering notation). 

The voltage drop across Rs normalized by Vin follows: 
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We have been dealing with complex notation so far. The mixing current, 

though, actually depends on the in-phase component of V2, so that in our notation, we 

change the V2 dependence of Equation 4.4 by |V|2 (a definite proof for this will be 

given at the end of this chapter). Then, we should take into account that the Schottky 

diodes depicted in Figure 4.2 point in opposite directions, and therefore they generate  
                                                           
10 As discussed in Chapter 3, a carbon nanotube typically operates as a p-type FET. Forward biasing 
occurs when the voltage on the nanotube is higher than the voltage on the metal. 
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Figure 4.3. Schottky mixer model at dc, in the limit of negligible nanotube resistance. 
Imix,s and Imix,d are the ac-generated mixing currents of the source and drain Schottky 
diodes, respectively. A dc voltage Vdc builds up in the nanotube in order to keep the 
total mixing current Imix constant at each node. The dc currents that build up across 
each contact are given by Is = -Vdc/Rs at the source and Id = Vdc/Rd at the drain. The dc 
boundary condition is that source and drain are grounded. 
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mixing currents of opposite sign following Equation 4.7. Figure 4.3 shows how the 

current divides in this case, and using Equations 4.11 and 4.12 we obtain: 
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where the dc voltage that builds up on the nanotube is Vdc, the sign of the mixing 

current of the first contact reflects its polarity (reverse), and Rtot = Rs + Rd. In order to 

extract useful predictions from this expression, we will assume that αs ~ αd = α, so 

that both contacts have the same nonlinear voltage range. In this case, we convert  into 

the following expression: 
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One part of this expression looks familiar. The ω-dependent denominator 

indicates a low-pass RC filter cutoff at a frequency ωRC given by Cg and the equivalent 

resistance of the contacts in parallel. 

Apart from the cutoff, we can identify (see Figure 4.4): 

a) For Rs > Rd, Imix < 0. 

b) For Rd > Rs, Imix > 0 at low frequencies; Imix < 0 when : 
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For Rd » Rs, ωflip = (RsCg)-1. In this limit, ωRC = [(Rs||Rd)·Cg]-1 = (RsCg)-1·(1+ 

Rs/ Rd) → (RsCg)-1 as well. In fact, it can be seen that ωRC ≥ ωflip from these 

expressions. Approaching the limit Rs → Rd, we find that even if Rs/Rd ~ 

0.1, then ωRC ~ 1.1 ωflip ~ (RsCg)-1. It is then hard to tell them apart 

experimentally, except when Rd ~ Rs, when the sign change happens at zero 

frequency. Our typical experimental values of contact resistances range 

from ~ 10 kΩ to MΩ, so for highly asymmetrical barriers, ωflip ~ ωRC. 

c) In terms of the junction resistance ratio η = (Rs/Rd) and the reverse 

saturation currents ISat,s and ISat,d of each contact: 
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In summary: at low frequencies, the larger Schottky resistance dominates 

mixing (and its current polarity). At large enough frequencies, the capacitor shorts the 

source diode to ground and mixing eventually becomes entirely dominated by the 

source Schottky diode, resulting in negative current because it is reverse-biased. Its 

magnitude, however, still depends on the current division rules and can be influenced 

by the opposite contact (through Rtot). 
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Figure 4.4. Schottky mixing current Imix versus frequency for constant source junction 
resistance Rs, different drain junction resistances Rd. The current is displayed in units 
of |αVin|2ISat,s/4 and the frequency is normalized by [RsCg]-1. The constant α is assumed 
to be the same for both contacts. The current is always dominated by the source diode 
at high frequencies, acquiring a negative sign. 
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Notice that a Schottky mixer is essentially a resistor. In the absence of parasitic 

capacitances at the contacts, Figure  4.4 predicts that the gate capacitor simply 

regulates which of the two mixers has control over the dc mixing current. The cutoff 

frequency ωRC in effect cuts off the drain diode from the mixer circuit. As long as the 

input voltage Vin is a constant as a function of frequency, the Schottky mixing current 

should have constant values on either side of the cutoff. 

 

4.5 Mixing of a nanotube as a lossy transmission line 

So far, we have modeled mixing from discrete elements, such as a Schottky 

diode or an FET as a single mixing component. The former allowed us to predict the 

frequency-dependence of the mixing current of the contacts of a nanotube when the 

resistance of the nanotube is negligible (previous section). The latter allowed us to 

treat a nanotube as a single mixer, despite its distributed resistance and capacitance. 

Because of this, no inherent cutoffs were predicted for the bulk of the nanotube, and it 

appeared as if the nanotube mixer could work at indefinitely high frequencies 

(frequency dependence was implied only in ∂G/∂Vg, Section 4.2.2). The question then 

becomes: if we take into account the distributed nature of the nanotube, will there be 

any cutoffs? 

 

4.5.1 Carbon nanotube as a transmission line 

We start by deriving wave propagation in an FET transmission line in the low-

bias limit, using a distributed circuit model. In this treatment, as shown in Figure 4.5, 

the line can be represented by a series of discrete (length ∆z) resistances intercalated 

by capacitors connected to a ground line. 
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Figure 4.5. Lossy transmission line model. The ac voltage and current profiles are 
functions of the resistivity and capacitance per unit length of the line. In the text, we 
use a discrete element of length ∆z to derive the profiles. For a typical nanotube 
resistivity (in the on-state) of ~ 10 kΩ/µm, and with the kinetic inductance L’

K0 ~ 4 
nH/µm (see Chapter 2), the inductive reactance only becomes comparable to the 
nanotube’s resistance at a frequency f ~ ρ/(2πL’

K0) ~ 400 GHz. We cannot access this 
regime with our experimental equipment. For this reason, we will consider solely the 
RC limit in our analysis. 
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Kirchhoff’s voltage law gives us: 
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where ρ(z) = σ-1(z) = G-1(z)/∆z is the average value of the resistivity within the discrete 

element, and we divided both sides by ∆z and took the limit in order to write the last 

line. 

Kirchhoff’s current law gives us: 
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where C’ = C/L is the capacitance per unit length to ground (which is also the gate 

capacitance), and once more we took the limit ∆z → 0. 

Next, for a sinusoidal steady-state condition such that V(z,t) = V(z)exp(jωt) and 

I(z,t) = I(z)exp(jωt), the two equations become: 
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We can now eliminate the current from these equations by differentiating the 

first one with respect to z. By use of Equations 3.2 and 3.3 of Chapter 3, we re-express 

σ(z) = n(z)eµ = µC’(Vo+V(z)), and we obtain: 
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This leads to a non-ordinary second-order differential equation. Instead of solving the 

general-bias case, we focus on our region of interest, of low-bias. Then, V(z) « Vo, and 

the resistivity ρ = (µC’Vo)-1 becomes a constant as a function of bias. Our differential 

equation reduces to: 
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with solution 
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where the propagation constant is γ = [jωρC’]½ = (1+j)γ0 (real and imaginary parts 

equal to γ0 = [ωρC’/2]½). It then also follows, from Equation 4.19, that: 
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from which we can define the characteristic impedance Z0 of the lossy line as: 
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which represents the geometrical mean of the resistance and the capacitive impedance. 

We see that this impedance is very high at low frequencies (ωRC « 1). 

We will now analyze the voltage profile along a nanotube. In order to avoid 

Schottky mixing, we will develop a model that corresponds to a semiconducting 

nanotube in linear gate operation at low overvoltage11. We will label the source and 

drain resistances Rs and Rd, respectively. Figure 4.6 corresponds to the schematic of 

the nanotube transmission line.  

The starting point is to find the input impedance of our line. We must analyze 

the line from the drain end back to the source for this. The drain resistance is a load 

terminated in ground, and we use it to define a reflection coefficient Γ of the drain: 
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In the limit of either negligible drain resistance or low frequency, Γ(L) → -1. 

Following the same reasoning, we calculate the input impedance Zin: 
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In the low-frequency limit, the last line reduces to Zin → R, where R is the resistance 

of the bulk of the nanotube. 
                                                           
11 At higher overvoltage, we cannot neglect the mixing contributions of the contact resistances. 
Although we will not develop the complete theory including the effect of Schottky contacts, it is 
straightforward to implement it from the analysis that will be presented. Once the ac voltage profile is 
deduced, we can calculate the amount of Schottky mixing from Equation 4.7. Then we use the rules of 
current division, in a similar fashion to Equation 4.10, to calculate the total dc mixing current. 
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Figure 4.6. Transmission line circuit for nanotube (NT) with contacts. The contact 
resistances are Rs and Rd for the source and drain, respectively. The input impedance, 
current and voltage are Zin, Iin and Vin, respectively; the characteristic impedance and 
the propagation constant of the nanotube are Z0 and γ, respectively. All the quantities 
above have been defined in the text. 
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Next, we apply our boundary conditions to the input. If the ac input has an 

amplitude Vsd, the voltage seen by the nanotube at z = 0 is given by an impedance ratio: 

 ( )
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sd RZ

ZVV
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=0 . (4.27) 

In the limit of negligible source resistance12, V(0) → Vsd. 

Finally, the voltage profile becomes: 
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In the low-frequency limit the last line reduces to 

 ( ) ( )LzVzV sd −= 1 , (4.29) 

which is simply a linear profile with no imaginary part, just as we would expect. 

Notice that this result was obtained for negligible contact resistances. When contacts 

are included, the profile is still linear, but the total voltage drop is reduced from Vsd. 

 

4.5.2 Mixing with an FET transmission line 

So far, these results are analogous to the treatment of a lossy cable (or a 

metallic nanotube in the diffusive regime). If the line is in fact a transistor 

(semiconducting nanotube), the local current is given by the microscopic Ohm’s law 

                                                           
12 A typical ac source has an internal impedance of 50 Ω. A matched circuit has the same input 
impedance, which maximizes the amount of power delivered to the load. Here, we neglect the internal 
impedance of the generator compared to the typically much higher contact resistances and bulk 
impedance of the nanotube. 
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from Equation 3.3 of Chapter 3. The local dc mixing current is given by the local dc 

time-averaged current13, which assuming only harmonic fields (Jackson 1975) is: 
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where we used the relation between the field-effect mobility and the derivative ∂G/∂Vg 

from Section 3.3.3 of Chapter 3 14. This derivation is general and also applies to 

Schottky mixing, as seen in Section 4.4. In fact, this is the analytical proof of the 

treatment we employed then15. 

This local ac nonlinearity gives us a dc current. What we need to know next is 

how the local dc mixing current produces the total dc mixing current. In the dc picture, 

the nanotube mixer can be represented as a series of components given by the local 

resistance in a range ∆z and a current source in parallel16, just as done when analyzing 

the contacts in Section 4.4. The dc current, given by Equation 4.30, is generated by the 

ac mixer at each point. A dc voltage can build up across each of the parallel 

resistances, producing another dc current. According to Kirchhoff’s current law, these  
                                                           
13 To look at the time-average at another frequency ω, multiply by exp(jωt) and take average. If the 
conductivity and the field have each one frequency component only at ω, the only other averaging 
possibility is 2ω. Notice that an additive constant (such as Vo) averages to zero. 
14 The local mixing expression is the same in the low-bias limit for the nanotube FET of Section 3.3 of 
Chapter 3. We use Equation 3.19 and expand the denominator for low bias in first order in V(z) (very 
important step). The derivation is tedious and will not be displayed here. 
15 Although the Schottky contact is not a distributed mixer, the mixing current (neglecting sign and dc 
attenuation) is calculated as Imix = <G(t)∆V(t)> ~ |∆V|2, at low bias. This proves our previous statement.  
16 The capacitances look just like infinite impedances to ground in the dc picture. But they should be 
taken into account for current mixing detection other than the dc. In that case, the lumped resistance 
should be replaced with the appropriate lumped impedance. 
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Figure 4.7. Distributed dc mixer model. Imix(z) is the ac-generated mixing current at 
each point, for each discrete element of length ∆z. A dc voltage Vdc(z) builds up across 
the device in order to keep the total mixing current at each node constant and equal to 
Imix. The dc current that builds up across the resistance of the device is given locally by 
IR(z) = -∆Vdc(z)/ρ∆z. The boundary condition in this particular case is that source and 
drain are grounded. 
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parallel currents add up to a constant at each node (see Figure 4.7) which must be 

equal to the total dc mixing current at the end. In the absence of contact resistances, 

we can write: 

 ( ) ( )
z
zVzII dc

mixmix ∆
∆

−=
ρ

, (4.31) 

where ∆Vdc(z) = Vdc(z+∆z) - Vdc(z)  corresponds to the dc voltage difference which 

builds up locally, and the resistivity was assumed constant again (low-bias limit). The 

boundary conditions on the dc voltage will be such that the nanotube is grounded at 

both ends. In that case, when we integrate both sides of this equation along the whole 

length of the nanotube, we obtain: 
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. (4.32) 

The dc voltage drops out because of the boundary conditions17. If the dc bias is not 

zero, the total current becomes offset by the dc current. Notice that after calculating  

the mixing current, we can re-insert it into this Equation and integrate for z < L to 

compute the dc voltage profile. 

                                                           
17 General solution: if Schottky contacts are included and the device is grounded at both ends, we 
obtain: 
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where R is the resistance of the bulk of the nanotube, and the signs of the Schottky currents from source 
and drain are those adopted in Section 4.4. 
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In the case of low-resistance contacts, we use Equation 4.28 to calculate Imix: 
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Several algebraic steps were omitted in this calculation (including all manipulation 

with complex numbers and hyperbolic function algebra), but the final result is that the 

mixing amplitude is independent of frequency and identical to Equations 4.8 and 4.9. 

The core assumptions were low bias, and non-mixing and low-resistance contacts. If 

we choose to take into account the dc attenuation from the non-mixing contacts, we 

simply insert this result into Equation 4.10. 

We can calculate the dc bias that builds up in this situation (low-resistance 

contacts): 
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where R = ρL is the total resistance of the nanotube bulk and Imix is the same as 4.33.  

This result is plotted in Figure 4.8 (a). It shows that below a cutoff of ω ~ RC 

the voltage profile is parabolic, as is expected from a low-frequency expansion of the 

equation above. At high frequency, the dc field (derivative of the potential) is 

extremely strong near the source. If we compare it with the local mixing current as 

given by Equation 4.30 (part (b)), we see that the mixing current is highly  
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Figure 4.8. Build-up of dc voltage in a 1D distributed mixer. (a) Theoretical dc 
voltage profile (normalized by R·Imix) that builds up in a nanotube due to mixing, in 
the limit of negligible contact resistances. Until ω ~ RC, the voltage profile is 
homogeneous. Beyond that, a strong dc field (-∂Vdc/∂z) develops at the source. The 
local mixing current profile, as shown in (b) normalized by the total dc mixing current, 
also becomes larger at the source at these frequencies. 

ω

ω

(a) 
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concentrated at the source as well, at high frequencies. The dc voltage that builds up 

has to provide for an opposing dc current that keeps the total dc mixing current 

constant. Hence the sign of the dc potential is negative and decreasing. If the mixing 

current locally falls below the total mixing current, the local dc potential must then 

increase in order to provide the remaining current. 

In spite of the apparent dependence of the built-up dc voltage profile on the RC 

constant of the bulk of the nanotube, its distributed-circuit nature results in no cutoff 

of the dc mixing current in the limit of low contact resistances. At high frequencies, 

when contact resistances are taken into account, the ac current is shunted to ground 

through the gate and the ac voltage at the source end of the nanotube has a cutoff 

given roughly by the contact resistance of the source and the gate capacitance. The full 

ac solution can be constructed from Equations  through 4.28 for finite source and drain 

resistances. In the limit of high-resistance contacts with a low-resistance nanotube, we 

would obtain the same ac voltage drop at the (constant) source contact as that given by 

Equation 4.11 in Section 4.4. Using Equation 4.27: 
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The cutoff frequency is again given by the resistance of the contacts in parallel and the 

gate capacitance. This ac voltage attenuation directly affects the amplitude of the 

mixing current. 

In taking into account the contacts with a nanotube mixer, we will first look at 

mixing in the special case of Rd → 0. We use Equations , 4.33 and 4.10 to obtain18: 

                                                           
18 Equation 4.10 introduces the extra factor of R/Rtot which takes care of the dc current division. 
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Figure 4.9. Model of dc mixing current of a nanotube distributed mixer in the limit of 
negligible drain resistance. (a) Mixing current in units of |Vsd|2.(-∂G/∂Vg) plotted 
against normalized frequency ωRsC. As the nanotube device becomes more 
conductive, the ratio Rs/R and the overall attenuation increase. For a given trace, the 
cutoff frequency is measured at the point that Imix drops to half of its dc value, and it is 
plotted in (b). For Rs < R, the cutoff decreases as the resistance of the bulk of the 
nanotube. For Rs > R, it increases as the inverse of the resistance of the bulk. The 
turning point is located at R ~ 4Rs. At high frequencies there is a constant slope of 20 
dB/decade (for voltage), corresponding to one simple low-pass filter. Notice that the 
cutoff frequency is never below (RsC)-1. 
 

ω

ω

ω

10-1 100 101 102 103 104 105 106

wRsC

1

10-2

10-4

10-6

10-8

10-10

I
xi

m

(a) 

(b) 

Rs/R = 
0.01 

0.1 
1 

10 

100 Rd = 0 -20 dB/decade

ωRsC



83 

 

 ( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++∂

∂
−=

ss
sd

g
mix RR

R
RLZ

LZV
V
GI

2

0

02

tanh
tanh

4
1

γ
γ . (4.36) 

This mixing current normalized by |Vsd|2.(-∂G/∂Vg) is plotted versus ωRsC for several 

values of the ratio Rs/R, Figure 4.9. In the frequency plot, we see a strange theoretical 

trend: the cutoff frequency (defined for Imix(ω) = ½Imix(ω = 0)) decreases as the 

nanotube bulk becomes more conductive in part (a) (increasing overvoltage) and 

eventually increases again in part (b). The high-frequency limit of mixing has always a 

slope of 20 dB/decade for voltage19 (one factor of 10 drop in Imix per factor of 10 

increase in frequency), as expected for a first-order low-pass filter. In part (c), we plot 

the cutoff frequency against the ratio Rs/R. As we pointed out already, we can see the 

decreasing/increasing trends of the cutoff. The turning point is approximately located 

at Rs ~ R/4. The approximate frequency asymptotes versus Rs/R show that indeed the 

cutoff frequency is proportional to the resistance of the nanotube when the bulk is in a 

resistive state, and is inversely proportional to the resistance when the bulk is in a 

conductive state. The cutoff frequency is never below (RsC)-1. 

The exact model with the drain contact included can also be analyzed 

graphically, but the analytical derivation is cumbersome and the whole expression will 

not be shown (see more details in Appendix). Instead, we display a few plots of the 

theoretical frequency dependence of mixing with the drain contact included, Figure 

4.10. The mixing current is once more shown normalized by |Vsd|2.(-∂G/∂Vg) and 

plotted versus ωRsC. In order to detect the analytical trends, we will analyze 

simultaneously the following plots: Rs = 0.1Rd (part (a)), Rs = Rd (part (b)) and Rs = 

10Rd (part (c)). 

                                                           
19 1 dB = -10 Log10(A/Areference), where A is power or some other related intensity. Since Imix ~ |V|2, a 
drop of one order of magnitude in current corresponds to 10 dB for mixing, or 20 dB for voltage 
amplitude. We will choose to use the voltage as a reference, since it is one of the typical standards. 
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Figure 4.10. Current Imix at dc in units of |Vsd|2.(-∂G/∂Vg) plotted against normalized 
frequency ωRsC, model with contacts included. The ratio of source resistance Rs to 
drain resistance Rd is 0.1, 1 and 10 for parts (a), (b) and (c), respectively. As the 
nanotube device becomes more conductive, the ratio Rs/R and the overall attenuation 
increase. Cutoffs are evident. For Rs < R, the cutoff decreases as the resistance of the 
nanotube bulk, similarly to Figure 4.9. For Rs > R, more than one cutoff develops. If 
we concentrate in a range 10 > Rs/R > 0.1, only one cutoff is more pronounced. The 
high-frequency slope is 20 dB/decade (for voltage), corresponding to one simple low-
pass filter. Also notice that the cutoff frequency is never below (RsC)-1. Other features 
are mentioned in the text. 
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Roughly, for Rs ≤ R the cutoff frequency decreases proportionately to R, just as 

in the case of Rd = 0 which we just analyzed using Equation . For Rs ≥ R, on the other 

hand, we detect more than one roll-off for voltage: a brief, low-frequency 40  

dB/decade roll-off and a 20 dB/decade roll-off at high frequency. A plateau develops 

in between the two when Rs » R. This physically corresponds to low-pass filters which 

selectively turn on/off as a function of frequency. The sudden sharp slope at low 

frequency corresponds to two filters cascaded in series. Both appear to turn on and off 

simultaneously. The high-frequency roll-off, on the other hand, has the slope of a 

single low-pass filter. Let us explain this behavior in terms of the resistances involved. 

In all cases in which Rs ≥ R, the first frequency cutoff appears to move as Rs in 

parallel with Rd, just as predicted by Equation 4.35. The smaller of the two contact 

resistances will therefore impose the lower limit on the cutoff frequency. As the 

resistance of the device decreases further, the cutoff moves to higher frequencies, as in 

Figure 4.9. In a real device, however, the contact resistances are typically within a 

factor of 10 from each other. This justifies looking at the roll-off in the range 

presented (10Rd > Rs > 0.1 Rd)20. 

Finally, we conjecture that there is a competition for the attenuation of the 

average electrical potential on the nanotube (mostly coming from the source contact) 

and of the potential difference across it (dominated by the drain contact), both 

essential parameters for mixing (see Equation 4.30). This should account for the sharp 

slopes at low frequency and the plateaus. But once more, in a real device, the contact  

resistances and the nanotube bulk resistance are also typically within a factor of 10 

from each other. This justifies analyzing this range only (10R > Rs > 0.1 R), which 

corresponds to the three inner traces in Figures 4.10, parts (a), (b) and (c). In all of 
                                                           
20 Also notice that, as seen in Chapter 3, the conductance of a real nanotube FET is ultimately limited 
by the constant carrier velocity at large overvoltages. If the contact resistances are constant with respect 
to gate voltage, then once the bulk resistance of the nanotube stops decreasing, the cutoff frequency 
should become a constant as well (as long as contacts do not mix). 
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these, there appears to be only one cutoff frequency; the other effects are barely 

noticeable. From the plots, the lower limit of the cutoff is that from the source contact 

(this corresponds to a resistance lower than the source resistance, since ω < RsC). The 

high-frequency 20 dB/decade slope is once more expected because in this limit the ac 

current flows to the gate and the attenuation is dominated by the source contact.  

In summary, there is no cutoff for low contact resistances. Otherwise, the 

cutoff must be found by constructing the transmission line problem carefully. For 

practical devices, there appears to be one cutoff frequency21. Inspection of Figure 4.10 

shows that the cutoff requency is never below (RsC)-1. Finally, Schottky mixing can be 

easily accounted for once the voltage drops at the contacts are known22. It is to be seen 

in Chapter 7 whether this model predicts the cutoff frequencies in an adequate manner. 

 

4.6 Conclusions 

This chapter concludes our theoretical analysis. We have developed the theory 

of mixing of a nanotube transistor. When the nanotube corresponds to a single discrete 

mixer, a dc current appears as a result of an ac bias. If we have Schottky contacts, they 

will also generate a dc current. 

We have also modeled the frequency dependence of this mixing current by 

treating the nanotube as a lossy transmission line. We have developed the tools to 

compute the cutoff frequencies, with solutions that are usually non-analytic. In any 

situation, though, the model predicts a dc voltage to build up in the nanotube so as to 

keep the current constant. It should be possible to measure a dc voltage build-up with 

an appropriate probe, such as scanning probe microscopy (Electrical Force 

Microscopy, for example). 
                                                           
21 The plateaus predicted are only pronounced when the device resistance is ~ 100 times more 
conductive than either contact. That is outside of the typical observed experimental range of resistances. 
22 Use Vsd - V(0) for the source, and V(L) for the drain. Even then, the amplitude of Schottky mixing, 
determined by the reverse saturation currents, is not known with certainty. 
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The mixing experiment will be the subject of Chapter 7. These experiments 

were performed in the RC limit in short nanotubes, and we will discuss how they 

compare to the theory described in this chapter. 
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 CHAPTER 5 

  

 DEVICE PREPARATION AND STANDARD CHARACTERIZATION 

 

5.1 Introduction 

Preparation of carbon nanotube devices can be divided into design and 

fabrication. While design of our devices was generally experiment-specific, our 

sample fabrication relied on several common steps. One of these, the most important 

part of the entire fabrication process, was how to obtain the single-walled carbon 

nanotubes (SWNTs). The two main methods can be described as deposition of the 

ready-made material or in situ growth. The former consists of dispersing carbon 

nanotubes in solution onto a substrate and then using imaging techniques to locate 

them and selectively wire them up (Bockrath, Cobden et al. 1997; Tans, Devoret et al. 

1997). The latter, on the other hand, consists of patterning catalyst sites on a substrate 

at specific locations and then growing the material by means of a technique called 

chemical vapor deposition (CVD)1. The development of this method for in situ growth 

(Kong, Soh et al. 1998) made it possible to produce more devices per sample in a 

shorter amount of time, a major step towards applications. We opted for this method in 

our approach. This was particularly useful in obtaining a large number of devices, thus 

improving our statistics of the devices’ properties. 

The two types of design that were used in the experiments of the next two 

chapters differed mainly in the use of the gate electrode of the nanotube transistor. In 

the most general case, a degenerately doped silicon substrate with an insulating layer 

of oxide on top plays the role of one global back-gate electrode that can be used to 

                                                           
1 This is the same technique described in Chapter 1, except that in this case it is combined with 
lithographically patterned catalyst. 
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study any single device fabricated on top of it. This is quite simple to implement from 

the fabrication point of view, because no lithographic technique is needed to make 

electrical contact to the gate (a drop of indium solder on a cleaved edge of the sample 

is enough to accomplish this task). Back-gated devices, on the other hand, are not 

suitable for high-frequency testing. Source and drain metal leads overlap entirely with 

the back-gate, generating a very large parasitic capacitance that shorts ac voltages to 

ground at very low frequencies. The only way of eliminating this capacitance is to use 

a high-resistivity or an insulating substrate and to fabricate a local gate electrode 

lithographically which will not overlap with the source and drain leads. We will now 

describe how both types of samples were fabricated. Later, we will present the results 

of their standard dc characterization. 

 

5.2 Fabrication of back-gated samples for dc testing 

Devices were made as follows (see Figure 5.1 for an overview): using standard 

optical lithography with the use of a 5:1 Stepper2, catalyst pad sites were patterned on 

~ 1.5-µm thick photoresist (Shipley 1813) on a degenerately doped four-inch silicon 

wafer with thermally grown silicon dioxide on the surfaces3. The pattern was then 

transferred by reactive ion etching with oxygen gas to an intermediate ~ 1.5 µm-thick 

layer of poly(methyl methacrylate) (PMMA 495 MkW), which was used subsequently 

as a lift-off mask for the catalyst4. 

The catalyst consisted of iron in the form of Fe(NO3)3·9H2O mixed with 

MoO2(acac)2 5 and supported by alumina nanoparticles, diluted in methanol. The  

                                                           
2 The ratio of 5 gives image reduction of the pattern on the photomask to the size on the sample. The 
machine was a GCA-6300 5X g-line Stepper. 
3 Oxide thickness was 200 nm. 
4 PMMA was used as a lift-off mask instead of photoresist because methanol, which is used to disperse 
the catalyst, attacks photoresist but not PMMA. 
5 Maximum growth output of carbon nanotube is obtained by adding molybdenum to the catalyst (Dai, 
Rinzler et al. 1996). 
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Figure 5.1. Making of carbon nanotube devices by patterned CVD growth. We start 
with a Si wafer with degenerately doped Si substrate with thermally-grown SiO2 on its 
surfaces. (a) We deposit a layer of PMMA and a layer of photoresist (PR) on top. 
Optical lithography (5X Stepper) is used to expose windows in the PR. (b) After 
developing the PR, reactive ion etching (RIE) with O2 is used to transfer the pattern to 
the PMMA. It is possible to simultaneously etch away the entire PR. The PR/PMMA 
interface must be removed. (c) Catalyst is deposited over the sample and allowed to 
dry in air. (d) The sample is dipped into 1,2-dichloroethane to selectively remove the 
PMMA and achieve liftoff of the catalyst, leaving behind patterned catalyst pads. (e) 
The sample is diced so that it can fit into the quartz tube of the CVD chamber (1 inch 
diameter in our case). The chamber is heated to 930°C in Ar atmosphere, and then 
CH4 is allowed to flow for 10 minutes. (f) This CVD recipe results in single-walled 
carbon nanotubes (SWNTs). Metal contacts are deposited by additional lithography 
and e-gun evaporation. (g) Optical micrograph of finished devices and atomic force 
microscope (AFM) image of a device showing a nanotube. The 5 µm × 5 µm squares 
are the catalyst pads. The opposite metal ends are 15 µm wide. 
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solution was carefully stirred and submitted to ultrasonication in order to avert particle 

aggregation and precipitation before its application to the samples. Droplets covering 

the whole sample surface were applied, after which the catalyst was allowed to dry in 

air. Lift-off was done in 1,2-dichloroethane, a solvent that releases the PMMA while 

allowing the catalyst in direct contact to the wafer surface to remain in place. The 

chips were then further cleaned with acetone, methanol and isopropanol and blow-

dried. 

Carbon nanotube growth was then performed in a CVD chamber: the chips 

were inserted into a quartz-tube furnace which was heated to ~ 930°C in argon 

atmosphere. At that point, argon was exchanged for methane gas for ~ 10 minutes 

(growth step). The furnace was then allowed to cool down in argon atmosphere. 

Previous characterization of such growth (Kong, Soh et al. 1998; Gore 1999) showed a 

prevalence of single-walled carbon nanotubes6. Atomic force microscopy (AFM) 

shows a diameter distribution between 1 nm and 3 nm, consistent with single-walled 

nanotubes. Notice that this particular CVD technique does not provide accurate 

control of nanotube diameter or chirality. Furthermore, the nanotubes tend to grow 

pointing in random directions and with random lengths7. Not all catalyst sites within 

the same sample produce nanotubes. 

Following the growth step, optical lithography was again used to define the 

electrical contacts to the nanotubes8. This was accomplished by electron-gun 

evaporation of 30-50 nm of the desired metal (usually 5 nm Cr/50 nm Au) followed by 

lift-off. By evaporating metal contacts next to every catalyst pad, a random fraction of 

the junctions would have carbon nanotubes bridging the gap between the contacts. 
                                                           
6 Individual nanotube walls were characterized by Transmission Electron Microscopy (TEM). 
7 Recent modifications to the CVD technique have made it possible to grow mm-long nanotubes aligned 
with gas flow (Huang, Cai et al. 2003). 
8 Our nanotube lengths are typically a few microns long. By choosing an adequate source-drain 
separation, it is possible to obtain junctions with one or a small number of nanotubes. Our typical 
device separations have lengths between 1 and 3 µm.  
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These could then be identified by performing an electrical measurement. We will 

return to this step shortly. 

Once the devices were finished, an additional annealing step could be done to 

lower their contact resistances. This step consisted of inserting the devices into the 

quartz-tube furnace with argon flow at 600°C for 45 minutes. The contact resistance 

between nanotubes and metal leads was typically reduced by one order of magnitude 

when chrome/gold contacts were used. 

 

5.3 Fabrication of top-gated samples for ac testing 

Top-gated samples were also made by optical lithography, therefore several of 

the fabrication steps used in making the dc samples were repeated. For example, the 

nanotubes were grown by CVD following the same steps prior to evaporation of the 

metal contacts9. Instead of repeating the description of these steps, we will detail the 

ones specific to ac top-gated samples. 

The substrate used was made of high-resistivity silicon (in range 12-39 kΩ-cm) 

with 1 µm-thick thermal SiO2 grown on its surfaces. The purpose of these materials 

was to reduce the capacitances of the leads with the substrate, as mentioned in Section 

5.1. Then, we adopted a design for the leads known as a coplanar waveguide (CPW, 

Pozar 1998), compatible with our high-frequency probes and made of 5 nm Cr/50 nm 

Au/10 nm Au-Pd alloy. It consisted of three equally spaced conductive strips used in 

the ground-signal-ground configuration (GSG), and it was designed as follows: signal 

contact pad was a 50 µm square; gap between strips was 50 µm; extension of ground 

pads was designed to accommodate both 100 µm and 150 µm-pitch GSG probes; 

                                                           
9 The high temperatures of CVD growth forbid the use of most metals, with the exception of those with 
high melting temperatures such as Mo or W. 
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distance from contact pads to catalyst pad was ~ 250 µm 10; and the symmetry of the 

CPW was exploited such that occasional long nanotubes bridging between ground 

(drain) lines could be gated on either side of the signal (source) line (see Figure 5.2). 

In the next step, source and drain contacts to the nanotubes were made of 50 

nm Pd11 and contacted electrically to the CPW from the top. Then, a local gate oxide 

was made by liftoff of 10 nm evaporated12 SiO2, and a 50 nm Al gate electrode was 

evaporated on top, finishing the top gate. Aluminum was used as the top gate electrode 

because of two reasons: it was found to make extremely poor electrical contact to 

nanotubes, a desirable property in the event of physical leakage of Al through the gate 

oxide13; and it is one of the most conductive metals, ideal for use in CPWs. The top 

gate made electrical contact to the CPW from the top14. 

The finished devices had source-drain gaps of ~ 3 µm with ~ 2 µm under the 

gate electrode, and the gate electrode slightly overlapped with the center source 

electrode by ~ 100 nm15.  

 Because of the high impedances of nanotube devices, it was hard to use these 

CPWs for direct high-frequency measurements (as described in the introduction of 

Chapter 4). In order to measure our devices as frequency mixers instead, it was 

necessary to cut the ground line of the CPW to separate it from the drain (detection)  

                                                           
10 Distance from probe/ contact pad to device was kept below λ/20 of the wavelength at 50 GHz to 
avoid length-dependent modulation of the ac voltage at that frequency. That corresponds to a limit of ~ 
300 µm in air.  
11 Javey (Javey, Guo et al. 2003) showed that it is possible to obtain low-resistance contacts to nanotube 
with Pd. 
12 Evaporation, as opposed to plasma-enhanced chemical vapor deposition (PECVD), was shown to 
leave device conduction nearly intact (Ganguly, Zhang et al. 2005). 
13 Aluminum has also been reported as an n-type contact to nanotubes (Javey, Wang et al. 2003). 
14 It is well-known in metallurgy that gold and aluminum make poor electrical contact to each other. 
Au/Pd alloy was used as the top layer of the CPW because it is a common adhesion layer for the two 
materials. 
15 This was a property of the devices measured in Chapter 7. Ideally, obtaining perfect alignment in the 
lithography would result in no overlap. 
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Figure 5.2. Design of top-gated devices. (a) Schematic cross-section of device, layers 
not to scale. The oxide thicknesses are 10 nm for the top gate and 1 µm for the back 
gate. Top gate is portrayed with a slight overlap with the source contact. No overlap 
results under ideal alignment circumstances. Catalyst pad not shown. (b) Optical 
micrographs of top-gated devices. Coplanar waveguide (CPW) geometry was chosen 
for high-frequency testing. An alternate drain electrode is available in case a nanotube 
grows long enough. 
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line. This was done for the experiment of Chapter 7. Since the electrodes were found 

to peel easily when scratched, a dc probe was used to physically split the ground line 

in two, as shown schematically in Figure 5.2. After accomplishing the split, the source 

could be probed with a GSG probe (see details of probing in Chapter 7), while the gate 

and drain could be probed with dc probes. 

 

5.4 Standard characterization 

 Regardless of the type of sample prepared, the next step is to find which 

junctions were successful at producing a nanotube bridging the gap between the 

source and drain electrodes, and subsequently to characterize their basic electrical 

properties, such as which devices are metallic and which are semiconducting. The 

standard method of characterization for all the samples is the application of a small 

bias Vsd to the source, typically 10 mV in our experiments, and to measure the dc 

current at the drain while sweeping the gate voltage Vg. Generally, metallic nanotubes 

display a constant electrical current with respect to gate voltage, whereas the current 

changes with gate voltage for semiconducting nanotubes. Three such measurements 

are displayed in Figure 5.3, measured for back-gated devices. Notice that the 

semiconducting nanotubes are always found to be normally-on and p-type when 

fabricated in this manner (see definitions in Chapter 3). Also notice that Figure 5.3 (c) 

has a small band gap but the device does not shut off completely. This is believed to 

be a metallic nanotube with a deformation or defect which opens a band gap (Zhou, 

Kong et al. 2000). In fact, metallic nanotubes with no band gaps are rarely seen. 

 Despite the variable (typically 10-30%) yields of successful nanotube bridging 

per total number of junctions per sample fabricated, this preparation method can be 

regarded as mass-production of nanotube devices. We can then gather some statistics  
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Figure 5.3. Conductance versus back-gate voltage measurements. Source-drain bias of 
10 mV. (a) Semiconducting nanotube device exhibiting clean p-type behavior. The 
device turns off (band gap region) for positive gate voltage. Notice that it conducts 
even at zero gate voltage. (b) Ambipolar device. Operation in the p-type, band gap and 
n-type regions is illustrated. Notice that the device conducts at zero gate voltage and 
the n-type region is less conductive than the p-type region. The dashed line 
corresponds to the slope used to extract the value of hole mobility, 20000 cm2/V-s in 
this case. (c) Small-bandgap device. There is a dip in the conductance and the 
conductance at positive gate voltage is slightly lower than at negative gate voltage. 
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on a relatively large number of devices. The quantities that we are mostly interested in 

are the on-state conductance and the field-effect mobility of semiconducting 

nanotubes. While we measure the on-state conductance at the most negative value of 

our Vg range, the mobility can be experimentally determined from (see Chapter 3): 

 
gg

FET V
G

C
L

∂
∂

−= 'µ , (5.1) 

where L is the length of the device, Cg
’ is the total gate capacitance per unit length and 

G is the low-bias conductance. The length is determined by the design, the derivative 

is determined by the slope of the conductance sweep, and the capacitance of a back-

gated device with 200 nm of gate oxide was estimated in Chapter 2 to be 

approximately 3.7×10-17 F/µm for a 2 nm-diameter nanotube. This estimate neglects 

the effect of the overlapping contacts, and instead we use here the value 2×10-17 F/µm 

extracted from Coulomb-blockade measurements (Bockrath, Cobden et al. 1997; Tans, 

Devoret et al. 1997; Cobden, Bockrath et al. 1998). 

The variation of the on-state conductance and the field-effect mobility of our 

back-gated devices are shown in the histograms of Figure 5.4. We find that the best 

conductances are within a factor of 4 from the quantum limit of GQ ~ 155 µS, an 

indication that we have indeed devices of good contact quality. The typical mobilities, 

on the other hand, are found in the range 1000 to 4000 cm2/V–s. This is consistent 

with the expectations of hole mobility in all-carbon-based devices, since it is known 

that the mobility in graphite is also in the thousands (~ 8000 cm2/V–s). In a few 

instances, as seen in the histogram, the mobilities can be even higher. Recent  
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Figure 5.4. Histogram of hole mobilities and maximum on-state conductances 
determined from measurements of individual SWNTs in vacuum. The data point 
corresponding to the mobility of 20000 cm2/V-s corresponds to the device of Figure 
5.3 (b). 
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Figure 5.5. Conductance of a top-gated device. (a) Conductance of a semiconducting 
device with a top gate. (b) Comparison between the conductances of two different 
devices with similar on-state conductances (~ 0.6 e2/h). The top-gated device is the 
same of part (a), while the back-gated device is the same of Figure 5.3 (a). Notice that 
the range of gate voltage from on- to off-state is smaller for the top-gated device due 
to the improved gate capacitance. 
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developments indicate that the devices with anomalously high mobilities have defects 

which control their values (Zhou, Park et al. 2005). 

Finally, the electrical characteristics of a top-gated semiconducting device of 

the kind that will be used in Chapter 7 are shown in Figure 5.5. As pointed out in 

Chapter 2, the capacitance of the top gate that we fabricated is roughly only twice the 

capacitance of our back-gated devices. This is evident from the figure, since the slope 

is slightly steeper. The result is that a smaller overvoltage is required in order to 

switch the device on or off. 

 

5.5 Conclusions 

We fabricated single-walled carbon nanotube devices by means of CVD 

growth and optical lithography. This approach made it possible to efficiently study 

large amounts of nanotube devices. Typical on-state conductances were found to be 

within order-of-magnitude from the quantum conductance limit, an indication of low-

resistance contacts. The mobilities were found to be comparable to that of graphite. 

Back-gated devices were used in the electrolyte-gating experiment and will be 

the subject of the next chapter. The top-gated samples on resistive substrate were used 

in high-frequency experiments that will be described in Chapter 7.
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 CHAPTER 6 

 

 ELECTROLYTE-GATING OF CARBON NANOTUBE TRANSISTORS 

 

6.1 Introduction 

The most immediate application of a semiconducting carbon nanotube is as the 

active channel of a field-effect transistor (FET). A technologically relevant FET must 

have a high on/off current ratio1, low on-state impedance2, high field-effect mobility3, 

low subthreshold swing4, and high transconductance5. Most of these properties have 

been defined in Chapter 3. 

The main experimental parameters that can be adjusted are the contact 

resistances and the gate properties. Considerable progress towards low-resistance 

contacts has already been made through improvements to fabrication of the metal-

nanotube junctions. Low resistances have been observed in short devices6, nearing half 

of the ballistic conduction limit of 4e2/h ~ 155 µS (Javey, Guo et al. 2003; Yaish, Park 

et al. 2004). The gate properties, on the other hand, are represented by the 

transconductance and the subthreshold swing and depend on optimization of the gate 

capacitor. Several groups have recently realized devices in a top- or bottom-gate 

geometry using high-dielectric-constant dielectrics (Javey, Kim et al. 2002; 

Appenzeller, Lin et al. 2004; Kim, Brintlinger et al. 2004), showing next-to-ideal 
                                                           
1 Two different logic states must be significantly distinguishable, therefore requiring a large on/off 
current ratio. On/off current ratios of order 106 have become routine (Martel, Derycke et al. 2001; 
Wind, Appenzeller et al. 2002; Javey, Guo et al. 2003; Javey, Wang et al. 2003). 
2 Enough current must flow in order to power a load. In order to accomplish this with a minimal supply 
of power, the impedance of the nanotube must be minimized. Ideally this should be 50 Ω. 
3 As seen in Chapters 3 and 4, a high mobility implies a fast switch. Mobilities should be similar to that 
of bulk graphite (~ 104 cm2/V-s). 
4 As discussed in Chapter 3, the subthreshold swing is one measure of how fast the switch is near the 
threshold. The thermal limit is ~ 60 mV/decade at room temperature. 
5 As seen in Chapter 3, the transconductance is a measure of the device’s sensitivity to the environment. 
6 Near the ballistic limit where the length of the nanotube is much shorter than the mean-free-path for 
electron-phonon scattering. 
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characteristics. Prior to these results, we used of an electrolyte gate to create a high 

transconductance carbon nanotube transistor (Rosenblatt, Yaish et al. 2002). Our 

results were important not only for transistor applications but also for biological and 

chemical sensing applications. These results are the scope of this chapter. We will 

discuss FET characterization of electrolyte-gated carbon nanotube transistors using the 

quantities and definitions of Chapters 2 and 3. We will show that the electrolyte gate is 

in the quantum capacitance limit, a realization of the ideal gate geometry described in 

Chapter 2. 
 

6.2 Devices and setup 

 Nanotubes were grown as described in Chapter 5 on degenerately doped 

silicon wafers with 200 nm of thermally grown silicon dioxide. Following the growth 

step, optical lithography was used to define the electrical contacts to the nanotubes, 

accomplished by electron-gun evaporation of 5 nm Cr/ 50 nm Au followed by lift-off. 

The finished devices, with source-to-drain separations of 1 to 3 µm, were once more 

inserted into the quartz-tube furnace for an annealing step, consisting of argon flow at 

600°C for 45 minutes. This step was shown to significantly reduce contact resistance 

between the nanotubes and the electrodes, typically by an order of magnitude. 

 The experimental setup for doing electrolyte gating follows the approach 

pioneered by Krüger at al. to study multiwalled carbon nanotubes (Kruger, Buitelaar et 

al. 2001). As shown in Figure 6.1, a micropipette was used to place a small (~ 10-20 

µm diameter) water droplet onto a nanotube device. A voltage Vwg applied to a silver 

wire in the pipette was used to tune the electrochemical potential in the electrolyte 

relative to the device, which was grounded at the drain end. Typically, for -0.9 V <  
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Figure 6.1. Electrolyte-gating experimental setup. (a) Schematic. Gate voltage Vwg is 
applied to the silver wire running inside a micropipette, setting the electrical potential 
in the microdroplet of electrolyte. Nanotube is grown on a degenerately doped silicon 
wafer with ~ 200 nm thermal oxide insulating layer. Source-drain voltage Vsd is 
applied to the nanotube through patterned gold electrodes, and the current is detected 
at the drain. (b) Photograph of experimental setup. Micromanipulators are used to 
control electrical probes and micropipette. (c) Concept of electrolyte-gating. Gated 
ions in solution are assumed to make a wrap-around gate capacitor with the nanotube 
at a distance of order of the Debye length (see Chapter 2). 
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Vwg < 0.9 V 7, the leakage current between the water and the gold electrodes/nanotubes 

was negligible (less than 1 nA). Because of this, the liquid-gate could be regarded as 

well-insulated. Outside this range, the electrolyte in the water reacted with the gold 

electrodes, degrading the physical properties of the device. 

 

6.3 Transistor characteristics 

 The low-bias conductance G versus Vwg for a source-drain bias of 10 mV is 

shown in Figure 6.2 for three nanotubes of increasing diameters. The electrolyte is 10 

mM NaCl 8. P-type conduction can be seen with all three devices for negative Vwg. For 

positive Vwg, n-type conduction is also possible. Both Figures 6.2 (b) and (c) display 

ambipolar behavior (as defined in Chapter 1). This is strongest for Figure 6.2 (c), 

because the conduction is never zero. 

 The inset of Figure 6.2 (a) shows the low-bias conductance of the 

corresponding device probed dry in vacuum, plotted against the back-gate voltage Vbg 

(this voltage is applied directly to the degenerately doped substrate). Although the 

conductance levels are similar, more voltage (overvoltage9) must be applied to the 

back-gate in order to obtain the same amount of current. 

 The inset of Figure 6.2 (b) shows the conductance of the corresponding device 

in a logarithmic scale. The subthreshold swing, defined in Chapter 3 as S = 

[d(logIsd)/dVg]-1, is ~ 80 mV/decade (similar values were obtained for other  

                                                           
7 Referenced to either the source or drain electrode. Assume for now that we are in the low-bias regime, 
so both source and drain can be regarded as ground. 
8 Other salts were used, such as MgSO4 and NaNO3, with no advantage observed regarding threshold 
value, electrode degradation potential or gate strength. Salts with higher chemical valence have shorter 
screening length and should have a stronger gate effect if the capacitance is of entirely electrostatic 
nature. 
9 As defined in Chapter 3, the gate overvoltage measures the gate voltage distance to the gate threshold, 
Vo = |Vg0 - Vg|, once the device is conducting. 
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Figure 6.2. Conductance G versus electrolyte gate voltage Vwg for three nanotubes. 
The lengths and diameters (as measured by atomic force microscopy – AFM) are 
given by: (a) L = 1 µm, d = 1.1 nm, (b) L = 1.4 µm, d = 3 nm, and (c) L = 2.2 µm, d = 
4.3 nm wide. Inset to (a): G versus the back gate voltage Vbg for that device measured 
in vacuum; the slope of linear regime is given by dashed line. Inset to (b): Logarithmic 
scale plot showing the exponential dependence of G on Vwg for that device. 
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electrolyte-gated devices). This is very close to the theoretical upper limit of S = 60 

mV/decade at room temperature10. 

We now map the current in the device simultaneously as a function of source-

drain and electrolyte-gate biases. We perform this experiment in all of the allowed 

phase space of these parameters, delimited by the boundaries determined by the 

reaction potentials of the electrolyte with the metallic electrodes11. As mentioned 

earlier, this boundary is typically set by -0.9 V < Vwg < 0.9 V at low source-drain bias. 

At high source-drain bias, we must have both |Vwg – VSource| and |Vwg – VDrain| < 0.9 V. 

If we set VDrain = 0, then |Vwg – VSource| and |Vwg| < 0.9 V. 

 The result is seen in the color plot of Figure 6.3, which corresponds to the 

same device as Figure 6.2 (b) probed with 10 mM NaCl. The color scale represents the 

current in the device in a logarithmic scale. The blue trapezoid of low conductance in 

the center corresponds to the band gap region. The red regions to the left of the 

trapezoid correspond to p-type conductance, while those to the right correspond to n-

type conductance. 

 The trapezoid is delimited by two vertical lines and two slanted lines. The 

vertical lines correspond to the gate thresholds for p- and n-type conduction (negative 

and positive Vwg’s, respectively). The thresholds can be determined from these lines as 

Vg0 = Vg (-0.1 V and +0.35 V, respectively, from the figure). The slanted lines have a 

slope of dVsd/dVwg ≈ 1. 

                                                           
10 Recent improvements using solid-state gate engineering showed that it is possible to circumvent this 
limit by controlling band-to-band tunneling in short devices. A value of 40 mV/decade has been 
measured in the n-region (Appenzeller, Lin et al. 2004). 
11 As mentioned earlier, the electrolyte in the water droplet can chemically react with the metallic 
contacts because they are in physical contact in our setup. This causes electrical degradation in our 
devices. This range was determined experimentally. 
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Figure 6.3. Colorscale plot of current on a logarithmic scale versus Vwg and Vsd for the 
device of Figure 6.2 (b). The bandgap region is given by the blue trapezoid at the 
center. The threshold gate voltages for p- and n-type operation are extracted from the 
vertical edges of the trapezoid. 
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6.4 Quantum gate capacitance limit 

As discussed in Chapter 2, the total gate capacitance is Ctotal = (CE
-1 + CQ

-1)-1, 

where CE is the electrostatic capacitance and CQ is the quantum capacitance. With 

enough overvoltage, the quantum contribution should be a constant (per unit length): 

CQ
’ = 8e2/hv0 ~ 3.86×10-10 F/m. Typical electrostatic capacitances in a coaxial cable 

configuration with such dimensions and SiO2 dielectric are much smaller, and 

therefore  dominate the total capacitance. But due to the high dielectric constant of 

water, κ ~ 80, it is possible to have the quantum capacitance be the smaller of the two, 

in which case the total capacitance is limited by the quantum limit.  

We will use the concept of field-effect mobility, as defined in Chapter 3 for a 

p-type FET, to quantify the capacitance: 
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where L is the length of the device, Cg
’ is the total gate capacitance per unit length and 

G is the low-bias conductance. The slope of G versus Vg is a measure of the gate 

strength. Back to Figure 6.2 (a), the slope is ~ 0.08 e2/h/V (3 µS/V) with back-gate in 

vacuum and ~ 1 e2/h/V (38.8 µS/V) with 10 mM NaCl electrolyte gate. These are a 

factor of ~ 10 apart. The electrostatic capacitance of the back-gate in this wire-on-

plane geometry (see Chapter 2) is ~ 3.4×10-17 F/µm, about 10 times smaller than the 

quantum capacitance (Chapter 2) of CQ
’ ~ 3.86×10-16 F/µm. On the other hand, the 

electrostatic capacitance of the electrolyte-gate using a cylindrical capacitor model12 

                                                           
12 Also seen in Chapter 2, a 10 mM NaCl solution has a Debye screening length of λD ~ 3 nm, which in 
this model we use as the distance between the nanotube’s surface and the outer conductor’s shell. 
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(see Chapter 2) is ~ 2.4×10-15 F/µm, approximately 10 times larger than CQ
’ and 70 

times larger than the back-gate’s electrostatic capacitance. If we assume that the 

mobility has not changed upon application of the droplet, then according to Equation 

6.1 the capacitances must have changed. This means that the total capacitance in the 

electrolyte-gate case must be limited by the quantum capacitance. Note that the 

dielectric constant of water is not 80 at short distances, so the electrostatic capacitance 

of the electrolyte-gate must be somewhat lower, perhaps with similar strength as the 

quantum capacitance (Teschke, Ceotto et al. 2000). In spite of that, when the 

electrolyte concentration was increased to ~ 1 M, the slope did not change. All this 

points to is that indeed we find ourselves at the quantum capacitance limit of the gate.  

 In order to characterize the gate properties further, we measure the devices’ 

properties in the nonlinear regime, as illustrated by Figure 6.4. This corresponds to the 

same device as Figure 6.2 (b) and the same dataset as Figure 6.3. Figure 6.4 (a) shows 

the current versus source-drain bias at different electrolyte-gate voltages, in the p-

region (negative Vwg). Current saturation at large negative bias in the electrolyte-gate 

experiment is due to pinch-off, when Vsd becomes of order the overvoltage |Vwg - Vwg0|. 

We notice that although the current is saturating, the current gap between consecutive 

gate voltage steps increases with gate overvoltage. As defined in Chapter 3, the 

transconductance in the saturation region, gm = dI/dVwg, measured at Vsd = -0.8 V, 

grows approximately linearly with |Vwg - Vwg0|, as shown in Figure 6.4 (b), and reaches 

a value of 20 µA/V ([µS]) at |Vwg - Vwg0| ~ 0.7 V. Measurements on other samples give 

comparable results. On the other hand, the theoretical prediction of Chapter 3 gives gm 

= -(∂G/∂Vwg)|Vwg - Vwg0| = (3 µS/V)·(0.7 V) ~ 27 µS, in good agreement with the 

experimental finding. 

 Normalizing the transconductance to the device width of ~ 3 nm gives gm/d ~ 7 

µS/nm. This is an order of magnitude greater than the transconductance per unit width  



110 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.4. Current versus voltage characteristics of electrolyte-gated device. (a) I-Vsd 
characteristics of the device shown in Figure 6.2 (b) at different electrolyte gate 
voltages ranging from -0.9 V to -0.3 V in 0.1 V steps (bottom to top), extracted from 
the color plot of Figure 6.3. (b) Transconductance gm = dI/dVwg taken at Vsd = -0.8 V 
(dashed line in (a)). 
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for current-generation MOSFETS13. Recent reports have shown that such values of 

transconductance can also be approached by use of solid-state gates with high-κ 

dielectrics (Javey, Kim et al. 2002).   

 The quantum capacitance limit and the high transconductances highlight 

charge sensing as a possible application. A nanotube is extremely sensitive to the 

immediate charge environment (concentration of surrounding ions), with large current 

changes brought upon by small changes in gate voltage (which can also be induced by 

nearby charged objects). For successful (non-specific) detection of individual charged 

species (such as DNA, whose width is ~ 2 nm, comparable to the nanotube), the gate 

voltage in solution could be adjusted to the point of maximum sensitivity, so that a 

charge passing in the vicinity of the nanotube would induce a distinct current change. 

A last way of characterizing the gate is in its efficiency to modulate the band 

energies. We first look at the inset of Figure 6.2 (b). As discussed in Chapter 3, in the 

thermal activation regime I ~ exp(-Eb/kT), where Eb is the energy from the Fermi level 

to the nearest of the conduction and valence bands. This barrier height changes 

linearly with respect to the gate: δEb = eαδVg, where α is a numerical constant that 

measures the effectiveness with which the gate modulates the band energies. Ideally, 1 

V in the gate would translate into a 1 V change in the Fermi level of the nanotube. We 

obtain the value of α from the value of the subthreshold swing S from the definition of 

Chapter 3, S = (kT/αe)·ln10. A swing of 80 mV/decade implies α ~ 0.75.  

The constant α can then be used to infer the band gap of the nanotube of 

Figure 6.3. From the measured width of the gap ∆Vwg ~ 0.45 V, we obtain Eg = 

eα∆Vwg ~ (0.75)·(0.45 eV) = 0.33 eV. This is in reasonable agreement with the 

expected value for a 3-nm tube obtained from the relation14 Eg = 0.8 eV/d [nm] ~ 0.27 
                                                           
13 This comparison assumes that it is possible to stack identical, non-interacting nanotubes in parallel in 
order to constitute a bulk material. 
14 Note that the size of the gap between n- and p-behavior is predicted to decrease with increasing 
nanotube diameter, as can be observed with the three devices of Figure 6.2. 
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eV (Wildoer, Venema et al. 1998). What we conclude is that additionally to the gate 

being in the quantum capacitance limit, the gate coupling is nearly ideal15. 

 

6.5 Conclusions 

 Single-walled carbon nanotubes are a promising material for next-generation 

electronics. The electrolyte-gate experiment allows us to peek into the ultimate limits 

of gate operation for nanotube FETs. The experiment revealed the existence of the 

quantum gate capacitance limit and a near-ideal subthreshold swing of 80 mV/decade. 

Solid-state gates with high-κ dielectrics should consequently be designed to operate at 

these limits, with immediate applications in fast-switching transistors. 

 The ultimate limit would be a ballistic (shorter than mean-free-path for phonon 

scattering) nanotube transistor with a gate capacitance given by CQ’ and 

transconductance gm = 4e2/h ~ 155 µS. The devices reported here are within a factor 5-

10 of this limit and are quite long (~ 1 µm) – a reduction to ~ 200 nm should approach 

the ballistic limit if contacts can be made ideal. 

 The experiments also point to an important application in solution. Due to the 

record-high capacitances and transconductances, it should be possible to realize 

single-molecule detection.

                                                           
15 In addition to the subthreshold, the fact that dVsd/dVwg ≈ 1 for the slanted lines in the band gap 
diamond of Figure 6.3 also means that the strength of the electrolyte surrounding the nanotube is 
identical to the strength of the source and drain electrodes at the ends.  
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MIXING AT 50 GIGAHERTZ WITH A SINGLE-WALLED CARBON 

NANOTUBE TRANSISTOR 

 

7.1 Introduction 

 Since carbon nanotubes have high mobilities, high transconductances and long 

mean-free-paths1 (Javey, Kim et al. 2002; Rosenblatt, Yaish et al. 2002; Wind, 

Appenzeller et al. 2002; Javey, Guo et al. 2003; Kim, Brintlinger et al. 2004; Yaish, 

Park et al. 2004), they should work as high-frequency transistors. A short single-

walled nanotube operating in the ballistic regime and at the quantum capacitance limit 

is theoretically expected to provide gain at frequencies above a terahertz (Burke 2004).  

A recent interest in these high-frequency applications by several groups has led 

to reports of transmission through nanotube devices and rectification applications. In 

the first class of experiments, the reflection/transmission properties (Pozar 1998) of 

carbon nanotube transistors in the microwave regime were measured by standard S-

parameter techniques (Huo, Zhang et al. 2004). Unfortunately, such techniques are 

limited by the extremely high overall impedances of the nanotube devices when 

compared to the standard 50 Ω characteristic impedance of the test equipment. The S-

matrix elements measured in this manner are difficult to distinguish from an open 

circuit2. Nevertheless, some preliminary data have been taken from such experiments: 

measurements of the ac conductance of metallic nanotubes (Yu and Burke 2005) have 

shown it to be similar to the dc conductance up to 10 GHz, while semiconducting 

                                                           
1 See Chapters 2, 3 and 4. 
2 An open circuit reflects 100% of the input power. As a consequence, no power is delivered to the load. 
From the voltage viewpoint, this means that the input voltage drops entirely across a high-impedance 
load. Typical ac voltage sources are designed to match a 50 Ω load, for which the power delivered is 
maximized and the applied voltage equals half of the source voltage. 
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nanotubes have been shown to retain the gate sensitivity when used as a component in 

a 2.6 GHz-resonant circuit (Li, Yu et al. 2004). 

 Rectification or mixing is another high-frequency technique, particularly useful 

when dealing with transistors, diodes and other nonlinear devices. This technique was 

applied to nanostructures to study charge sensitivity of a single-electron transistor up 

to 300 MHz (Knobel, Yung et al. 2002); current gain in semiconducting nanotubes up 

to 580 MHz (Appenzeller and Frank 2004); and detection of mechanical vibrations of 

suspended semiconduting nanotubes up to 500 MHz (Sazonova, Yaish et al. 2004). 

In this chapter, experimental results of mixing with nanotubes will be shown at 

frequencies as high as 50 GHz (Rosenblatt, Lin et al. 2005). We find there is a cutoff 

frequency that lies in the 1-10 GHz range. The reasons for this cutoff will be discussed 

using the theoretical model introduced in Chapter 4. Regardless of the mechanism 

responsible for attenuation, however, this experiment shows that nanotube transistors 

can be operated as mixers at frequencies as high as 50 GHz. 

 

7.2 The mixing technique 

The guiding principle of mixing is that nonlinearities can transfer ac power 

from the main frequency components of the excitation to other specific frequencies 

corresponding to various linear combinations of the original frequencies and their 

harmonics. Detection of the output ac power at one of the low-frequency components 

should then carry information about both the high-frequency and nonlinear properties 

of the device. Experimentally, low-frequency detection can be done with the use of a 

lock-in amplifier. In the limit where the ac signal is completely rectified, a dc 

amplifier can be used instead. Rectification is a result of the more general 

phenomenon of frequency mixing (see Chapter 4), and will be referred to as such in 

the discussion that follows. 
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The analytical results which we will use in order to understand mixing have 

been laid out in Chapter 4. The small-signal analysis of a field-effect transistor (Pozar 

1998) from Equations 4.3 and 4.8 gives us that the dc mixing current is: 
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where G(ω) is the device’s conductance at frequency ω, Vg is the gate voltage and Vs
ac 

is the ac signal. The last line displays the conversion factor to rms units3. This effect – 

dc detection of an ac property – is the basis of our experiment. 

 

7.3 Mixing experimental setup 

 The samples used for the high-frequency experiment were top-gated devices 

made on a high-resistivity substrate, as described in Chapter 5. The experimental setup 

for the high-frequency measurements is depicted in Figure 7.1. The experiment was 

performed at room temperature in a full 4-inch wafer, 6-arm probe station4 with 

interface for two custom-made microwave probes5. The electrical probe used for the 

source was a ground-signal-ground probe (GSG6), and the ac source spanned from 10 

MHz to 50 GHz7. All the components used in the ac signal path were rated for 

operation up to 50 GHz8. Measurements were performed in vacuum to minimize  
                                                           
3 This expression was shown in Chapter 4 to account for both p- and n-type behavior. This means that 
semiconducting nanotubes which display both polarities (such as ambipolar or small-bandgap devices), 
can be analyzed by means of this same equation in any gate regime. 
4 Desert Cryogenics. 
5 GGB Industries Picoprobe Model 50A. 
6 As detailed in Chapter 5, the signal is transmitted through the inner pin and the outer ones are 
grounded.  
7 HP 83650 synthesized swept-signal generator. 
8 The suitable coaxial connectors for 50 GHz operation are air-filled and have a 2.4 mm diameter for the 
inner side of the outer conductor. These are subsequently named 2.4 mm connectors. 
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Figure 7.1. Experimental setup for dc mixing with carbon nanotube FETs. (a) Optical 
micrograph of nanotube device along with circuit schematic. The back gate voltage 
applied to the substrate is not shown. A high-frequency probe delivers the ac signal 
Vs

ac to the source electrode while simultaneously grounding the drain electrodes. The 
mixing current Imix was detected as a function of frequency and of the gate voltage Vg. 
The ground line was cut along the dashed line (*) to separate the drain from ground. 
An alternate drain is available in case a long nanotube grows across the junction. (b) 
Schematic cross-section of device, layers not to scale. The oxide thicknesses are 10 
nm for the top gate and 1 µm for the back gate. The top gate has a slight overlap with 
the source contact. Catalyst pad not shown. 
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hysteresis in the gate voltage threshold (Kim, Javey et al. 2003). Setup and devices 

were kept at room temperature. 

 Mixing was obtained from a single ac source. The ac signal was applied to the 

source electrode of the device. It was combined with a dc bias by use of a high-

frequency bias tee9, a component designed for superimposing dc and ac signals. This 

source dc bias was set to zero during the experiments in order to avoid dc sourcing of 

dc current10. The rectified signal was detected at the drain by means of a dc current 

amplifier11. Finally, the gate was dc-biased independently from the source. The gate 

range was -3 V < Vg < 3 V for most devices. This range was found not to induce dc 

current leakage to the gate. 

Thanks to the bias tee, dc measurements were easily accomplished without 

taking the setup apart. By turning the ac source off, the dc conductance could be easily 

measured, allowing for analysis of the data by comparison with Equation 7.1. 

 

7.4 Gate and power dependence of mixing 

 The dc conductances Gdc of two devices were measured at a dc bias of 10 mV 

and are plotted against gate voltage Vg in Figures 7.2 (a) and (b). The device of (a) is a 

p-type semiconductor since it turns on for negative Vg. The device of (b) is a small-

bandgap semiconductor since there is a dip in the conductance as a function of Vg. The 

latter is also very conductive, at 60% of the quantum conductance limit of a 

nanotube12. 

                                                           
9 Picosecond Model 5542. 
10 Equation 7.1 predicts ac sourcing of dc/low-frequency current. Notice that both source and drain must 
be dc-biased (including zero) relative to each other in order for dc current to flow. A dc-floating 
terminal cannot source dc current. 
11 Ithaco 1201 low-noise current preamplifier. 
12 The quantum limit of a nanotube is GQ = 4e2/h ~ 150 µS, as discussed in Chapter 2. 
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Figure 7.2. Correlation between experimental conductance and dc mixing current. (a) 
and (b) Conductance Gdc versus gate voltage Vg for a semiconducting and a small-
bandgap device, respectively, for dc source-drain bias of 10 mV. Conductance of (b) is 
~ 60% of the ballistic limit. (c) and (d) Mixing current Imix versus Vg of devices (a) and 
(b), respectively, at 10 MHz for Vs

ac,rms = 400 mV. In open circles are the numerical 
derivatives of (a) and (b), respectively, scaled by the pre-factor of Equation 7.1. In (d), 
a negative peak corresponding to the n-type FET behavior appears at Vg ~ 1.5 V. 
Reversal of the sign of the current is in agreement with Equation 7.1. 
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Figure 7.3. Amplitude dependence of mixing current. (a) Imix versus gate voltage Vg 
for fixed frequency of 1 GHz and selected ac voltages (rms values). (b) Mixing current 
Imix 

versus Vs
ac,rms, for a gate voltage near the peak. The ideal power-law line of 2 is 

shown for reference. Traces at 10 MHz and 1 GHz approximately overlap. 
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The dc mixing currents Imix of the two devices are plotted (solid lines) against 

Vg in Figures 7.2 (c) and (d). The frequency used for mixing was 10 MHz and the ac 

power was -1 dBm, which corresponds to an ac amplitude of 400 mV rms13. The 

current Imix resembles qualitatively the derivatives of the plots of Figures 7.2 (a) and 

(b), as predicted by Equation 7.1. Over 60 devices were measured, including both 

large- and small-bandgap semiconductors, and all displayed low-frequency mixing 

with similar relation to ∂Gdc/∂Vg. 

Figure 7.3 (a) shows Imix versus Vg at different ac amplitudes (rms values), for 

the device of Figure 7.2 (a), at a frequency of 1 GHz. The amplitude of the peak 

follows a power law, as shown in Figure 7.3 (b). The mixing amplitude near the peak 

in ∂G/∂Vg is plotted against Vs
ac,rms on a log-log scale at a variety of frequencies. The 

straight lines indicate that the response follows a power law in Vs
ac,rms with an 

exponent in the range 1.9 to 2.2. The reference line indicates a quadratic law, as 

predicted by Equation 7.1. 

The low-frequency experimental results are well described by the mixing 

expression, Equation 7.1. In this regime, we multiply the derivative of Gdc by the 

prefactor in Equation 7.1 to theoretically predict Imix. The results are shown in open 

circles in Figures 7.2 (c) and (d). The amplitudes of the theoretical peaks are ~ 1.5 

times greater than the experimental peaks at 10 MHz. This factor varied between 1 and 

                                                           
13 A power level of 0 dBm corresponds to 1 mW through the relation P(dBm) = 10 Log10(P(mW)). This 
power level is defined assuming a 50 Ω impedance match to the internal impedance of the generator, 
such that P = Vrms

2/50 Ω, where Vrms is the rms voltage seen at the output of the high-frequency source. 
When high impedance such as that of a nanotube is used instead, the ac voltage drop happens entirely 
across the device, and the voltage seen at the output becomes twice the nominal value. So -1 dBm 
corresponds to Vrms = 200 mV when 50 Ω-terminated, but Vrms = 400 mV in our case (high impedance). 
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1.5 for all the devices studied and is likely due to coupling losses14. We will discuss 

the origin of the sample-dependent discrepancies later in this chapter. 

 

7.5 Frequency response of mixing current 

 Figure 7.3 (b) shows that the response varies with the square of the ac voltage. 

But Figure 7.3 (b) also shows that Imix becomes smaller as the frequency increases. In 

order to investigate the mechanisms responsible for this amplitude decrease as a 

function of frequency, we mapped the mixing current versus frequency and gate 

voltage at an ac source power of -1 dBm for the device of Figure 7.2 (a), as shown in 

the color-coded plot of Figure 7.4 (a). The darkest red regions happen for Vg ~ -1.2 V 

and correspond to the peaks of individual gate traces such as that of Figure 7.2 (a). 

This shows that the gate location of the peak does not change with frequency15 and 

corresponds to the peak of ∂G/∂Vg at dc. The mixing amplitude at selected gate 

voltages versus frequency is shown in Figure 7.4 (c), obtained by performing vertical 

cuts in Figure 7.4 (a). 

There is a periodic modulation of the mixing amplitude in Figure 7.4 (a) with 

frequency ~ 4.5 GHz. After looking into the properties of all the high frequency 

components in the ac line, this modulation was found to closely match the reflection 

properties of the GSG probe (as provided by the manufacturer) shown in Figure 7.4 
                                                           
14 Attenuation of high frequency components is measured by Insertion Loss, defined as IL(dB) = -20 
Log10|T|, where |T| is the transmission amplitude through a component. The total transmission amplitude 
for this experiment is given by |T|BiasTee|T|Cable|T|Probe. The joint transmission through the bias tee and 
cable (neglecting the probe) was measured with a network analyzer (scattering parameter S21), resulting 
in |T|BiasTee|T|Cable ~ 0.85 at 1 GHz and ~ 0.22 at 40 GHz. Although this result corresponds to a 50 Ω 
termination, it illustrates that there are significant coupling losses coming from the setup. Maximum 
frequency ratings of individual high-frequency components typically correspond to the -3 dB threshold, 
at which point the output power is cut by half when 50-Ω terminated.   
15 The gate threshold drifts over time due to hysteresis. Gate voltage traces at low and high frequency 
taken within a short window of time (to avoid drift) always showed the peak at the same location. To 
address this issue, the measurement of Figure 7.4 (a) was repeated several times, with drifts of the peak 
position of as much as 200 mV observed in between and during measurements. The one displayed in 
Figure 7.4 (a) had the least amount of drift. Notice that the position of the peak drifted relative to the 
measurements of Figure 7.2 (a) and Figure 7.3 (a) for the same device.  
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Figure 7.4. Damping of mixing current Imix as a function of frequency. (a) Current 
versus gate voltage and frequency, for Vs

ac,rms = 400 mV plotted as a color scale. The 
beat with ~ 4.5 GHz period is likely due to standing waves in the external circuit, as 
shown by the red arrows in (b), corresponding to points of maximum reflection 
according to factory specifications of the GSG probes (GGB Industries). (c) Imix versus 
f at selected gate voltages (white dashed lines in (a)). Black solid lines correspond to 
the numerical fit assuming a first-order low-pass filter. Cutoff frequency decreases 
from ~ 10 GHz at Vg = -1.2 V to ~ 3 GHz at Vg = -0.3 V. 
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(b). When terminated in 50 Ω, the reflected power is low (~ -30 dB, of order 0.1%), 

and there is a modulation with small amplitude and with the same frequency as 

observed in the mixing experiment. Since the nanotube has such high impedance, the 

overall power reflected from the device should be close to 100%. The effect of the 

modulation over the ac voltage delivered to the source is then considerably amplified.  

 

7.6 Model of frequency dependence of mixing 

 The simplest model used to describe the amplitude decrease as a function of 

frequency is that of a low-pass RC filter. By use of Equation 7.1, we can write the 

frequency dependence as: 

 ( )
( ) ( )2

2

1
1

0 ωτω
ω

+
==

→ in

out

mix

mix

V
V

I
I , (7.2) 

where Vout/Vin represents the ac voltage gain and τ is a phenomenological RC 

constant16. We then use this expression to fit the data of Figure 7.4 (c), obtaining the 

solid curves. The cutoff frequency – which is set by the RC constant – is in the 

gigahertz range and depends on gate voltage. The damping tail falls off at ~ 20 

dB/decade, just as expected for the voltage gain of a low-pass filter. 

 This RC constant was measured as a function of the gate voltage from the fits 

of Imix versus frequency using Equation 7.2. The result is displayed in Figure 7.5, 

along with the dc conductance. The conductance was extracted from Figure 7.4 (a) by 

numerical integration of the low-frequency (10 MHz) mixing current according to  

                                                           
16 We have assumed that the ac conductance of the nanotube is similar to the dc conductance, such that 
the ratio of the derivatives is either close to unity or does not vary strongly with frequency compared to 
the square of the voltage ratio. Some evidence for this behavior has been observed recently in metallic 
nanotubes (Yu and Burke 2005). 
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Figure 7.5. Time constant τ plotted against gate voltage. τ is roughly constant in the 
conductive state (see plot of conductance Gdc) due to the contacts. As the device turns 
off (positive gate voltage), τ increases. The plot for Gdc was taken with the same 
voltage threshold as the frequency plot in Figure 7.4 (a), which drifted slightly relative 
to the data in Figure 7.2 (a).  
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Equation 7.1 17. We see from Figure 7.5 that τ ~ 15 ps and is roughly constant while 

the device is highly conductive, but it increases when the resistance of the device 

becomes greater than ~ 1 MΩ. This indicates that the bulk resistance of the nanotube 

plays a major role in attenuation of Imix near turn-off. 

We determined the spread of values of τ for our devices by measuring the RC 

constant at the mixing peak for 16 devices (power of -1 dBm). The effect of the series 

resistance of the devices was also investigated. We applied a voltage to the substrate18 

in order to gate the sections of the nanotubes not covered by the top gate. The 

resistances and time constants were measured when the back gate voltage was 

changed from Vbg = -10 V to Vbg = +10 V. The time constants at the mixing peak are 

plotted in Figure 7.6 against the estimated19 mixing peak resistances Rpeak. The 

resistance of nine of these devices changed with an accompanying time constant 

change (shown by connecting arrows). Another five had no change of resistance. The 

time constants of the remaining two devices were not measured at Vbg = +10 V. 

Overall we found τ in the 7-28 ps range, while Rpeak was found in the 8 kΩ - 700 kΩ 

range20 – two orders of magnitude difference21,22. There appears to be no direct 

correlation between the two variables. There also appears to be no correlation between 

the increase of the series resistance and the direction of change of the time constant. 

                                                           
17 The dc conductance as shown in Figure 7.2 (a) was used as the amplitude integration reference. The 
actual conductance never changed during measurements, therefore its maximum and minimum should 
be constants. Direct comparison with Figure 7.2 (a) is inaccurate due to the considerable drift of the 
gate conduction threshold between the measurements of Figures 7.2 and 7.4. Numerical integration 
provides a way of eliminating the drift from the analysis.  
18 The intrinsic silicon substrate has thermally-activated carriers at room temperature. Despite its large 
resistivity, a dc bias can still be effective in gating parts of the device not covered by the top gate.  
19 Measured at the steepest point of the corresponding Gdc. 
20 The sample included 6 pure semiconducting and 10 small-bandgap devices. 
21 At low temperatures, the HRSi substrate is intrinsic, behaving as a really good isnsulator. The mixing 
peak time constant, however, remained in the same range when the device was probed at T = 4 K. This 
suggests that the pad-substrate capacitance (or absence of) does not affect the roll-off. 
22 Measurements at low temperature were done in the dark to avoid optical excitation of carriers in the 
substrate. In the dark, the portion of the nanotube not covered by the local gate was found to be 
insensitive to a dc substrate voltage. 
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Figure 7.6. Time constant τ at the mixing peak versus resistance Rpeak at the mixing 
peak. The time constant was measured for a total of 16 devices, of which 6 were pure 
semiconductors and the remaining 10 were small-bandgap semiconductors. The 
substrate voltage Vbg was kept at -10 V. The effect of a change of Vbg to +10 V is 
shown for nine of these devices (hence a total of 23 points) and illustrated by the 
connecting arrows. There appears to be no direct correlation between the peak 
resistance and the time constant. 
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For the device of Figure 7.5, the observed time-constant in the on-state of 15 

ps with Cg ~ 1.2×10-16 F as the gate capacitance23 gives a resistance R ~ 125 kΩ. This 

time constant is often less than the RC time of the device, as seen by the dashed line in 

Figure 7.6. We will now make use of the model introduced at the end of Chapter 4 that 

describes the roll-off of the mixing current of a one-dimensional distributed mixer in 

the RC operation limit. To summarize, we predicted that the cutoff frequency is a 

function of the resistances of the contacts and the bulk. According to the model, the 

ultimate limit of the cutoff frequency happens in the on-state (comparable bulk and 

contact resistances) and is given not by the total resistance, but by the resistance of the 

source contact Rs. Since Rs ≤ Rtotal, then τ ≤ RtotalCg. This condition specifies the upper 

bound of the time constant and conversely the lower bound of the cutoff frequency. 

The cutoff frequency may also change as a function of overvoltage, but the precise 

trend depends on the relative magnitudes of each of the resistances. 

The source resistance limit in the on-state agrees with the results of Figure 7.5. 

The measured time constant of 15 ps in the conductive state corresponds to a 

resistance that is lower than the on-state resistance Ron. Since the contact resistances 

account for a fraction of Ron, the time constant may be contact-limited. Near turn-on, 

on the other hand, the total resistance is considerably larger than 1 MΩ and we 

observe that the time constant increases. The model shown in Figure 4.10 predicted 

that when the resistance of the bulk dominates the total resistance, the frequency 

cutoff should increase – time constant should decrease. One possibility for this 

disagreement is that we do not find ourselves in the same regime described by the 

simulation, but in some intermediate state where the time constant is allowed to 

increase relative to its value in the on-state. That could be either due to Schottky 

                                                           
23 The capacitance was measured independently with a capacitance bridge (Ilani and Donev 2005), 
giving Cg

’ ~ 6×10-17 F/µm. The gated length of device was ~ 2 µm. 
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contacts (resistance of the contacts already significant near turn-on and modulated by 

the gate voltage) or due to a non-uniform conductance. This last possibility could be a 

consequence of disorder near turn-on or partial coverage of the top gate (which gates 

efficiently the middle section of the nanotube but not its ends). 

The theoretical constraint RtotalCg at the mixing peak (Rtotal = Rpeak) is 

represented by the dashed line in Figure 7.6. We observe that the experimental results 

do not agree with this analysis for the six devices with time constants lying above the 

line. This corresponds to lower cutoff frequencies for these. A simple explanation for 

this observation is that there is an external, setup-related cutoff. Also notice the 

devices with time constant above the line are the most conductive ones, with peak 

resistances below 100 kΩ. 

Comparison with the model of distributed mixing of Chapter 4 appears to be of 

limited use in analyzing the available experimental data. In spite of this, the 

experimental results do not entirely disprove the model. More must be done to 

understand the origins of the observed cutoffs of mixing. 

 

7.7 Schottky mixing 

 At high overvoltages, the resistance of the device approaches a constant value. 

This is typically due to comparable bulk and contact resistances (Zhou, Park et al. 

2005). Then the voltage drop of the bulk of the nanotube can be significantly reduced 

from the total, according to: 

 tot
tot

bulk
bulk V

R
RV ∆=∆ , (7.3) 
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where Rbulk and Rtot are the resistances of the bulk and of the entire device, 

respectively. Then, the mixing current originated in the bulk becomes negligible due 

to the decrease of the voltage drop and of ∂G(ω)/∂Vg (see Equation 7.1). In this limit, 

the nonlinearities from the contacts become more pronounced (Heinze, Tersoff et al. 

2002). In order to study this regime, we concentrate on the on-state region of p-type 

operation, such as Vg ~ -3 V in Figure 7.2 (a). 

Figure 7.7 (a) shows mixing at 50 GHz for the device of Figure 7.2 (a). 

Although the amplitude of the current at 50 GHz is ~ 20 times smaller than that at 10 

MHz, the gate dependence still follows ∂Gdc/∂Vg for Vg > -2 V. The current levels 

detected are still well within our experimental sensitivity and there is no sign of 

deviation of ∂G(ω)/∂Vg from its dc value for Vg > -2 V. The mixing current of this 

device at Vg = -3 V is also plotted versus frequency in part (b). We see that the mixing 

current becomes negative at high frequencies. It also appears to be relatively constant.  

We plot Imix versus Vg in Figure 7.8 for a small-bandgap nanotube device, as 

illustrated by the Gdc versus Vg curve. The frequency was again 10 MHz and the ac 

source power was -1 dBm. We measured Imix by probing each end of the device with 

the ac probe. When the ac probe was placed at the end labeled (1), the mixing current 

at Vg = -3 V was positive. It changed to negative when end (2) was probed instead. 

The remaining gate dependence, however, remained the same. 

The gate dependence at 50 GHz of Imix in Figure 7.7 (a) can be explained by 

Schottky mixing. A crossover to negative mixing current in p-type operation is 

predicted neither by means of our theory of distributed mixing or by Equation 7.1 for a 

discrete mixer. This result is however consistent with the Schottky theory: we 

predicted that for contacts with similar nonlinear behavior (characterized by the 

voltage range in which they behave nonlinearly), the mixing current is dominated by 

the contact with the largest resistance at low frequencies, but it becomes entirely  
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Figure 7.7. Contact effects at negative gate voltage. (a) Mixing signal at 10 MHz and 
50 GHz, currents in nA (black = 10 MHz = left; gray = 50 GHz = right). Current 
becomes negative at high frequencies in the region of constant dc conductance. (b) Imix 
versus frequency for the device of part (a), measured at Vg = -3 V. At this gate voltage, 
∂G/∂Vg goes to zero and Imix is dominated by the Schottky contacts. For f > 30 GHz 
(inset), Imix becomes negative. It also appears relatively constant. Further work is 
necessary to determine if the device is mixing with constant amplitude or if the 
attenuation from the setup is playing a role.  
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Figure 7.8. Conductance and dc mixing current of a small-bandgap nanotube versus 
gate voltage. Imix was measured by applying the ac voltage to the opposite ends of the 
device (labels 1 and 2). The sign of Imix is different at Vg = -3 V due to the asymmetry 
of the contacts. 
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dominated by the source contact at high frequencies (and negative, due to its reverse-

biased nature). The theory also predicts that it does not change frequency24. Although 

Figure 7.7 (b) shows a constant mixing current at high frequencies, further work is 

needed in order to determine if this is because mixing is constant or if it appears to be 

constant due to cancellation between the Schottky mixing and the attenuation of the 

signal by the setup. 

Finally, we analyze the reversal of the current sign in Figure 7.8 when the ac 

voltage was applied to either source or drain. The asymmetry of the current is again 

consistent with the Schottky theory. Since the Schottky contacts behave as reverse-

biased diodes, negative mixing current would be favored by default. Yet, we predicted 

that at low frequency, mixing would be dominated by the most resistive contact. This 

means that end (2) was the more resistive of the two, since it overcame the natural 

tendency of contact (1) to generate negative current and dominate mixing. This was 

typically the case with most of the devices studied. 

 

7.8 Conclusions 

 In this chapter, we investigated the high-frequency performance of carbon 

nanotube transistors with a mixing technique using a dc detection scheme. This 

technique works with semiconducting and small-bandgap devices. When the nanotube 

transistor operates as a mixer, the mixing current depends on the derivative of the 

conductance with respect to the gate voltage and on the magnitude of its associated 

voltage drop according to Equation 7.1. At larger overvoltages, mixing is dominated 

by the Schottky contacts. In this regime, Schottky mixing makes the current negative 

at high frequencies. 

                                                           
24 In the absence of strong capacitive parasitics, the diode is just a resistor. At high frequencies, the gate 
shorts the ac signal to ground through the gate and all the mixing comes from the source contact only. 



133 

 

The frequency dependence of the mixing current showed a cutoff frequency in 

the range 1-10 GHz. This is in order-of-magnitude agreement with the distributed 

mixer model presented in Chapter 4. The model predicted a minimum cutoff 

frequency limited by the RC time associated with the resistance of the source contact 

and the gate capacitance of the nanotube. Nevertheless, if the time constant of the 

setup is comparable to that of the device, the setup sets the cutoff frequency instead. 

Further work is needed in order to clarify this issue. 

The ac experiments that we have reported here were done at the highest 

frequencies so far for single25 nanotube transistors. We have measured their response 

up to 50 GHz, and we have found them still to be mixing at this frequency. This could 

be useful for an application such as a nanoscale ac power detector. 

 
 
 

                                                           
25 Our samples have a small number of nanotubes per junction. Although we design our junctions for 
one nanotube bridging the gap between the electrodes, we often find two or three (but rarely more than 
five). 
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 CHAPTER 8 

 

 CONCLUSION 

 

8.1 Summary 

We have explored the ultimate room-temperature limits of electrical 

performance of single-walled carbon nanotube field-effect transistors (FETs) in the dc 

gating regime and in the RC limit of mixer operation. These experiments demonstrated 

some of the limiting factors that are relevant for technological applications of 

nanotube transistors. 

In Chapter 6 we demonstrated the dc gating limits of single-walled carbon 

nanotube transistors by means of an electrolyte gate. Using the dielectric and 

insulating properties of the solution in combination with the short screening lengths of 

the ions, we have shown that the electrolyte gate capacitor reaches the quantum limit 

of operation as introduced in Chapter 2. This is the best gating performance that can 

be obtained by use of a carbon nanotube transistor. This property is particularly 

important for sensing applications: the conductance of a carbon nanotube FET should 

be affected by local charges in a manner analogous to a gate electrode. 

The ac electrical properties of carbon nanotube transistors were studied by 

using them as mixers/rectifiers at frequencies up to 50 GHz, as reported in Chapter 7. 

This is the highest operational frequency reported so far for nanotube transistors. We 

have found that the experimental mixing response of samples with minimized parasitic 

capacitances had a cutoff at frequencies in the 1-10 GHz range. We interpreted these 

experimental results with the circuit theory developed in Chapter 4. Our analysis with 

a model using the distributed nature of the capacitance and resistance of the nanotube 

suggests that the frequency cutoff is determined by the contacts. The experimental 
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results do not rule out this possibility but do not confirm it entirely either. A 

possibility for the discrepancy is that the setup contributes to the cutoff. Further work 

is necessary to resolve this issue. 

 

8.2 Future directions 

Carbon nanotubes are currently exciting materials for building high-

performance electronics. By showing the gating limits of the transistors, we have 

paved the way to optimization of the gate geometries and charge sensing applications. 

In the high-frequency limit, we have shown that maximum operating frequencies 

might be raised if the properties of the contacts are optimized. 

 We will finish this thesis discussing two potential experiments based on the 

high-frequency work that was presented here. The first one follows from the theory of 

distributed mixing. The analysis of Chapter 4 showed that a dc voltage profile must 

build up along the nanotube in order to sustain the mixing current. We simulated the 

profile of this dc voltage along the device when the resistance of the bulk dominates 

the total resistance (see Figure 4.8). We found that the profile was symmetric at 

frequencies below ~ (2πRC)-1, where R is the resistance of the bulk and C is the gate 

capacitance. We also found that the voltage peaked in the center of the nanotube at 

these frequencies, with an amplitude of approximately ¼RImix, where Imix is the total dc 

mixing current. Above the cutoff determined by the bulk, we found that the voltage 

profile should become asymmetric and peak near the source contact with an increasing 

amplitude (the maximum amplitude being RImix at very high frequencies). 

In order to estimate the experimental value of the built-up dc voltage peak we 

will assume the mixing current to be that of the mixing peak, which for 

semiconducting nanotubes can happen near turn-on (bulk dominates total resistance 

and voltage profile). We found experimentally that a typical mixing peak current of ~ 
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1 µA can be obtained at an ac source voltage of ~ 0.5 V (peak voltage). For the 

semiconducting device of Chapter 7, that corresponded to a bulk resistance of ~ 1 MΩ, 

still reasonably larger than the resistance of the contacts. Using a gate capacitance of ~ 

10-16 F for a 2 µm-long nanotube, the voltage profile frequency cutoff would be 

(2πRC)-1 ~ 1.5 GHz. It should be possible to make devices with lower cutoff by 

growing longer nanotubes – a 10 µm-long nanotube would have a cutoff around 50 

MHz. We then find that at frequencies below the cutoff the maximum voltage should 

be ~ ¼RImix ~ 0.25 V dc. We postulate that it should be possible to verify this by 

means of a scanning probe technique such as electric force microscopy (EFM), as 

described by Bachtold et al. (Bachtold, Fuhrer et al. 2000; also consult Girard 2001 for 

an accessible summary of the technique). Detection of the built-up dc voltage profile 

would constitute a direct measurement of the frequency dependence of distributed 

mixing of a nanotube. 

The second and last experiment that we propose here is concerned with the 

transmission-line limit of operation. In this regime, transport should be ballistic in the 

bulk of the nanotube. Due to the negligible resistance of the bulk, the nanotube should 

behave as an LC line. If there were Schottky contacts at the ends, a mixing current 

would result. We postulate that Schottky mixing could serve as a probe to detect the 

plasma waves – collective excitations that originate from the LC resonances. This 

experiment would be very important as a direct observation of the physics of 

nanotubes in the lossless limit. It has been suggested (Burke 2002) that a short 

nanotube (few microns long) would exhibit such resonances in the terahertz regime 

(optical range). On the other hand, long nanotubes (100 µm) would have resonances in 

the gigahertz regime that could be detected electronically with equipment such as that 

used in the experiment of Chapter 7. Although long nanotubes can now be routinely 

grown, it is unlikely that they would be able to retain ballistic transport throughout 
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their entire lengths, in particular because they would also need to be free of localized 

defects. Experiments are currently under way to perform plasmon detection using an 

antenna design with Schottky mixing as the detection scheme (Zhong 2005). 
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 APPENDIX 

 

A.1 Mixing expression 

 We will now derive the distributed mixing current of a nanotube when both 

contact resistances are taken into consideration. We start with the definition of the 

propagation constant from Chapter 4, γ = [jωρC’]½ = (1+j)γ0, where j is the imaginary 

constant and ρ and C’ are the nanotube’s resistivity and capacitance per unit length, 

respectively. The real and imaginary parts are equal to γ0 = [ωρC’/2]½, and we define 

additionally the product x = ωRC, so that we can write γ0L = [x/2]½, where L is the 

length of the nanotube. In order to simplify the algebra, we define the ratio between 

the contact resistance of the drain and the nanotube’s bulk resistance as χd = Rd/R, in 

order to define the ratio ηd = χd[2x]½. The characteristic impedance of the line is Z0 = 

ρ/γ, with which we write the reflection coefficient at the drain end: 
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Next, we integrate Equation 4.30 using the dc division rule of 4.10: 
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where χs = Rs/R is the ratio between the contact resistance of the source and the 

nanotube’s bulk resistance, the voltage profile from source to drain is V(z), G is the 

conductance of the bulk and Vg is the gate voltage. We then relate the reflection 

coefficient at the source (z = 0) to the one at the drain with Γ(0) = Γ(L)e-2γL to write: 
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where we used Equation 4.28 for V(z). By use of Equation 4.27, we can relate the 

amplitude V(0) to the input ac signal Vsd and write: 
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where we defined ηs = χs[2x]½. 

 Finally, we can calculate the cutoff of the mixing current once both ratios of 

the contact resistances to the bulk resistance are known. The frequency directly 

controls the parameter x. There is still an additional dependence of the result on 

∂G/∂Vg and the amplitude Vsd of the input, which will correct the overall amplitude of 

mixing, but it does not influence the cutoff. 
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