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Abstract 

Electron Transport in Single Molecule Transistors 
by 

Jiwoong Park 

Doctor of Philosophy in Physics 

University of California, Berkeley 

Professor Paul L. McEuen, Co-chair 

Professor John Clarke, Co-chair 

 

Electron transport through single molecules is strongly affected by single-electron 

charging and the energy level quantization.  In this thesis, we investigate electron 

transport in single molecule transistors made with several different molecules, including 

fullerene molecules (C60, C70 and C140) and single Co molecules with different lengths.  

To perform transport measurements on these small (<3 nm) molecules, electrodes with a 

gap that is 1~2 nm wide are fabricated using the electromigration-junction technique.  We 

also studied single-walled carbon nanotube devices that are fabricated using a more 

conventional method. 

At low temperatures, most single molecule devices exhibit Coulomb blockade 

with discrete conductance peaks that correspond to quantum excitations of the molecule.  

The origin of the observed quantum excitation varies from molecule to molecule 

depending on how tunneling electrons interact with various molecular degrees of 

freedom.  Vibrational excitation is the one that is most frequently observed.  The most 

prominent vibrational excitation was identified as the bouncing-ball mode in C60 and C70 

transistors, whereas it was assigned to the intercage stretching mode in C140 transistors.  

Magnetic excitation was also studied, and the spin state of a single Co molecule was 

determined by analyzing the Zeeman splitting in a magnetic field. 

The overall conductance of single molecule transistors is determined mainly by 

the coupling with electrodes.  In single Co transistors, the coupling could be controlled by 

changing the length of insulating handles.  With a longer handle, the conductance is 

lower as the single Co forms a quantum dot.  With a shorter handle, the coupling between 
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Co and electrodes as well as the overall conductance becomes large and the Kondo effect 

was observed. 

 Finally, the conductance of carbon nanotubes was studied in two different 

temperature regimes.  At low temperatures, they form a single quantum dot (p-doped) or 

a double quantum dot (n-doped) due to a local doping by the electrodes.  In room 

temperature measurements, a highly efficient electrolyte gate was used to investigate the 

field effect transistor properties of carbon nanotubes, which unveiled excellent device 

performances. 
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Chapter 1 

Introduction and Background 

 
1.1 Introduction: Electron Transport in Nanoscale Systems 

Electrical conductance of a macroscopic object is described by the well-known 

Ohm’s law.  The conductance (G) of a rectangular conductor is proportional to its width 

(W) and inversely proportional to its length (L).  Namely, 

 WG
L

σ
=  (1.1) 

Here σ is the conductivity of the conductor, which is decided mainly by the charge carrier 

density and the mean free path.   

As the conductor gets smaller, several effects that are negligible in a macroscopic 

conductor become increasingly important.  In a very small object such as nanostructures 

and molecules, electron transport usually does not follow Ohm’s law.  There are several 

reasons why Ohm’s law fails at such exceedingly small scale.  First, the size is smaller 

than the mean free path.  Thus electron transport is not a diffusive process as described 

by Ohm’s law.  Instead, it is in a ballistic conduction regime, where a charge carrier 

experiences no scattering within the conductor.  Second, the contact between 

macroscopic electrodes and the nanoscale conductor strongly affects the overall 

conductance.  Depending on the properties of the contact, the overall transport behavior 

can be very different and hence understanding the nature of the contact is extremely 

important.  Third, a nanoscale object has a large charge addition energy and a quantized 

excitation spectrum.  Both of these strongly affect electron transport especially at low 

temperatures.  

Studying transport behaviors of these extremely small objects is a very interesting 

scientific problem, and it also has many practical implications, especially to the 

microelectronic industry.  In recent years, studying electron transport in nanoscale objects 

has become one of the most active fields in condensed matter physics and also attracted 

huge research efforts from various other disciplines of science.  To date, many nanoscale 
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systems have been investigated, including solid-state nanostructures[1-3] as well as 

chemical nanostructures such as carbon nanotubes[4-6] and nanocrystals[7, 8].  Transport 

measurements on such systems displayed a plethora of exciting new behaviors that 

cannot be explained within the framework of the conventional macroscopic theory.  The 

subject of this thesis is also to study electron transport in nanoscale objects, especially the 

devices made from single molecules. 

 

1.2 Electron Transport in a Single Molecule Device 
Single molecules as an active electronic unit have attracted huge attention both 

from the research community and industry[9-11].  Single molecules can offer several 

unique properties as an electronic unit.  The size is within several nanometers for most 

simple molecules and hence the electronic spectrum is quantized with the typical energy 

scale of ~ eV.  They also allow self-assembly, which is very useful in fabricating 

electronic devices at such a small length scale.  Another huge advantage is their 

tremendous diversity and functionality.  There exist an incredibly large number of 

chemicals and their different chemical and electrical functions can open up many new 

possibilities that have never been available. 

In this section, we will first review the history of this field briefly and then discuss 

a model that describes electron transport in single molecule devices.  

 

Short history 

Molecules were first proposed as an active electronic unit by Aviram and 

Ratner[12] in 1973.  They proposed that one can expect a current rectifying behavior 

from a certain types of molecules that are represented by D-σ-A, where D represents an 

electron-donor unit with a large ionization energy, A represents an electron-acceptor unit 

with a large electron affinity and σ is a conducting molecular bridge that connects D with 

A.  In such molecules, the zwiterionic state D+-σ-A- is expected to be energetically more 

accessible than D--σ-A+, which will lead to an asymmetric current-bias curve.  Other 

types of molecules for key electronic units are also proposed, including molecular wires 

and molecular switches.  Reviews on such candidate molecules can be found in other 

references[10, 11, 13, 14]. 
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Figure 1.1 Conductance measurement of a single molecule.  A bias is applied between the electrodes 
while the current flowing through the molecule is measured.  

I
V

Single molecule

 
Electron transport measurements on single molecules require what is, in principle, 

a relatively simple experimental scheme (Figure 1.1).  A molecule is contacted by two 

macroscopic metal electrodes.  These electrodes are connected to outside equipment for 

measuring the current and voltage.  To measure the conductance, one applies a bias 

voltage (V) between the electrodes and then measures the current (I) flowing through the 

device.   

However, molecular-scale transport measurements could be performed only after 

necessary experimental techniques were developed.  The advent of the scanning probe 

microscopy (SPM) techniques such as scanning tunneling microscopy (STM) and atomic 

force microscopy (AFM) allowed the conductance measurements down to a single 

molecule level[15, 16].  The development of nanolithography techniques also led to the 

fabrication of nanoscale electrodes, which can be used to “wire up” multiple or single 

molecules.  Most early experiments were two-terminal measurements and observed 

interesting conduction behaviors such as the electromechanical current amplification[14], 

oxidation-induced negative differential resistance[17] and logic gates[18]. 

In these earlier experiments, current versus voltage (I-V) curves were measured at 

relatively high bias voltages to add (subtract) extra charges to (from) the molecules, or a 

molecule was subjected to a significant mechanical deformation to form a good contact.  
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Such experimental conditions, even though they allow observation of interesting 

behaviors, are expected to strongly perturb the original electronic structure of a molecule 

and hinder one from performing a careful study on electron transport through a handful of 

well-defined quantum molecular levels.  

 

Sequential electron tunneling in single molecule devices 

One regime that allows a careful study on electron transport through well-defined 

quantum molecular states is the sequential tunneling limit.  In this regime, electric current 

in single molecule devices flows by the sequential tunneling process described below.   

First, we draw the energy landscape of a single molecule device as illustrated in 

Figure 1.2.  Electronic levels of the electrodes are filled up to the electrochemical 

potential (Fermi level) of each electrode that is represented by Sµ and Dµ (S and D denote 

source and drain).  The electrodes are connected to an outer circuit, which controls the 

difference between Sµ and Dµ using the bias voltage V.  The relation between them is 

S D eVµ µ− = , where e is the electron charge (e = 191.602 10 C−− × ).  To reflect the 

quantum nature of the electronic structure, we represent available electronic states of the 

molecule using several discrete lines.  The physical meaning (electrochemical potential) 

of these lines will be carefully defined in the following section.  All the states below 

Sµ and Dµ  are occupied by an electron and all the electronic states above Sµ and Dµ  are 

Figure 1.2 Schematic diagram of the energy landscape of a single molecule between two macroscopic 
electrodes.  Electronic levels of the molecule are represented by discreet lines.  The electronic levels 
whose energy is below electrode Fermi levels (µS and µD) are occupied by an electron (red dot).

S D

Energy

Sµ
Dµ

Single moleculeSource
electrode

Drain
electrode

|eV|
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empty.  The contact between the molecule and an electrode is represented by a barrier 

that separates them. 

We assume that the barrier at either contact is opaque enough that it serves as a 

tunnel barrier.  Then an electron can be considered located either on the molecule or one 

of the electrodes.  Electric current will flow when an electron can tunnel onto the 

molecule and subsequently off from it to the other electrode.  When a state is available 

between Sµ and Dµ , the sequential tunneling process can occur via this state while 

changing the number of electrons on the molecule between N and N+1.  A large current 

will flow in this case (“on” state).  On the other hand, when there are no available states 

between Sµ and Dµ , the current will be blocked and the number of electrons N on the 

molecule is fixed.  Only a small current will flow in this case by a direct tunneling 

between the two electrodes (“off” state).   

The “on” and “off” behavior is caused by the quantized electronic structure of a 

molecule.  This quantized structure can be attributed to two main reasons – the charge 

addition energy and the electronic excitation spectrum.  To illustrate how these affect 

electron transport in single molecules, we will first review the single electron transistor 

theory in the following section.  

The model presented here assumes that the contacts are behaving as tunnel 

barriers.  Even though some molecules can be connected to the leads without forming a 

tunnel barrier at the contacts[19, 20], the single molecule devices described in this thesis 

forms tunnel contacts and their electrical conductance can be explained based on the 

sequential tunneling process.   

 

1.3 Single Electron Transistor Theory  
The theory of a single electron transistor (SET) can be found in several review 

papers on this topic[21-25].  We will follow a similar path that has been used by 

Kouwenhoven et al.[26]  

Figure 1.3 shows a device schematic of a single electron transistor, where a dot is 

surrounded by three electrodes.  All three electrodes are coupled to the dot capacitively; a 

potential change in any of them can cause an electrostatic energy change in the dot.  Only 
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two electrodes (source and drain) are tunnel coupled to the dot and electron transport is 

allowed only between the dot and these two electrodes.  Since the dot is connected to the 

source and drain electrodes by a tunnel barrier (meaning an electron is either on the dot or 

one of the electrodes), the number of electrons on the dot, N is well defined.  We assume 

that all interactions between an electron on the dot and all other electrons on the dot or on 

the electrodes can be parameterized by the total capacitance C.  We also assume that C 

does not depend on different charge states of the dot.  Then the total electrostatic energy 

for a dot with N electrons will become ( )22 / 2 / 2Q C Ne C= . 

 When N electrons reside on the dot, the total energy is ( )2

1
( ) / 2

N

i
i

U N E Ne C
=

= +∑ .  

After an additional electron is added to the dot, the total energy increases to 

( )
1

2

1
( 1) ( 1) / 2

N

i
i

U N E N e C
+

=

+ = + +∑ .  Here Ei is the chemical potential of the dot with i 

electrons.  This is the energy of the orbital of the dot that the i-th electron would occupy 

if there were no electron-electron interactions.  The electrochemical potential Nµ is then,  

 2( ) ( 1) ( 1/ 2) /N NU N U N E N e Cµ ≡ − − = + − . (1.2) 

By definition, the electrochemical potential Nµ  is the minimum energy required 

for adding N-th electron.  As long as Nµ  is below both Sµ  and Dµ , the N-th electron will 

be added to the dot.  Likewise, to add one more electron to a dot with N electrons, 
2

1 /N N e C Eµ µ+ = + + ∆  needs to be lower than both Sµ  and Dµ , where 1N NE E E+∆ = − .  

For simplicity, we will assume that E∆  does not change for different charge states of the 

dot.  This allows us to drop the subscript N for E∆ .  Therefore, the N+1-th electron 

needs to have an energy larger than the one for the N-th electron by 2 /e C E+ ∆ .  This is 

Source Draindot

Gate

Figure 1.3 The single electron transistor.  A small dot is separated from the source and drain 
electrodes by tunnel barriers.  It is also coupled to the gate electrode capacitively.
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the charge addition energy.  The first term 2 / Ce C E≡ , which is called the charging 

energy, is the energy that is required to overcome the Coulomb repulsion among different 

electrons.  The second term E∆  is the result of quantized excitation spectrum of the dot.  

Figure 1.4(a) illustrates the energy diagram of a single electron transistor with 

1 ,N S D Nµ µ µ µ+ > > .  The dot will have N electrons and the solid lines below Nµ  

represent all the filled electrochemical levels.  The lowest dotted line represents 1Nµ +  and 

it cannot be occupied since it is above the electrode Fermi levels.   Therefore, the dot is 

stable with N electrons and hence the current cannot flow through the dot.  In other 

words, the current is “blocked” due to the charge addition energy.  Figure 1.4(b) 

illustrates another case where 1D N Sµ µ µ+> > .  In this case, the N+1-th electron can be 

Figure 1.4 Electron transport in a single electron transistor. Energy diagrams for two different energy 
configurations are shown.  In (a), the number of electrons on the dot is fixed at N (“off”-state) and the 
current is blocked.  In (b), the electron number on the dot oscillates between N and N+1 (“on”-state).  
(c) The linear conductance (G) as a function of the gate bias (VG) displays the Coulomb oscillation.  
Each conductance valley is labeled by the number of electrons on the dot. 

Sµ
Dµ

S D

(a) (b)

CE E+ ∆

Nµ

1Nµ −

1 , D NN Sµ µ µ µ+ > >

S
D

Nµ

1D N Sµ µ µ+> >

0
VG (arbit. unit)

G
 (a

rb
it.

 u
ni

t)

(c)

N N+1 N+2N-1

1Nµ +

1Nµ +

2Nµ +
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added from the drain and then it can leave to the source electrode.  This process allows 

electric current to flow by constantly switching the charge state of the dot between N and 

N+1. 

When we sweep the gate voltage VG, the electrochemical potential of the dot 

changes linearly with VG and this allows one to change the number of electrons on the 

dot.  Equation (1.2) will be later modified in Chapter 2 to include this gate effect.  The 

conductance (G) as a function of VG at a low bias is illustrated in Figure 1.4(c).  The 

conductance curve shows a series of peaks as well as valleys of low conductance.  In the 

valleys, the number of electrons on the dot is fixed and the current is blocked by the 

charge addition energy 2 /e C E+ ∆ .  This corresponds to the case depicted in Figure 

1.4(a).  The dot has a well-defined electron number in each valley; N, N+1, N+2 and so 

on.  The conductance peak in this plot corresponds to the case depicted in Figure 1.4(b), 

where the dot can oscillate between two adjacent charge states.  For example, the 

conductance peak located between the N-electron valley and the (N+1)-electron valley 

represents the dot carrying current by oscillating between N and N+1 electron states.  

These conductance peaks are called Coulomb oscillations. 

 To be able to observe Coulomb oscillations, the charge addition energy should be 

much larger than the thermal energy Bk T .  Otherwise, thermal fluctuation effect will be 

dominant and the Coulomb oscillation will disappear.  Also the electron number on the 

quantum dot should be a well-defined observable, which requires the contact between the 

dot and the leads to be resistive.  Quantitatively, the contact resistance needs to be larger 

than the resistance of a single conductance channel (e.g. a point contact), 
2/ ~ 25.81h e kΩ .  These conditions are summarized below.  

 2 / Be C E k T+ ∆ >>  (1.3) 

 2/contactR h e>>  (1.4) 

To date, single electron transport behavior has been observed from many different 

nanostructures.  They include metallic nanoparticles[27], semiconductor heterostructures 

[28, 29], carbon nanotubes[30, 31] and semiconducting nanocrystals[8].  More recently, 

similar behaviors were observed from devices made from single molecules[32-34].   
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1.4 The Charging Energy and Excitation Spectrum in a Single Molecule 

Device 

Electron transport in many single molecule devices can be described based on the 

SET theory we just described.  Figure 1.5 shows various small molecules that we have 

successfully incorporated into a single electron transistor.  To illustrate how this theory 

can be used to understand electron transport in single molecules, let’s first study the 

electronic structure of a fullerene molecule, C60.   

Figure 1.6 shows the electronic level structure of an isolated neutral C60 and its 

anion 1
60C −  calculated using a density functional method[35].  In both charge states, the 

electronic levels display a quantized and non-uniform structure.  In neutral C60, there is a 

1.65 eV HOMO-LUMO energy gap.  Here HOMO and LUMO represent the highest 

occupied molecular orbital and the lowest unoccupied molecular orbital, respectively.  In 

the language of the SET theory, this corresponds to the energy splitting 1
60 60( )E C C −∆ →  

for the C60 to 1
60C −  charge state transition.  When looking at 1

60C − , the highest electronic 

Figure 1.5 Various molecules measured using the SET geometry.  All of them are smaller than 3 nm.  
For comparison, the size of the CdSe nanocrystal (5.5 nm) that was measured in a previous experiment 
(Klein, et al., Nature 389, 699 (1997)) is marked. 

1 nm

10 nm

C60, C70

Co(tpy-SH)2
Co(tpy-(CH2)5-SH)2
Co2(tpy)2TPPZ
Fe(tpy-(CH2)5-SH)2
Mn(tpy-(CH2)5-SH)2

C140

CdSe nanocrystal
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Figure 1.6 Electronic level structure of C60 and C60
- calculated using the density functional method.  

Only the levels near the HOMO-LUMO gap are shown in this figure. (from Green et al., J. of Phys. 
Chem. 100, 14892 (1996))

C60 C60

HOMO

LUMO

ELUMO –EHOMO = 1.65 eV

level is occupied by only one electron and hence the next electron can occupy the same 

orbital.  Thus, 1 2
60 60( )E C C− −∆ → will become zero.  This clearly shows that the electronic 

excitation energy (or level splitting) E∆  changes according to the specific charge state 

transition.  However, neither for C60 nor for 1
60C − , the electrochemical potential can be 

determined from the individual electronic level calculations shown in Figure 1.6.  

Instead, an electrochemical potential needs to be obtained from the total energy 

difference between the two charge states involved, using ( 1)
60 60(C ) (C )N N

N U Uµ − − −= − .  The 

first ionization energy and the electron affinity of a neutral C60 is ~ 7.7 eV[36] and 2.7 

eV[35] each.  By the definition of an ionization energy and electron affinity, these 

correspond to, 

 
1

0 60 60
1

1 60 60

(C ) (C ) 7.7 eV (ionization energy)

(C ) (C ) 2.7 eV (electron affinity)

U U

U U

µ

µ

+

−

= − ≈ −

= − ≈ −
 (1.5) 

Here the reference energy is the energy of a free electron infinitely away from the C60 

molecule.  The electrochemical potential (Fermi energy) of gold is about –5 eV[37].  

Therefore, if we assume that electron transport is allowed between a C60 molecule and a 

gold electrode located far away from C60, electrons will be transferred to C60 until it 
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reaches the neutral charge state, and then the charge transfer will stop because 

1 0goldµ µ µ> > .  The energy diagram of this case is shown in Figure 1.7(a). 

The difference between the two C60 electrochemical potentials in equation (1.5) is 

5.0 eV.  According to the SET theory discussed in the previous section, it comprises two 

parts, the charging energy EC and the electronic level splitting E∆ .  Since 
1

60 60(C C )E −∆ → = 1.65 eV (the HOMO-LUMO gap of C60), it leaves approximately 3.3 

eV for EC.  In comparison, the charging energy ( 2
0/ 4e Rπε ) of a metal sphere with a 

radius (R) of 4 Å (the outer radius of C60) is roughly 3.6 eV, which is in good agreement 

with the value obtained above.  From the electronic structure of 1
60C − , we previously 

inferred 1 2
60 60(C C )E − −∆ → = 0, and hence we expect that 2 1

2 60 60(C ) (C )U Uµ − −= −  is larger 

than 1µ  only by EC.  The calculated electron affinity of 1
60C −  is -0.2 eV[35], corresponding 

to 2 0.2 eVµ ≈ .  This value is larger than 1 -2.7 eVµ ≈  by 2.9 eV, which gives another 

estimate for EC.  It is 12 % smaller than the previous estimate 3.3 eV, but the model 

seems to work reasonably well considering its simplicity. 

-5eVAuµ =

Au

(a) (b)

1 -2.7eVµ =

0 -7.7eVµ =

Au

C60

r = ∞ Au Au

CE E+ ∆

Au Au

Figure 1.7 The electrochemical potential of C60 in different charge states.  (a) When C60 is located far 
away from gold, the electrochemical potential for its neutral charge state is below the Fermi level of 
gold.  (b) When C60 is located near gold electrodes, the energy spacing between neighboring 
electrochemical potentials becomes smaller due to the molecule-electrode interaction.  The stable 
charge state of C60 is not necessarily neutral in this case. 

Nµ
1Nµ −

1Nµ +

2Nµ +
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The energy landscape described above is for a C60 located far from gold 

electrodes.  As C60 moves closer to the electrodes, its electrochemical potentials will be 

modified due to the electron-electron interaction between C60 and gold.  Most 

importantly, the presence of gold near C60 will increase the total capacitance, leading to a 

smaller charging energy.  The lower bound on the charging energy in this case can be 

obtained using the capacitance ( ( )0 1 24 / 1/ 1/r rπε − ) of two metallic shells, whose radii 

are r1 and r2, respectively.  The inner shell represents C60, while the outer shell represents 

the gold electrodes.  When r1 is 4 Å and the second shell is 10 Å apart (r2 = 14 Å), the 

charging energy is calculated to be 2.6 eV, 1 eV smaller than the charging energy of a 

single metallic shell, 3.6 eV.  As the second shell moves much closer to the inner shell (r2 

= 5 Å), the charging energy further decreases to 0.7 eV.   

These estimates can be even smaller when one uses high dielectric constant when 

estimating the total capacitance.  Indeed, a similar mechanism affects the electrochemical 

redox-potential measurements of C60 when it is performed in a high dielectric medium.  

The spacing between adjacent redox potentials, which corresponds to µ∆ , decreases 

significantly in such measurements[35] because the high dielectric constant diminishes 

the charging energy.   

Therefore, the energy diagram of C60 with gold electrodes nearby (Figure 1.7(b)) 

will be different from the one shown in Figure 1.7(a).  The spacing between chemical 

potentials is smaller and each chemical potential will shift accordingly.  As a result, the 

stable charge state of C60 is not necessarily neutral in this case.  In fact, several 

experiments suggest that C60 can be in its (1-) charge state when it is deposited on a gold 

surface[38]. 

This C60 example teaches us that the energy landscape of a single molecule device 

cannot be inferred directly from a calculated or measured molecular electronic structure 

for a certain charge state.  One needs to compare various electrochemical potentials, 

which can be obtained from electron affinity or ionization energies measured for an 

isolated molecule.  To get a correct picture, one should also take into account the 

interactions between the molecule and the surrounding environment, especially the metal 

electrodes.  However, very useful information can be still obtained from the electronic 

structure of an isolated molecule.  One example is the HOMO-LUMO gap.  When the 
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molecule shows a large HOMO-LUMO gap (let’s say, larger than 5 eV) for its neutral 

charge state, one can expect a very low conductance from the molecule since the 

electrode Fermi level will be most likely located within the gap.  This behavior will not 

change even when the charging energy becomes smaller due to the molecule-electrode 

interaction.  Such interaction changes only EC strongly, but not E∆ .  

 

1.5 Examples of Single Molecule Devices 
In this section, we discuss transport properties of several single molecule devices.  

These examples will show us how the general description developed in previous sections 

can be used in real single molecule devices.  Each example will also bring up different 

aspects of electron transport in single molecule devices.  

 

(1) Electron tunneling in alkanedithiol 

The monolayer of alkanedithiol, HS-(CH2)n-SH (Figure 1.8(a)) is a well-known 

insulator and its insulating behavior is caused by its large HOMO-LUMO gap (~ 9 eV for 

decanedithiol[39]).  Regarding the contact, alkanedithiol strongly binds to gold thanks to 

a strong S-Au bond (binding energy ~ 2 eV[9]).  Recently, Cui et al.[40] successfully 

measured the resistance of a single octanedithiol (HS-(CH2)8-SH) molecule using a gold 

coated AFM tip as one of the electrodes.  The measured resistance is 900 ± 50 M Ω , a 

large resistance for such a short molecule (~ 1 nm).  This large resistance is consistent 

with its energy landscape (Figure 1.8(a)).  Due to the large HOMO-LUMO gap, there is 

no available charge state (or its electrochemical potential) near the Fermi level of the 

electrodes.  Therefore, the main conduction mechanism in this molecular junction is a 

direct electron tunneling between the source and drain electrodes.   

 

 (2) Single electron tunneling in [Co(tpy-(CH2)5-SH)2]2+ 

Unlike alkanedithiols, this molecule with a single cobalt atom (Figure 1.8(b)) has 

an electrochemical potential 3+ 2+(Co Co )µ →  near the Fermi level ( D,  Sµ µ ) of gold 

electrodes.  The additional electron that is added to the molecule at its (3+) charge state 

is, however, highly localized near the cobalt atom at the center of the molecule, and 

hence it needs to tunnel from one of the electrodes to the cobalt ion.  3+ 2+(Co Co )µ →  
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(a) alkanedithiol
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Gate

(b) [Co(tpy-(CH2)5-SH)2]

Figure 1.8 Examples of single molecule devices.  (a) Electron transport in a gold/alkanedithiol/gold 
junction.  Due to a large HOMO-LUMO gap of alkanedithiol, the main transport mechanism is a direct 
tunneling between the two gold electrodes.  (b) A [Co(tpy-(CH2)5-SH)2] molecule has an 
electrochemical potential corresponding to the Co3+/Co2+ charge transition near the Fermi level of gold 
electrodes.  This allows the sequential tunneling process as the main electron transport mechanism in 
this device.  (c) A single-walled carbon nanotube device.  A nanotube behaves like a good electrical 
wire when the contacts are good, but it shows the SET behavior when the contacts are poor.

(c)
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S D
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can be aligned closer to D,  Sµ µ  by applying a gate potential, and then a relatively large  

electric current will flow at a small bias voltage.  As explained in sections 1.2 and 1.3, the 

conduction mechanism in such case is sequential tunneling.  An electron tunnels onto the 
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molecule and then leaves to the other electrode, and then the next electron can tunnel 

onto the molecule.  The overall conductance of a device made from [Co(tpy-(CH2)5-

SH)2] molecule is, therefore, mainly decided by the tunnel resistances adding ohmically.  

Since the cobalt ion is separated from the electrodes by a five-carbon alkyl-chain, the 

tunnel resistance will be large. 

However, a much higher conductance is expected from a similar molecule 

[Co(tpy-SH)2], which differs from [Co(tpy-(CH2)5-SH)2] by an omission of the alkyl-

chain at either ends.  Obviously, the tunneling barrier between electrodes and the cobalt 

ion is much narrower than before and this leads to the higher conductance of this shorter 

molecule.  From this example, we not only see how an insertion of a certain (electrically 

active) metal ion to a molecule can change the overall conductance dramatically, but we 

also understand how the conductance can be changed by modifying the insulating 

(electrically inactive) parts of the molecule.  Electron transport in these molecules will be 

discussed in Chapter 6 in greater detail.   

In the previous two examples, the contact was made by the strong S-Au bonding.  

This serves as a very good mechanical and chemical bonding for a single molecule 

device, which leads to a good electrical contact, too.  If the thiol end group (-SH) is 

replaced by another end group (for example, -CH3), it does not form a stable bond to gold 

any more and the conductance is predicted to change according to the exact placement of 

the end group relative to gold[40].  

 

(3) Contact effects in carbon nanotubes 

The importance of the contact between a molecule and macroscopic electrodes is 

well illustrated by different transport behaviors observed from the single carbon nanotube 

devices (Figure 1.8(c)).  For simplicity, we will limit our discussion to a metallic carbon 

nanotube only.  When the contacts between a carbon nanotube and electrodes are poor, it 

forms a tunnel barrier at either contacts and electrons need to tunnel through them to 

reach the nanotube.  Therefore, the conductance will be low in this case.  The nanotube 

behaves as an electron box, over which electrons can be delocalized.  Due to the charging 

energy and electronic level quantization, the conductance of a nanotube device measured 
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at cryogenic temperatures shows characteristic behaviors of an SET, including Coulomb 

oscillations introduced in section 1.3[30, 31]. 

In contrast, transport measurements on a nanotube device display completely 

different behaviors when the contacts are good.  With good contacts, the nanotube 

behaves as a good electronic wire and it becomes a ballistic conductor.  The Coulomb 

oscillation disappears and the overall conductance increases significantly, almost 

approaching the theoretical maximum value, 24 / 155 Se h µ≈ .  Low temperature 

measurements further revealed the interference effect between propagating electron 

waves[20] (the Fabry-Perot resonator). 

This example clearly shows that the transition from the high resistance regime 

(sequential tunneling) to the low resistance regime (ballistic conductor) in nanotube 

devices is dictated by the property of the contacts.  Even though a reproducible way for 

controlling the contact is still not known for most single molecule devices, understanding 

the nature of contacts is critical for finding the correct picture for the electron transport 

mechanism in a specific single molecule device.  

 

1.6 Summary and Outline 
In this chapter, we reviewed several basic concepts that are necessary for the 

description of electron transport in single molecule devices.  When electric current flows 

through a single molecule, the conductance is mainly decided by the quantized electronic 

structure of the molecule.  The presence of accessible charge states near the electrode 

Fermi levels can help electron transport through a molecule.  The properties of the 

contact between the molecule and the leads are also important, and they strongly affect 

the overall conductance of a single molecule device.  

 This thesis is organized as followings.  We first discuss the Coulomb blockade 

theory, which describes single electron transport in an SET (Chapter 2).  In particular, we 

will focus on the case where only one or two quantum levels are accessible.  By 

analyzing such cases, we can understand how different parameters of an SET can affect 

the conductance pattern and also how one can extract information about quantum 

excitations from it (transport spectroscopy).  
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In Chapter 3, we will review the experimental issues, focusing on the 

electromigration technique.  The fabrication procedure and the measurement setup will be 

also discussed.  

Chapters 4 through 7 are the main body of this thesis and will describe the 

experimental results on various molecules.  In Chapter 4, we study the conductance of 

single C60 transistors.  The bouncing ball mode of C60 was observed in these devices and 

we will describe a theoretical model for a vibrating dot.  In Chapter 5, excited levels that 

correspond to an internal vibration of C140 will be discussed and the results will be 

compared with the case of C70.  In Chapter 6, we study two similar molecules with a 

cobalt atom at the center.  They show different conductance behaviors depending on the 

length, the longer one showing Coulomb blockade and the shorter one showing the 

Kondo effect.   

In Chapter 7, we will steer our discussion to a much longer molecule, a carbon 

nanotube. We study the conductance of a single-walled carbon nanotube (SWNT) in two 

different temperature regimes.  The low temperature study shows the SET behavior of a 

semiconducting SWNT in both p- and n-doped regime, while the contact effect causes a 

double dot configuration in the n-doped regime.  Then a room temperature study using an 

electrolyte gate will be presented.  The highly-efficient electrolyte gating is used to study 

the field effect transistor behavior of semiconducting SWNTs.   

Finally, Chapter 8 will summarize the results along with the future directions. 



Chapter 2 

The Coulomb Blockade Theory 

 
2.1 Overview 

Basic concepts of the single electron transistor (SET) theory, which is also known 

as the Coulomb Blockade theory, were introduced in Chapter 1.  In this chapter, we 

continue our study on this theory to further details.  We first modify the energy landscape 

description of an SET to include the effect of all the capacitive couplings between the dot 

and three electrodes.  Again the charging energy CE  and the excitation energy E∆  cause 

an energy gap in the dot near the Fermi level of the leads, leading to the single electron 

transport phenomena. 

We will then concentrate on the quantum dot regime where E∆  is larger than the 

thermal energy Bk T .  The distinction between a classical dot and a quantum dot will be 

discussed again in the following section.  In the quantum dot regime, electrons tunnel 

through the dot using individual quantum levels and transport measurements on a 

quantum dot provide spectroscopic information on these quantum levels.  In particular, 

we will limit our discussions to the case of a single-level quantum dot (section 2.3) and a 

two-level quantum dot (section 2.4) to elucidate how various SET parameters can be 

related to transport measurements.  

The theory of an SET has been extensively studied in the past and there exist a 

number of review articles on this topic[21-26].  By no means is this chapter intended to 

be a comprehensive overview of this well-studied topic.  Instead, it is written in such a 

way that it can provide basic theoretical tools for analyzing transport data measured from 

an SET.  In the early part of this chapter, we again follow the path used by Kouwenhoven 

et al[26].  The discussions on the few-level quantum dot cases are similar to the one 

found in Bonet et al[41].     

Throughout this chapter, we assume a negative value for the electron charge e (i.e. 

e e= − ). 
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2.2 Basic Concepts of a Single Electron Transistor 
Figure 2.1 describes the configuration of a single electron transistor with all the 

important parameters.  A small dot is surrounded by three electrodes - the source, drain 

and gate electrode.  The dot is capacitively coupled to all three electrodes; a potential 

change in any electrode will modify the electrostatic potential of the dot.  The dot is also 

tunnel coupled to the source and drain electrodes, allowing electrons to move between the 

dot and either of these two electrodes.  Therefore, electric current can flow between the 

source and the drain by electrons tunneling on and off the dot. 

The electrochemical potential Nµ  of a dot with N electrons was previously 

obtained in Chapter 1 from the energy difference between the total energy ( )U N  for the 

N electron state and ( 1)U N −  for the N-1 electron state (equation (1.2)).  In this 

calculation, the effect of individual electrode potentials was not included in the 

estimation of the total energy, and the electrochemical potential in equation (1.2) thus 

does not depend on any electrode potential.  Once we include such effects in the 

calculation of ( )U N  for all different charge states, the electrochemical potential Nµ  

changes to the following[26]: 

 2( ) ( 1) ( 1/ 2) /N N total dotU N U N E N e C eVµ ≡ − − = + − + . (2.1) 

Figure 2.1 A schematic of a single electron transistor and its parameters.
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Now there is a new term doteV  in the equation that describes the effect of capacitive 

couplings with individual electrodes.  Here dotV  is a function of the gate bias GV  and the 

source bias V, which is described by the following equation. 

 
, ,

1 S G
dot i i G

i S D Gtotal total total

C CV CV V V
C C C=

= = +∑  (2.2) 

In the last step, a term related to the drain electrode is dropped because it is grounded in 

the diagram shown in Figure 2.1 (VD = 0).  In fact, the drain electrode is always kept 

grounded in all experiments discussed in this thesis.  The results that are derived using 

(2.2), therefore, are consistent with experimental conditions.  In (2.1) and (2.2), totalC  is 

the sum of all three capacitances, total S D GC C C C= + + . 

 Since dotV  does not depend on the number of electrons on the dot N, the charge 

addition energy CE E+ ∆  does not change in this case.  However, the position of Nµ  

relative to the electrode Fermi levels Sµ , Dµ  changes according to V and GV .  Therefore, 

one can control the electrochemical potential of a dot for an arbitrary charge state by 

changing the bias voltage V and/or the gate voltage GV .  Using (2.1) and (2.2), we can 

calculate how much change in Nµ  is expected for a certain  and GV V∆ ∆ . 

 / S G
N G

total total

C Ce V V
C C

µ∆ = ∆ + ∆  (2.3) 

As we can clearly see from (2.3), the efficiency of an electrode potential in controlling 

Nµ  is proportional to the ratio between the electrode capacitance and the total 

capacitance. 

As explained in Chapter 1, the number of electrons on the dot (N) is decided by 

the maximum N whose electrochemical potential Nµ  is below Sµ  and Dµ .  When 1Nµ +  

is above Sµ  and Dµ , the (N+1)-th charge state is not accessible and hence the current 

does not flow.  This current blockade is caused by a large charge addition energy 

CE E+ ∆ , which is equal to the difference between Nµ  and 1Nµ + .  On the contrary, when 

1Nµ +  is located between Sµ  and Dµ , the charge state of the dot oscillates between N and 

N+1, allowing electric current to flow by the sequential electron tunneling process.  This 



 
                                                 The Coulomb Blockade Theory  21 

 
 

alternating conductance behavior leads to the Coulomb oscillation curve shown in Figure 

1.4(c). 

As mentioned earlier (equation (1.3)), such single electron transport behavior can 

be observed only when the charge addition energy CE E+ ∆  is significantly larger than 

the thermal energy Bk T .  The charging energy CE  increases as a dot becomes smaller, 

and the value of CE  can be roughly estimated from the size of the dot.  For example, CE  

of a metal sphere with a radius R is 2
0/(4 )e Rπε  using 04C Rπε= .  For a metal sphere 

with 1 µm radius, this becomes 1.44 meV, which is fairly small and can be important 

only at cryogenic temperatures.  CE  increases to 144 meV if R = 10 nm, which is large 

enough to be observable even at room temperatures ( Bk T = 25.9 meV at 300K).  

However, these values provide an upper bound of the real charging energy, since the total 

capacitance C will be always larger than 04 Rπε  due to the additional capacitance 

between the dot and the electrodes.  For example, the total capacitance for the same 

sphere (R = 10 nm) surrounded by a spherical shell (R = 11 nm) is 11 times larger than 

the capacitance of the sphere alone.  This will reduce the charging energy to 13 meV.  

Therefore, one should take into account not only the size of a dot, but also the local 

electrostatic environment when estimating the charging energy. 

The other constituent of the charge addition energy is the electronic excitation 

energy E∆ , which also increases as the dot becomes smaller.  In general, the 

characteristic energy scale of E∆  is 2 2 2/ mRπ h [26].  E∆  also depends on N, but the 

quantitative relation between the two varies depending on the dimensionality of the 

dot[26].  For example, E∆  of a 100 nm 2D dot (GaAs/AlGaAs heterostructure) is ~30 

µeV, which is large enough to be observable below 100 mK.  In comparison, similar E∆  

can be expected for a 3D metallic cluster near its Fermi level only at a much smaller size, 

R ~ 5 nm.   

Depending on whether E∆  is larger than Bk T  or not, a single electron transistor 

has different names.  When E∆ < Bk T , it is called a “classical dot”, and when E∆ > Bk T , 

a “quantum dot”.  The distinction between these two cases is necessary because the 

theoretical description for one regime is somewhat different from the other.  In the 
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classical dot regime, a tunneling electron can access what is in effect a continuum of 

excited states of the dot, and the overall conductance can be described by the tunneling 

rates averaged over many electronic levels.  On the contrary, in the quantum dot regime, 

D

Figure 2.2 (a) The summary of various energies of a single electron transistor with an energy diagram.  
(b) The energy regime (quantum dot regime) associated with the model.
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each quantum state of the dot can be identified and specific tunneling rates are assigned 

to each quantum state.    

Single molecules, the main subject of this thesis, fall in the category of the 

quantum dot, especially at cryogenic temperatures.  The charge addition energy of a 

molecule is typically on the order of eV and the excitation energy is also much larger 

than Bk T  at liquid helium temperatures ( Bk T = 0.36 meV at 4.2 K).  The electronic 

structure of a C60 molecule discussed in Chapter 1 (section 1.4) is a good example.  It is 

interesting to note that many molecules have not only a stable charge state but also a 

certain electronic ground state at room temperature, because both the charge addition 

energy and the electronic excitation energy are large.  

In a single electron transistor, tunnel barriers separate the dot from the source and 

drain electrodes.  In the quantum dot regime the rate of electron tunneling between the 

dot and the source or drain electrode is represented by the tunneling rates SΓ  and DΓ .  In 

general, these rates can be different for each quantum level of the dot.  They are defined 

as the number of electrons that tunnel through one of the tunnel barriers per unit time.  

Thus the unit of SΓ  and DΓ  is s-1 or Hz.  If one of them is much larger than the other (for 

example, SΓ >> DΓ ), the current flowing through the device when it is turned on will 

become De Γ .  In real experiments, the current flowing through a single quantum level 

of a quantum dot is usually less than 1nA, which is equivalent to approximately 6 GHz 

for Γ’s.  The general relation between Γ’s and the current in the device’s on-state can be 

decided by solving the rate equations, which will be described in the next section.   

For reference purposes, definitions of various different energies introduced in the 

SET theory are summarized in Figure 2.2(a) with an energy diagram.  In the next section, 

we concentrate on the single-level quantum dot regime.  The assumptions for this regime 

are summarized in Figure 2.2(b). 

 

2.3 Single-Level Quantum Dots 

So far we introduced three energy scales; the charging energy CE , the thermal 

energy Bk T , and the quantum excitation energy E∆ .  In order to understand the electron 
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transport properties of a single electron transistor, it is necessary to develop a theoretical 

model that is valid within a specific energy range.  From this point, we will assume CE  >  

Bk T  and E∆  > Bk T  (the quantum dot regime).  We also assume that CE  and E∆  are 

large enough that only one additional charge state (N+1) is accessible and that no 

quantum excited states are accessible for the quantum dot.  Therefore, we will be dealing 

with only two charge states (N and N+1) in their own ground states.  

If the electrochemical potential of the N+1 electron state ( 1Nµ + ) when V = GV  = 0 

is defined as 0E , 1Nµ +  can be written as the following. 

 1 0N dotE eVµ + = +  (2.4) 

For convenience, we also define Dµ = 0 from now on.     

In Figure 2.3, energy diagrams of a quantum dot with 0E  > 0 and V ~ 0 (i.e. 

Dµ ~ Sµ ) is illustrated.  When GV  = 0 (case A), the quantum dot is always in its N 

electron state because 1Nµ +  is above the Fermi level of both source and drain electrodes 

( 1Nµ + > Dµ ~ Sµ ).  The current will not flow in this case.  When 0| | ( / )G total Ge V E C C>  

(case C), electric current is blocked again because the N+1 electron state is always 

occupied.  Electron transport is allowed only when 0| | ~ ( / )G total Ge V E C C  (case B), where 

1Nµ +  is aligned with the source and drain electrodes.  In this case, an electron can jump 

Figure 2.3 The energy diagrams of a quantum dot with a single level.  Initially the level is empty (case 
A).  As the gate voltage increases the level becomes occupied sometimes (case B) and finally gets 
completely occupied (case C).  The current flows only in case B because the dot can change the charge 
states freely. 
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Figure 2.4 The Coulomb oscillation.  The low bias conductance (|e|V < kBT) measured as a function of 
the gate voltage will show a peak (Coulomb oscillation) that corresponds to the charge degeneracy of 
case B in Figure 2.4.

VC

between the dot and the source or drain electrode freely.  We define the crossing potential 

CV , where electric current is allowed at low bias.  

 0 total
C

G

E CV
e C

=  (2.5) 

By monitoring the current that flows through the device with a small bias voltage 

δV < Bk T  applied, we can measure the conductance of the device as a function of the 

gate voltage GV .  The resulting low-bias conductance curve will look like the Figure 2.4.  

As explained above, the conductance will be zero below and above the crossing potential, 

CV .  It will show a sharp peak only near at GV  = CV .  The peak height and the shape of 

this curve can be calculated by solving the rate equation, which will be described in this 

section. 

As we already discussed in Chapter 1, the conductance peak in Figure 2.4 is 

called the Coulomb oscillation.  At GV  = CV , the two charge states N and N+1 of the 

quantum dot have the same energy, hence an electron can hop on and off the dot freely.  

This charge degeneracy of the quantum dot is the origin of the low-bias conductance that 

produces the conductance peak in Figure 2.4.   

Before we move on, let us introduce the final energy scale of this model; the 

intrinsic broadening, γ.  Since the quantum dot is coupled to the source and drain 
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electrodes by tunnel barriers, an electron on the dot can decay to one of the electrodes 

over time.  The lifetime τ of an electron on the dot will be dictated by the two tunnel 

rates, SΓ  and DΓ  and it will be expressed as τ ∼ ( SΓ + DΓ )-1.  By the uncertainty 

principle, τγ ~ h (h is the Planck constant).  Therefore, the intrinsic broadening γ is 

expressed as γ = h( SΓ + DΓ ).  For a quantum dot with ΓS = ΓD = 10 GHz, γ ~ 0.083 meV 

~ 1K.  As this example shows, the intrinsic broadening of a quantum state of a quantum 

dot can be large enough to be measurable at cryogenic temperatures.  For the rest of this 

chapter, we will assume γ << Bk T  to simplify the analysis.  However, in reality one 

should keep in mind that the data could be affected by the intrinsic line broadening.   

 

Solving the rate equations for a one-level quantum dot 

For a quantum dot with one level ( 1Nµ + ), there are only two states available to the 

dot; one with an empty level (state 0; N electron state) and the other with an occupied 

level (state 1; N+1 electron state).  During electron transport measurements, current will 

flow while the quantum dot fluctuates between the two states.  It is a stochastic process 

and therefore should be approached using a statistical method.   

First, we define P0 and P1, the probability that the dot is in a specific state.  P0 

corresponds to the probability that the dot is in the state 0 (empty dot) and P1 corresponds 

to the state 1 (occupied dot).  For a certain set of conditions (bias voltages and 

temperature, etc.), the time change rate of P0 and P1 can be readily written as the 

following.  

 0
0 1( ) ( (1 ) (1 ))S S D D S S D D

P P f f P f f
t

∂
= − Γ + Γ + Γ − + Γ −

∂
 (2.6) 

 01
0 1( ) ( (1 ) (1 ))S S D D S S D D

PP P f f P f f
t t

∂∂
= Γ + Γ − Γ − + Γ − = −

∂ ∂
 (2.7) 

These are called the rate equations.  They can be written in a matrix form as 

 00 110 0

00 111 1

/
/

a aP t P
a aP t P

−∂ ∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟−∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

. (2.8) 

The rate equation in a matrix form is useful when we solve quantum dots with multiple 

states. 
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In (2.6) and (2.7), fS and fD are the Fermi functions calculated at 1Nµ +  for the 

source and drain electrodes, and they will depend on such parameters as temperature, 

source-drain bias, gate bias and all the capacitances.  The complete form of fS and fD is as 

follows. 

 

( )
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µ µ µ
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− −
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− ++
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 (2.9) 

Then the electric current flowing from the source electrode to the drain electrode 

in equilibrium can be obtained by setting 0 1 0P P
t t

∂ ∂= =∂ ∂ .  Using P1 = 1 - P0, we can 

solve (2.6) for P0 to get, 

 0
(1 ) (1 )S S D D

S D

f fP Γ − + Γ −
=

Γ + Γ
. (2.10) 

Finally, the electric current I will be, 

 0 1 (1 ) ( ) ( )S D
S S S S D S D S

S D

I P f P f f f f f
e

Γ Γ
= − Γ + Γ − = − ≡ Γ −

Γ + Γ
. (2.11) 

The final equation (2.11) is rather simple and has two major parts.  Γ decides the 

maximum current amplitude, while D Sf f− decides whether the current will flow or not.  

At low temperatures, the value of Df  and Sf  is either 0 or 1 in most cases.  The current is 

zero when they have the same value and will become non-zero when they have different 

values.  Therefore, the conducting case corresponds to those regions where the 

electrochemical potential of the N+1 electron state 1Nµ +  is located between the Fermi 

levels of the source ( Sµ ) and the drain ( Dµ ) electrodes.  Figure 2.5 plots Df , Sf  and 

D Sf f−  as a function of V and GV  along with energy diagrams of the quantum dot for 

each case.  It clearly shows that the current is allowed only when the quantum dot level is 

located between the two Fermi levels of the electrodes.  
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Figure 2.5 The values of the Fermi functions.  These values are calculated using the 
equations in the text.  The conditions are the following.  T = 1.5 K, E0 = 0 (VC = 0), 
CD:CS:CG = 38:57:5 
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Figure 2.6(a) plots the calculated current (I) as a function of V and VG and Figure 

2.6(b) shows calculated I-V curves at different gate voltages.  Each curve in Figure 2.6(b) 

shows a non-conducting region up to a certain bias and then starts conducting with a 

current e± Γ .  This suppression of conductance at low biases is a direct result of the 
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charge addition energy and it is called the Coulomb blockade.  The width of the Coulomb 

blockade changes according to GV  and becomes zero at GV  = CV .  The Coulomb 

blockade is a signature behavior of single electron transistors together with the Coulomb 

oscillation that we already encountered.  
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Figure 2.6 The Coulomb blockade.  (a) The current (I) calculated using the 
parameters in Figure 2.5 with ΓS = ΓD = 10 GHz.  The number of electrons on the dot 
is shown in each blockade region.  (b) Five I-V curves taken at different VG’s.  They 
show a conductance suppressed region near zero bias followed by a current step 
(Coulomb blockade).  (c) dI/dV as a function of V.  They show peaks corresponding to 
the current steps in (b).
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In Figure 2.6(c), we also plot the differential conductance dI/dV, as a function of 

V for different gate voltages.  Each dI/dV-V curve shows a peak near each current step 

present in the corresponding I-V curve.  A dI/dV-V-VG map calculated for the same 

parameters is shown in Figure 2.7.  The analytical form of the differential conductance 

dI/dV can be obtained by differentiating (2.11) in V.   

( ) ( ) ( )
2

1

1

1 1D S N S S D G
D D S S

N B total total

f f f C C CdI ee f f f f
dV V V k T C C

µ
µ

+

+

∂ −⎛ ⎞ ⎛ ⎞∂ ∂ +Γ
= Γ − = − + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠

 (2.12) 

Since both Df  and Sf  are either 0 or 1 for most cases at low temperatures, dI/dV 

Figure 2.7 Color scale plot of the differential conductance as a function of V and VG.  
It shows two dI/dV lines, each corresponding to the current steps in Figure 2.6 (b).  
These lines also signify the event of the quantum dot level (µN+1) aligning to the Fermi 
level of either the source (positive slope) or the drain (negative slope) electrode.  It is 
calculated for a quantum dot with the same parameters used in Figure 2.5 and 2.6.
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is zero for most cases.  The first term of the right side of (2.12) will be non-zero when the 

value of Df  is between 0 and 1, which corresponds to the case where 1Nµ +  is aligned to 

Dµ , the Fermi level of the drain electrode.  Likewise, the second term of the right side of 

(2.12) will be non-zero only when the value of Sf  is between 0 and 1, corresponding to 

the case where 1Nµ +  is aligned to Sµ , the Fermi level of the source electrode.  

Equivalently, the non-zero region in Figure 2.7 signifies an event that the electron energy 

level of the quantum dot ( 1Nµ + ) is aligned to one of the Fermi levels of the source and the 

drain electrodes.  Therefore, we can measure 1Nµ +  by measuring dI/dV of a single 

electron transistor while changing the Fermi levels of the electrodes by varying V and GV .  

This is the first example of the transport spectroscopy in a quantum dot.  We shall see 

more examples in the following sections.  

To better understand this important subject, let’s figure out the condition for the 

level alignment between the quantum dot level and the source electrode ( 1Nµ + = Sµ ).  By 

using (2.2), (2.4) and (2.5), we can rewrite this equality as follows.  

 ( ) ( )( )1 0 / /N S G G total S G C G total SE e VC V C C e VC V V C C eVµ µ+ = + + = + − = =  (2.13) 

We solve this for V to get,  

 ( ) ( )G G
G C G C

total S G D

C CV V V V V
C C C C

= − = −
− +

  (aligned to source). (2.14) 

Similarly, the alignment condition between the quantum dot and the drain electrode is,  

 ( )G
G C

S

CV V V
C

= − −   (aligned to drain). (2.15) 

(2.14) and (2.15) show that the non-zero region in a dI/dV-V-VG plot will form a 

line with a slope that corresponds to a capacitance ratio.  For example, the alignment 

between the quantum dot and the source will be represented by a dI/dV line with a slope 

/( )G G DC C C+  that crosses V = 0 at GV = CV .  Therefore, we can obtain information about 

the capacitance ratio among the three capacitances by measuring the slopes of dI/dV lines 

in a dI/dV-V-VG plot.  One can notice that the absolute value of the slopes are different in 

(2.14) and (2.15) even when CS = CD.  It happened because we earlier introduced an 
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asymmetry to the system by grounding the drain electrode.  These results are summarized 

in Figure 2.7.  

 

The Coulomb oscillation curve and its temperature dependence 

We earlier discussed the conductance of a quantum dot as a function of GV  at low 

biases (Figure 2.4).  It conducts when GV ~ CV , but the conductance will be zero, 

otherwise.  Using (2.12), we can obtain the analytic form of the dI/dV-VG curve at V = 0.  

The equation (2.12) simplifies significantly since Sf = Df  in this case.  

Figure 2.8 (a) Temperature dependence of the Coulomb oscillation peak.  (b) The 
peak height decreases with an increasing temperature.  (c) The peak width increases 
linearly with the temperature.  The same parameters as in Figure 2.5 were used and ΓS
= ΓD = 1 GHz.
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4 2

G C
D D

V B B B

e V VdI e ef f
dV k T k T k T

α
−

=

⎛ − ⎞Γ Γ
= − = ⎜ ⎟

⎝ ⎠
 (2.16) 

We used /G totalC Cα ≡ , the gate efficiency factor in the exponent of the right side.  In 

Figure 2.8, we plot (2.16) as a function of GV  for a set of parameters.  It has a peak 

centered at GV = CV , and the peak height is 2 / 4 Be k TΓ .  The full width at the half 

maximum (FWHM) of the peak is 3.525 /Bk T e α .  This plot gives a quantitative 

description for the analysis we performed earlier.   

The temperature dependence of a Coulomb oscillation peak is one of the signature 

behaviors of a quantum dot as opposed to a classical dot.  As we can see in (2.16) and 

Figure 2.8, the height of a Coulomb oscillation peak is proportional to 1/T and its width is 

linearly proportional to T.  Unlike these, a classical dot shows a peak whose height does 

not change with increasing temperatures.  

This temperature dependence of a Coulomb oscillation peak can be used for 

measuring quantum dot parameters, such as T, γ, α or CV .  In real experiments, however, 

the temperature dependence of a Coulomb oscillation peak often shows a deviation from 

the theoretical 1/T dependence.  It occurs for mainly two reasons.  First, the electrons in 

the device might not be as cold as the cryostat thermometer indicates.  Due to electrical 

noise in the leads or a poor coupling between electrons and phonons in the sample, the 

electron temperature is often higher than the cryostat temperature.  A second possibility is 

the intrinsic line width γ of the quantum dot level.  Once the temperature gets comparable 

to γ ( Bk T ~ γ), the Coulomb oscillation peak does not get any narrower and additional 

cooling does not affect the shape of the peak.  Therefore, by measuring the temperature 

dependence of the Coulomb oscillation peak, we can measure the electron temperature or 

the intrinsic level broadening.  It is usually difficult to determine which is to blame when 

additional cooling does not change the peak, especially at very low temperatures (T < 100 

mK). 

We can also measure α, the gate efficiency from the width of a Coulomb 

oscillation peak using the following formula.   
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 3.525 Bk TFWHM
e α

=  (2.17) 

The width should be measured within the temperature range where the Coulomb 

oscillation peak follows the 1/T dependence.  α can also be independently measured from 

the slopes of dI/dV lines in a dI/dV-V-VG plot using (2.14) and (2.15).  

 

A quantum dot with multiple charge states: The Coulomb diamond 

So far we have dealt with a quantum dot with only two charge states (N and N+1).  

However, many quantum dots can be occupied by more than one additional electron and 

show multiple Coulomb oscillations, each of them corresponding to a different charge 

degeneracy.  Studying the Coulomb blockade behavior in different charge states of a 

quantum dot (or so called an artificial atom) produces a variety of interesting results, such 

as the observation of Hund’s rule in a side-gated vertical quantum dot[42].    

Electron transport through different charge states of a quantum dot can be also 

calculated using the rate equations.  Unlike the case with only two charge states, now 

there are more than two states for the quantum dot and we need to solve the rate 

equations for P0, P1, …, Pn (n is the maximum number of additional electrons that can be 

added to the dot).  It is too cumbersome a task to put down the general equations and 

solve them in this thesis.  Rather, let’s see the results for a quantum dot with only three 

accessible charge states.  

Figure 2.9 is the dI/dV-V-VG plot for three different charge states of a quantum 

dot, which we will call 0, 1- and 2- states (corresponding to the N, N+1 and N+2 electron 

state, respectively).  There are two Coulomb oscillation peaks, one for the charge 

degeneracy between 0 and 1- charge states (at GV = 1CV ) and the other for 1- and 2- states 

(at GV = 2CV ).  There is one pair of dI/dV lines that cross each charge degeneracy point.  

For example, the lines crossing V = 0 at GV = 1CV  correspond to the configurations where 

the electrochemical potential of the (1-) state ( 1Nµ + ), is aligned to the Fermi level of 

either source or drain electrode.  The slopes of corresponding dI/dV lines for different 

charge states are usually the same since the capacitances rarely change between different 

charge transitions.  However, the intensity of dI/dV lines can differ for different charge 
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states due to variations in Γ.  The Coulomb blockade region between the two degeneracy 

points looks like a diamond, which is why it is called the Coulomb diamond.   

One important parameter we can measure from Figure 2.9 is the charge addition 

energy CE E+ ∆ .  The point A in Figure 2.9(a) denotes a crossing point between two 

dI/dV lines, one for the source alignment of the (1-) charge state and the other for the 

drain alignment of (2-) charge state.  The energy diagram clearly shows that the bias at 

the crossing point A is equal to the difference between the two chemical potentials 1Nµ +   

Figure 2.9 A quantum dot with multiple charge states.  (a) The diamond plot
calculated for T = 5 K, E01 = 0 (VC1 = 0), E02 = 50 meV (VC2 = 1 V), CD:CS:CG = 
38:57:5 (α = 0.05), ΓS1 = ΓD1 = 10 GHz, ΓS2 = ΓD2 = 5 GHz.  (b) Multiple Coulomb 
oscillation peaks are expected from the same quantum dot.
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and 2Nµ + , which is equal to the charge addition energy.   

 2cross C NeV E E += + ∆  (2.18) 

If there is an independent estimate of the level spacing 2NE +∆ , we can measure the 

charging energy CE  using (2.18). 

The method we described above is a general way to measure an energy difference 

between two states.  A dI/dV line with a positive slope corresponds to a case where a state 

(different quantum excited levels, different charge states, etc.) is aligned to the Fermi 

level of the source electrode, whereas the crossing dI/dV line with a negative slope 

corresponds to a case where another state is aligned to the Fermi level of the drain 

electrode.  Therefore, the bias at the crossing point corresponds to the energy difference 

between the two states, regardless of the origin of these states. 

 

2.4 Quantum Dots with Excited Levels 
All the quantum dots we encounter in real experiments come with more than one 

quantum state.  There is also intrinsic degeneracy of the ground state (e.g. spin 

degeneracy) that requires a theory that can handle more than just one state.  As we shall 

see in later chapters, most electron transport measurements in single molecule quantum 

dots show interesting results that are related to the properties of quantum excitations.  

This is the motivation why we would like to understand how excited levels affect electron 

transport in quantum dots.   

The rate equations introduced in the previous section can be readily modified for 

a quantum dot with more than one level to explain the behaviors that are expected from 

the excited levels.  However, let’s first remind ourselves of the meaning of some basic 

notions before we solve the rate equations. 

 

The energy diagram for excited levels 

In section 2.3, we described the Coulomb blockade theory for a quantum dot with 

one level.  However, there are two states involved in the description of this single level; 

the ground state of the quantum dot without an additional electron (state 0; N electron 

state) and the ground state of the quantum dot with an additional electron (state 1; N+1 
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electron state).  The energy of the quantum dot level, which is equivalent to the 

electrochemical potential 1Nµ + , is therefore the difference between the total energies of 

the two ground states.  

 0
1 ( 1) ( )g g

N U N U Nµ + = + −  (2.19) 

In (2.19), g represents the ground state and the superscript 0 on 1Nµ +  denotes the fact the 

all the relevant states are ground states.   

If the N+1 electron state is in one of its excited states, the corresponding 1Nµ +  will 

be larger, whereas it will be smaller when the N electron state is in its excited state.  The 

energy diagram in Figure 2.10(a) shows all three levels.  1
1Nµ −

+ , the level below 0
1Nµ +  

corresponds to an excited state of the N electron state, and 1
1Nµ +

+ , the level above 0
1Nµ +  

corresponds to an excited state of the N+1 electron state.   

Figure 2.10 A quantum dot with excited levels.  (a) Energy levels (electrochemical 
potentials) associated with excited states of either charge state.  Depending on the 
origin of the excited state it can be located above or below the ground level.  (b) When 
only an excited level is within the bias window, current does not flow because the 
ground level is not available.  The current blocking processes are marked by crossed 
arrows. 
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For the rest of this chapter, we assume that all the tunneling processes involve at 

least one ground state.  The tunneling processes between excited states of the N electron 

state and the N+1 electron state will not be considered.  This assumption is closely related 

to the lifetime (or relaxation time) of excited states and the calculations based on this 

assumption can describe transport data well if the excited-level lifetimes are shorter than 

the electron tunneling time (the inverse of the tunneling frequencies).   

The cases that may cause confusion are illustrated in Figure 2.10(b), where only 
1

1Nµ −
+  or 1

1Nµ +
+  is located between the two Fermi levels of electrodes.  Unlike the case 

where 0
1Nµ +  is located in the bias window, these cases will not sustain any electric 

current.  The reason is the following for the first case where only 1
1Nµ −

+  is located within 

the bias window.  In this energy configuration, an electron can tunnel onto the dot only 

when the N electron state is in its excited state.  If an additional electron tunnels out of 

the dot leaving it in the ground state of the N electron state, an electron cannot jump onto 

the dot any more because it will require 0
1Nµ + , which is above the Fermi level of both 

electrodes.  This current blocking process is marked by a crossed arrow in Figure 2.10(b).  

In short, 0
1Nµ +  is always required to be located within the bias window for a quantum dot 

to conduct.  

 

Solving the rate equations for a two-level quantum dot 

To understand how excited levels affect electron transport properties of a 

quantum dot, let’s study the special case of a quantum dot with only one excited state for 

the N+1 electron state.  In this case the quantum dot has only the ground state for the N 

electron state but it has both the ground and excited state for the N+1 electron state.  As 

in the previous section, we can define P0, 1
gP and 1

eP , where 1 1( )g eP P  is the probability 

that an additional electron is in the ground (excited) state of the N+1 electron state.  Then 

we can set up the rate equations as follows.  
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P P f f f f
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P P f f P f f
t

P P f f P f f
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∂
= − Γ + Γ + Γ + Γ

∂

+ Γ − + Γ − + Γ − + Γ −

∂
= Γ + Γ − Γ − + Γ −

∂
∂

= Γ + Γ − Γ − + Γ −
∂

 (2.20) 

Here the superscripts g and e represent a ground state and an excited state, respectively.  

For simplicity, we assume that the relaxation rate from the excited state to the ground 

state of the N+1 electron dot is zero.  This does not violate the earlier assumption because 

each tunneling process involves at least one ground state (the ground state of the N 

electron state).  However, one should include relaxation terms to develop better 

quantitative models for a real quantum dot.   

By setting 0 1 1 0
g eP P P

t t t
∂ ∂ ∂

= = =
∂ ∂ ∂

 for the equilibrium state, we can solve (2.20) for 

P0 and 1
gP  using 0 1 1 1g eP P P+ + = .  Then the current can be calculated as follows. 
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0 1 11 1
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g g e e g g g e e e
S S S S S S S S

g ge e
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f f f f

f f f f

I P f f P f P f
e

f f f f⎛ ⎞⎛ ⎞⎛ ⎞ +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Γ Γ − Γ +Γ +Γ Γ − Γ Γ

Γ +Γ Γ +Γ − Γ +Γ Γ +Γ

= − Γ + Γ + Γ − + Γ −

− − − −
=

 (2.21) 

The solution is already quite bulky for this simple two-level quantum dot.  As in a 

one-level quantum dot, the current amplitude is decided by ( ), , ,g g e e
D S D Sf f f f , a set of the 

four Fermi functions.  Figure 2.11(a) shows them for different regions of the V-VG map at 

T = 0 K.  There are nine different regions shown in this map and any two regions have 

different sets of values of the Fermi functions.  There are a total of four lines separating 

these regions; two of them cross V = 0 at GV = CV , and the other two at GV = e
CV .  The first 

two lines correspond to an alignment event of the ground level to one of the Fermi levels 

of the electrodes and the second set of lines correspond to the cases where the excited 

level is aligned to electrode Fermi levels.  Substitution of ( ), , ,g g e e
D S D Sf f f f into (2.21) 

produces the I-V-VG map, which is shown in Figure 2.11(b).  It shows that only four out  
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Figure 2.11 Current calculated for a two-level quantum dot. (a) The map of Fermi 
functions in different regions of V-VG.  (b) Current calculated for the two-level 
quantum dot. The number of electrons on the dot is shown in each blockade region.  
The parameters used in this calculation are the same as in Figures 2.5-2.7.  The 
excitation energy for the excited level is 2 meV with the same tunneling rates as for 
the ground level (10 GHz). The temperature is 1.5 K.   

G CV V= e
G CV V=

I

II

III

IV

N N+1

 
of nine regions conduct and in all of those four regions the ground level is located 

between the two electrode Fermi levels.  In regions I and II, where only the ground level 

is located in the bias window, the current amplitude becomes  or I III  = 

( )/g g g g
D S D Se Γ Γ Γ + Γ ≡ ge Γ , the same as (2.11).  The current level is different from ge Γ  
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for regions III and IV where both the ground and excited levels are located within the 

bias window.   
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 (2.22) 

This change in the current level is a direct consequence of the presence of an  
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Figure 2.12 The I-V curves (a) and dI/dV-V curves (b) at different VG’s.  Additional 
current steps and conductance peaks (gray arrows) are observed, which correspond to 
the excited level of the quantum dot.  The conductance curves in (b) are offset by 0.4 
µS for clarity.  Quantum dot parameters are the same as in Figure 2.11.
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Figure 2.13 The differential conductance plot as a function of V and VG for a two-
level quantum dot.  There are two additional dI/dV lines, both representing an 
alignment event between the excited level and one of the electrode Fermi levels.  The 
excitation energy (δE = 2 meV) of the excited level is equal to the bias voltage of the 
intersection between the excited level line and the ground lines (P and Q).  The 
quantum dot parameters are the same as in Figures 2.11 and 2.12. Note that both 
excited level dI/dV lines intersect the ground level lines at VG > VC.
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excited state.  Unlike the case with only the ground level within the bias window, (2.22) 

shows that the current amplitude is different for positive (region III) and negative bias 

(region IV).  The difference in the current amplitude between region I and III (or between 

region II and IV) will be represented by a current step in an I-V curve taken at a fixed 

gate voltage and by a dI/dV peak in dI/dV-V curve (Figure 2.12).  Therefore, the dI/dV-V-

VG map will show a line along the boundary between regions I and III (also between 

regions II and IV).  Since that boundary corresponds to the excited level aligned to the 

Fermi level of the drain (or source for the boundary between II and IV) electrode, these 

dI/dV lines enable us to measure the excitation energy ( 1) ( 1)e gE U N U Nδ = + − +  
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associated with the excited state.  For example, the point P in Figure 2.13 corresponds to 

the energy configuration where the ground level is aligned to the source Fermi level and 

the excited level to the drain Fermi level.  In the energy diagram, it is clear that Eδ  is 

equal to e V .  Therefore, from the bias voltage where an excited level dI/dV line 

intersects with a ground level dI/dV line, we can measure the excitation energy, Eδ .  

This method of measuring an excitation energy is routinely used in real quantum dot 

experiments to study the excitation spectrum of a quantum dot.  We also note from Figure 

2.13 that both excited level dI/dV lines intersect the ground level lines at VG > VC.  In 

general, this is true for all excited level dI/dV lines that correspond to the excited states 

for the N+1 electron state (see Figure 2.16(b)). 

Before we move on to the next subject, let’s see how much a current level 

increases after the excited level becomes available for electron tunneling in different 

cases.  

 

Case I:  Symmetric tunnel barriers - ( ),  g g e e g
S D S D DkΓ = Γ Γ = Γ ≡ Γ  

When all the tunneling rates are symmetric, the current in the regions III and IV 

are as follows.  

 ( )2 1
3

III IV gI I e k= − = Γ +  (2.23) 

As can be expected from its symmetric tunnel barriers, the current level in the 

regions III and IV are equal.  The current will be larger than the ground state current 
ge Γ  when k > ½ but it will be smaller when k < ½.  When k is small (therefore low 

tunneling rates for the excited level), an electron that tunnels into the excited level is 

“stuck” and the overall current level will be lower than the one without the excited level.  

In this case, the current will actually decrease once the excited level becomes available 

and the dI/dV-V-VG plot will show a dI/dV line with negative values.  This is one 

mechanism that a quantum dot can show a negative differential conductance (NDC) or 

equivalently, a negative differential resistance (NDR).  However, it requires more 

sophisticated model to describe the conditions for NDRs.  For example, the relaxation 
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rate from the excited level to the ground level needs to be considered to describe NDRs in 

real quantum dots.  

 

Case II: Asymmetric tunnel barriers - ( )/ , / /g g e g e g
S D S S D Dq kΓ Γ = Γ Γ = Γ Γ =  

Many quantum dots have tunnel barriers with different tunnel frequencies.  When 

q becomes large (q >> 1) the current amplitudes that will flow in regions III and IV are as 

follows. 

 
( ) ( )

( ) ( )

1 1
1 1/ 1

1 1 / 2
1 / 1

III g g

IV g g

kI e e k
q

kI e e k
q q

+
= Γ ≈ Γ +

+ +

+
= − Γ ≈ − Γ +

+ +

 (2.24) 

Here the current will be approximately twice larger for the positive bias than the negative 

bias.  Figure 2.14(b) explains the origin of this difference using energy diagrams.  For 

positive bias, electrons tunnel onto the quantum dot from the drain and then tunnel off the 

dot to the source electrode.  The current will increase significantly when the excited state 

becomes available because now electrons have more ways to tunnel onto the dot through 

the tunnel barrier of the drain side, the thicker barrier that decides the total current level.  

Compared to the positive bias, the negative bias case where electrons flow from the 

source to the drain will see smaller current, because an electron on a dot sits in one of the 

levels before tunneling through the thicker barrier, basically reducing the number of 

options from two to one. 

This case also shows that the size of a current step (or a dI/dV peak) 

corresponding to an excited level in I-V curves (dI/dV-V curves) can be different for two 

bias directions.  In reality, it is quite common to see an excited level dI/dV peak for only 

one bias direction.  In such cases, the dI/dV line is stronger for the configuration where 

the excited level is aligned to the Fermi level of the electrode that has the thicker tunnel 

barrier.  Therefore, it can be used to identify which tunnel barrier is thicker than the other 

(See Figure 2.14(a)).  

 In both Case I and II, the amplitude of current steps in I-V curves allows us to 

obtain information about the tunneling rate Γ’s for different excited levels.  In general,  
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Figure 2.14 Effects of asymmetric tunnel barriers. (a) Conductance plots for three 
different tunnel barrier configurations.  When the tunnel barriers are asymmetric, the 
excited dI/dV line is strong only for one bias direction.  (b) The origin of the current 
asymmetry between regions A and B marked in (a).  Current is larger in the region A 
because an electron tunnels onto either the ground level or to the excited level of the 
dot through the thicker (drain side) barrier.  The number of arrows in the diagram 
represents the number of tunneling paths that a tunneling electron can use when it 
tunnels through the barrier.
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the current step will be larger for larger Γ’s.  However, one should carefully set up a 

model to obtain quantitative information.  We will see one such example in Chapter 4.  

 

Example:  the Zeeman splitting in a spin-1/2 quantum dot 

Until now we have ignored the spin degeneracy of the electronic states of a 

quantum dot.  However, real quantum dots have various degrees of spin degeneracy 
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depending on S, the total spin in a specific charge state.  If S = 0, it is a singlet and there 

is no spin degeneracy.  If S = ½, it is a doublet and there are two spin-degenerate states 

(Sz = +1/2 and Sz = -1/2) with the same energy.  In general, a state with spin S has (2S+1) 

degenerate levels.  

The two-level quantum dot model just described can be used to study a quantum 

dot with spin 1/2.  Let’s first consider a quantum dot with the total spin S = 0.  When an 

additional electron tunnels onto the dot it will have a non-zero spin.  In many cases it is 

simply S = ½ with two spin-degenerate states.  Therefore, it becomes a two-level 

quantum dot (spin-up and spin-down).  When the magnetic field is zero (B = 0), the two 

levels are truly degenerate and all the tunneling rates are identical for both states.  Even 

though it does not have any excited levels (it has two ground levels instead), we still need 

to use the two-level dot model to accurately describe this case.  The current can be 

obtained from (2.21) by setting all the corresponding quantities for the ground state and 

the excited states equal.  

 ( )2 S D D S

S D S S D D

f fI
e f f

Γ Γ −
=
Γ +Γ +Γ +Γ

 (2.25) 

The superscripts e and g are dropped for simplicity.  Again, it conducts only in the 

region where ( )D Sf f−  is non-zero as in a single-level quantum dot (compare it 

with(2.11)).  However, the current amplitude of each conducting region is different.  The 

current for the positive (I+) and negative (I-) bias is, 

 2 2,  
2 2

S D S D

S D S D

I e I e+ −Γ Γ Γ Γ
= = −

Γ + Γ Γ +Γ
. (2.26) 

Since the tunneling rates for the source and drain are usually different, I+ and I- 

will be different in general.  If one of the tunneling rates is much larger than the other, the 

ratio between the two current amplitude can be as large as 2.  This large current 

difference can be explained by the same argument that we used in explaining the current 

asymmetry in the Case II (asymmetric tunnel barriers).  The quantum dot conducts better 

when electrons tunnel onto the dot through a thicker barrier.  We also note that from the 

measured values of I+ and I-, one can get ΓS and ΓD using (2.26).  It is again useful to note 

that the current amplitude of the positive and negative bias cannot differ by more than 

two in this case.   
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Figure 2.15 The Zeeman splitting of a spin-1/2 quantum dot.  (a) The differential 
conductance plot at B = 0 T and 9 T.  The Zeeman split dI/dV lines are clearly visible 
at 9 T.  The parameters are T = 0.3 K, E0 = 0 (VC = 0 V), CD:CS:CG = 38:57:5 (α = 
0.05), ΓS = 10 GHz, ΓD = 5 GHz.  The spin states for the ground level and the excited 
level are marked by arrows.  (b) I-V curves taken at VG = -20 mV (dashed line in (a)) 
with different magnetic fields.  The Zeeman splitting develops additional current 
steps.  The ground level carries the same current for both bias directions but the 
additional current steps have different amplitude due to the tunnel rate asymmetry.  
(c) The dI/dV-V-B plot calculated at VG = -20 mV.
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When we turn on the magnetic field (B > 0), the spin degeneracy is lifted and the 

two previously degenerate levels will split into two states (the Zeeman splitting).  The 

energy of the spin up state (Sz = +1/2) will be ( 1) / 2eU N g Bµ+ −  and the energy for the 

spin-down state (Sz = -1/2) will be ( 1) / 2eU N g Bµ+ + .  Here g is the electron g-factor 
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and eµ  is the Bohr magneton.  The ground level will move down in energy with 

increasing magnetic fields, while the other level (spin-down) moves up with the total 

energy difference of eg Bµ .  This energy difference is called the Zeeman energy and can 

be measured using the method explained earlier.  It can be read from the bias voltage at 

the point where a dI/dV line corresponding to Zeeman split level intercepts the ground 

level (see Figure 2.15 (a)).   

The quantitative model we developed for a two-level quantum dot can be used for 

this case by setting eE g Bδ µ= .  For most cases, we can put ( ) ( )
g e
S D S DΓ = Γ , but if the 

electrodes are magnetic, the tunneling rates can be different for the two spin states.   

In Figure 2.15 (b) and (c), we show I-V curves and a dI/dV-V-B plot for a S = ½ 

quantum dot with asymmetric tunnel barriers at different magnetic fields.  The Zeeman 

splitting is clearly visible for both bias directions and increases with the magnetic field.  

The second current step in the negative bias direction is smaller due to the asymmetry in 

the tunnel rates.   

 

2.5 Transport Spectroscopy in a Multi-Level Quantum Dot 
In principle, it is possible to solve the rate equations for a quantum dot with many 

excited levels.  However, it is a lengthy calculation and should be done numerically in 

most cases.  We can still qualitatively describe what the solutions would look like and 

how they describe the transport behaviors of a multi-level quantum dot.  

As we saw in previous examples with one- or two-level quantum dots, the electric 

current flowing through a quantum dot can be decided solely by the values of the 

electrode Fermi functions evaluated at the energy of each excited or ground level in 

conjunction with the tunneling rates.  Figure 2.16(a) schematically shows this for a 

quantum dot with five levels: one ground level ( 0µ ), two lower levels corresponding to 

excited states for the N electron state ( 1µ− and 2µ− ), and two higher levels for the N+1 

electron excited states ( 1µ+ and 2µ+ ).  For each level, there are two boundary lines 

crossing V = 0 at GV = i
CV , which correspond to the level aligning to the source or drain 

Fermi level.  When the current is calculated, each region will have different current 
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amplitude and we will see current steps at the boundaries of any two adjacent regions.  

As in the previous cases, the current level is non-zero only when the ground level is 

located between the two electrode Fermi levels and this limits the conducting region to 

the gray area shown in Figure 2.16(a).  Since the current steps are located along the 

boundaries between different regions, dI/dV lines will be present along these boundaries  

S D

Figure 2.16 A multi-level quantum dot. (a) The energy diagram of a five-level 
quantum dot is shown.  The conducting regions are painted gray in the V-VG map. (b) 
Differential conductance map for the same quantum dot will display multiple excited 
dI/dV lines that correspond to various excited levels.  The excitation energies can be 
measured as shown in the diagram for both charge states.  The factor |e| is dropped in 
the diagram for simplicity. 
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in the dI/dV-V-VG map.  As we can clearly see in Figure 2.16(b), each excited level of the 

quantum dot is associated with two such dI/dV lines; one for positive bias and the other 

for negative bias (assuming reasonably symmetric tunnel barriers).  The excitation energy 

(or 1) (or 1) (or 1)
i ei g
N N N N N NE U Uδ + + +≡ −  can be read off from the bias of the crossing point 

between an excited level dI/dV line and the ground level dI/dV line.  It is also important 

to note that all the excited dI/dV lines that end on the N+1 electron Coulomb blockade 

area (right side in Figure 2.16(b)) correspond to excited levels of the N+1 electron state 

and that all the excited dI/dV lines that end on the N electron Coulomb blockade area (left 

side) correspond to excited levels of the N electron state.  Therefore, one can study 

excitation energies of both N and N+1 electron states of a quantum dot from the dI/dV-V-

VG plot.  This allows the transport measurements on a quantum dot to be used as an 

excellent spectroscopic tool.   

We can also obtain information about different tunneling rates associated with 

each excited level by measuring the intensity of the dI/dV lines in the dI/dV-V-VG plot.  

Again, the dI/dV lines will be stronger when the tunneling rates associated with the 

corresponding excited level are larger.  

 

2.6 Summary and Other Issues 
In this chapter we described a theoretical model for a single electron transistor in 

the quantum dot regime.  I-V measurements on a quantum dot display Coulomb 

oscillations and the Coulomb blockade, which occur due to the charge addition energy of 

an electron to a quantum dot.  When excited levels are present in the dot, I-V (or dI/dV-V) 

curves will show additional current steps (dI/dV peaks) that correspond to the excited 

levels.   

It is possible to study the excitation energy and the tunneling rates associated with 

each excited level using the Coulomb diamond plot and the amplitude of current steps or 

dI/dV peaks.  Therefore, the transports measurements on a quantum dot performed at 

cryogenic temperatures offer a high-resolution spectroscopy technique that can be used 

for nanometer-sized objects.  

The theory described in this chapter can be developed further to investigate other 

quantum dots in a variety of device conditions.  One important parameter that has not 
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been included in this chapter is the relaxation from excited states to the ground state.  

Once an electron occupies an excited state, it can relax to the ground state before 

tunneling out of the dot.  This process will affect the overall current level and should be 

considered when performing a careful analysis.  If the relaxation rate is faster than the 

slower tunneling rate, then the quantum dot stays in its ground state in most cases 

(equilibrium process).  In some systems, however, electrons tunnel on and off the dot 

before it relaxes to its ground state and cause non-equilibrium behavior[43].  

Another important tunneling process is the co-tunneling process[23].  All the 

electron processes that have been discussed above are the sequential tunneling process, 

where an electron tunnels onto a dot and then leaves from it.  The co-tunneling process is 

a second order tunneling process where an electron tunnels through the dot via 

intermediate levels that are energetically forbidden.  This process is sometimes observed 

in a Coulomb blockade region when the overall conductance of the dot is large in its on 

state.  It has been studied experimentally[44-46] as well as theoretically in various 

systems and provides a framework for coherent electron transport and tunneling 

vibrational spectroscopy.  The Kondo effect that will be discussed in Chapter 6 is also a 

second order process that is closely related to this co-tunneling phenomenon.  



Chapter 3 

Device Fabrication and Experimental Setup 
 

3.1 Introduction: Experimental Techniques for Wiring up Molecules 
To perform conductance measurements on an object, one needs at least two 

electrodes contacting the object - one for the source electrode and the other for the drain.  

For a macroscopic object, this requires only a very simple experimental setup (e.g. a 

multimeter with a pair of probes).  For much smaller objects, as long as they are larger 

than roughly 10 nm, conductance measurements can be performed using electrodes that 

are fabricated by standard lithography techniques[47].   

However, conductance measurements on single molecules usually require a 

different experimental scheme, due to their exceedingly small size.  Indeed, the 

molecules we will discuss in the following three chapters (Chapters 4-6) are all smaller 

than 3 nm.  To measure the conductance of such a small molecule, two electrodes (source 

and drain) are required to have a nm-size gap so that they can be used to “wire up” the 

molecule.  It is not a straightforward task since even the most advanced electron-beam (e-

beam) lithography techniques still fail to make such structures reproducibly.   

People have thus developed various new experimental techniques for wiring up 

single molecules.  They include scanning probe microscopy (SPM) techniques and 

unconventional fabrication techniques for making nano-electrodes.  Figure 3.1 

summarizes some of the methods that have been used for studying electron transport in 

molecules.   

One of the most powerful methods is the SPM technique[15, 19, 40] (Figure 

3.1(a)).  In this case, molecules are deposited on top of a conducting surface that acts as 

one electrode and a metallic scanning probe tip is used as the other electrode.  A huge 

benefit of this technique is that one is allowed to actually “see” the molecules before 

measuring them.  Therefore, it serves as a very versatile tool for studying single 

molecules.  However, it requires a relatively high level of instrumentation and also 

enough expertise to perform the experiments, especially at cryogenic temperatures.  Its 
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energy resolution is usually poorer than other techniques and it lacks the gate electrode.  

Especially, the latter is a significant disadvantage when one wishes to study different 

charge states of the same molecule. 

One can circumvent the problems of the SPM techniques by fabricating electrodes 

with a nm-size gap directly on an insulating surface.  The mechanical break junction 

technique[9, 48] (Figure 1.3(b)) has been successfully used to measure the conductance 

of a single molecule.  First, a continuous metallic electrode is fabricated on a flexible  

Figure 3.1 Various techniques developed for measuring single molecule 
conductance.  (a) Scanning probe microscopy techniques.  (b) Fabrication methods for 
nano-electrodes.
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substrate that is subsequently bent to extend the electrode until it breaks.  This process 

can be well controlled to a very fine length resolution, typically below several pm.  Until 

now most experiments that employed this technique lack the gate electrode due to 

experimental limitations.  

People also developed unconventional nanofabrication techniques, two of which 

are shown in Figure 1.3(b).  One can first fabricate two electrodes with a relatively large 

(>10 nm) separation and grow them electrochemically until they merge.  This process, 

which is called the electrodeposition technique[49], can be controlled to produce 

electrodes with a nm-sized gap.  Also shown is the nanoconstriction technique[17, 50] 

(also known as the nanopore technique) that is usually used for studying more than one 

molecule.  In this technique, a small (<10nm) hole is first fabricated in a thin silicon 

nitride membrane and molecules are sandwiched between the top and bottom electrodes 

through this hole for electrical measurements.  More recently, another fabrication 

technique was reported by Zhitenev et al[51].  In this method, two electrodes are side 

evaporated to a pulled quartz needle and the electrodes can be connected by molecules 

near the tip of the needle.  

Finally, the technique used in most single molecule experiments described in the 

following chapters is the electromigration technique[52].  First, a continuous wire is 

fabricated using standard e-beam lithography.  Then a large bias voltage, typically 

between 0.5 V and 1 V, is applied to cause a failure of the wire.  This process is self-

controlled; once the wire fails, current does not flow any more and the gap-opening 

process induced by the previously large current density stops.  Conductance measurement 

after the electromigration process shows a tunnel conductance smaller than the 

conductance quantum (G0 = 2e2/h = 77.5 µS).  This suggests that the size of the gap 

created by this process is small and typically less than 1~2 nm, which is ideal for wiring 

up a single molecule.  

In this chapter, we will discuss various experimental issues regarding the device 

fabrication and the characterization.  First, the fabrication procedure for continuous metal 

nanowires with gate electrodes will be described (section 3.2).  Each wire is used to form 

two electrodes with a nanometer-sized gap using the electromigration technique.  The 

details of the electromigration process will be described in section 3.3, followed by 
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discussions on the characterization of the electrodes after the process (section 3.4).  

Finally, various issues regarding molecule deposition will be discussed (section 3.5) as 

well as the general transport measurement setup (section 3.6) at the end of this chapter. 

The device fabrication procedure is different for carbon nanotube devices because 

carbon nanotubes are much longer (> 1 µm) than the molecules studied in Chapter 4 

through 6.  The fabrication process for a carbon nanotube device is therefore described 

separately in Chapter 7.  

 

3.2 Fabrication of Nanowires and Gate Electrodes 
Before explaining the details of the fabrication process, let us remind ourselves of 

the goal of device fabrication.  The schematic of device geometry desired for single 

molecule experiments is shown in Figure 3.2.  Two metal electrodes are located on top of 

an insulating layer which functions as a gate insulator.  The two electrodes are separated 

by 1~2 nm so that a single molecule can bridge them for electron transport.  Below the 

insulating layer, we find a conducting substrate, which works as the gate electrode.  An 

optical microscope image of a chip (5 mm by 5 mm) that has 36 nanowires is shown in 

Figure 3.3.  Only macroscopic leads are visible in this picture and a continuous nanowire 

is shown in a separate scanning electron microscope (SEM) image.  This nanowire, after 

it is broken by the electromigration process, will form two electrodes with a nanometer-

sized gap.   

Figure 3.2 A schematic of the nanoelectrodes with a gate.  It is not drawn to scale. 

source drain

Gate insulator

Gate electrode (conducting)

1~2 nm
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Figure 3.3 An optical microscope image of a chip with 36 nanowires.  More than one 
hundred of these are fabricated on a 4” silicon wafer simultaneously.  Only 
macroscopic gold electrodes are visible in this picture with the vertical bar in the 
middle serving as the common electrode.  Size of the image: 5 mm by 5 mm.  Lower 
inset: An SEM micrograph of a continuous gold nanowire (image size: 20 by 12 µm).

  
Properties of nanowires  

Certain properties are required for the continuous metal wires.  First, it should be 

breakable by the electromigration process briefly described above.  It requires that the 

wires have a fairly small cross section at its smallest.  The failure current density for a 

gold wire is approximately 1012 A/m2[53].  To be able to break them with less than 10 

mA, the cross section of the wire should be less than (100 nm)2.   

The thinnest and narrowest part of the wire, the part we will call a nanowire from 

now on, should also not be too long.  The longer it is, the total resistance of the whole 

wire will be larger, which will require a large bias voltage to achieve the failure current 

density.  This can lead to the destruction of the junction after breaking. 

For example, to flow 10 mA at a bias voltage below 0.5 V, the total resistance 

cannot be larger than 50 Ω .  It is a quite stringent condition since there are other parasitic 

resistances as well.  First, the electromigration process is usually performed in a cryostat, 

which requires resistive wiring for thermal isolation.  Second, there is also the resistance 
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of various wires in the measurement set up.  Finally, the nanowires are connected to 

outside wiring through a thin (<200 nm) film of macroscopic metal electrodes defined by 

photolithography.  These films increase the total resistance typically by several Ohms.  

If the cross section of the nanowire is (10 nm)2, the critical current can be reached 

with a voltage of 0.5 V for resistance up to 5 kΩ .  It is, however, very difficult to define 

nanowires with a width less than 10 nm and a thickness less than 10 nm.  For example, a 

Au film thinner than 10 nm will be grainy and even discontinuous. 

Most wires we used therefore have a width between 20 nm and 200 nm.  The 

thickness is between 10 nm and 20 nm.  The length is approximately 200 nm.  The 

typical total resistance of the wire (nanowires resistance plus parasitic resistances) is 

between 100 Ω  and 1 kΩ .  It is also important to make the macroscopic wiring film 

thick enough (>100 nm) in order to reduce the parasitic resistance and also to make the 

wirebonding easier.  If the macroscopic wiring film is too thin (<50 nm), wirebonding 

can be troublesome.  The wire may not stick to the film strongly enough to produce a 

good electrical connection and the bonding process can even destroy the gate insulator.  

 

Properties of the gate oxide 

There are three words that will describe the desired properties of the gate oxide - 

thinner, smaller and stronger.  First, the gate needs to be located very close (less than 50 

nm) to the molecule to produce a large gate capacitance.  As we discussed earlier (see 

equation (2.3)), the electrochemical potential of a quantum dot can be controlled by a 

gate electrode with the gate efficiency set by a capacitance ratio ( /G totalC Cα = ).  Since 

the maximum range of an applicable gate voltage is limited (the gate insulator will 

eventually fail!), it is always advantageous to have good gate efficiency.  The relation 

between the gate capacitance and the thickness of the gate insulator will vary depending 

on the local device geometry and electrostatics.  In a simple parallel capacitor, the 

capacitance is proportional to 1/r where r is the distance between the two plates.  

However, our experience with different gate insulator thicknesses suggests that the gate 

efficiency increases by more than just 1/r when one thins the gate insulator. 

Second, the size of the gate oxide region should be as small as possible.  As 

discussed in the previous paragraph, our capability of changing the electrochemical 
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potential of a quantum dot depends both on the gate efficiency and the maximum gate 

voltage we can apply without a gate failure.  All the gate oxides that we use in our 

experiments (SiO2 and Al2O3) are proven to be good insulators up to certain electric field 

strengths but fail at very high electric fields, typically ~1 V/nm.  This implies that one 

should be able to apply up to 30 V to the gate when one uses a 30 nm thick gate oxide.  In 

reality, the oxide usually fails well below 30 V and in some cases electric current flows 

between the gate and the source/drain electrodes even at very low biases.  This premature 

gate failure and gate leakage is caused by impurities and pin-holes present in the gate 

oxide.   

To minimize this annoying possibility, one can reduce the overlap area between 

the gate and the source/drain electrodes.  Again, it is not a good idea to make the whole 

electrode structure (typical total area ~ 0.1 cm2) on top of a 30 nm gate oxide.  Instead, 

one can reduce the premature gate failure and gate leakage by defining two regions with 

different gate thicknesses; a small region with a thin gate oxide and all other areas with a 

thicker (> 200 nm) field oxide.  Another reason that one should have an area with a thick 

field oxide is the wirebonding process.  If the oxide is too thin for the wirebonding area, 

wirebonding process can destroy the oxide and short the gate with source/drain 

electrodes.  A field oxide thicker than 200 nm is usually strong enough to avoid any 

wirebonding nightmares. 

Third, and finally, one should try to grow a good, strong oxide.  It is closely 

related to the problems we discussed above.  The density of pin-holes and impurities 

needs to be minimized to reduce the gate leakage and gate failure.  This issue is closely 

related to the material properties and the details of the fabrication procedure (for 

example, cleanliness).  So far we have used two different materials for the gate oxide.  A 

silicon oxide was grown by dry oxide growth process in a CMOS compatible furnace and 

an aluminum oxide layer was grown by oxidation of aluminum electrodes in an ambient 

condition for a day.  Both gate oxides performed well enough for our experiments but the 

aluminum oxide was proven to be more useful thanks to its 2~3 nm thickness.  
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Fabrication procedure 

For past five years, several different device designs have been developed to 

produce the devices geometry illustrated in Figure 3.2 and 3.3.  Main differences among 

such designs include a different choice of gate/gate oxide material and the fabrication 

method for nanowires.  Describing all these different designs will be tedious and 

somewhat pointless.  In this section, instead, the overall fabrication process for two 

different device designs will be described, which will explain most fabrication techniques 

that we have used over the years. 

 

Device design I: Silicon/silicon 

oxide gate and angle evaporation  

The first design shown in 

Figure 3.4 utilizes the silicon 

substrate of a silicon wafer as the 

gate electrode (back gate).  We used 

a degenerately doped silicon wafer to 

ensure that the substrate stays 

conducting at cryogenic 

temperatures.  The typical resistivity 

of the wafer is less than 0.005 

cmΩ⋅ .  The wafer is covered with 

~1 µm of field oxide (SiO2) pre-

grown on top.  This thick oxide layer 

will serve as an insulator between the 

back gate and macroscopic (> mm) 

structures that will be subsequently 

defined on top of it.  The first 

process is defining the gate regions.  

For a small region (70 µm×70 µm), 

the field oxide is etched by a wet 

etching process using buffered HF 

1 µm thick SiO2

degenerately doped Si

Figure 3.4 The 
fabrication procedure for 
the device design I.  
After step V, it is ready 
for the fabrication of 
nanowires (see the next 
Figure). 

30 nm thick 
gate oxide

70 µm

Pt gate contact

thin Au (30 nm)

thick Au (200 nm)

step I: defining 
gate regions
(photolithography, 
wet etching)

step II: gate 
oxide growth
(dry oxide growth 
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step III: back 
gate contact
(wet etching and 
Pt evaporation)

step IV: thin 
Au layer
(photolithograp
hy, lift-off)
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thick Au 
layer
(photolithogra
phy, lift-off)
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with a photoresist mask that is defined by a standard photolithography (step I).  A 30 nm 

thick  gate oxide is grown by a standard dry oxide growth process in the gate region (step 

II).  The growth of a sacrificial gate oxide layer followed by wet etching is done between 

steps I and II to reduce the gate oxide impurities and pin-holes.  Then the oxide on the 

back side of the wafer is stripped by HF wet etching and 100 nm of platinum or gold is 

evaporated to make an electric contact to the back gate (step III).  This completes the 

fabrication of the gate electrode and the gate and field oxide.  

The other two electrodes on the surface are fabricated by the following processes.  

Using the standard photolithography and lift-off, we fabricate macroscopic Au electrodes 

which run through both the gate oxide region and the field oxide region.  These 

electrodes are made in two steps.  The first thin Au layer was made by evaporating 

approximately 30 nm of gold with 2 nm of Cr as a sticking layer (step IV).  The thick Au 

layer was then made by evaporating over 200 nm of Au with 2 nm of Cr that overlaps 

almost all the area covered by the thin Au layer except the edges that will be contacted by 

nanowires later (step V).  This two-step process is necessary to ensure that the 

macroscopic electrodes are thick enough to cover the step edges between the thick oxide 

and the thin gate oxide regions, but thin enough on their ends so that it can be connected 

to the nanowires easily.  The design pattern of the macroscopic electrodes was already 

shown in Figure 3.3.  It has a long vertical electrode that serves as the common electrode 

for all the wires.  There are 36 other macroscopic electrodes grouped into six groups.  

These 36 electrodes can be wired up separately to allow a conductance measurement 

between the common electrode and each one of these electrodes.  

Finally the nanowires are fabricated using e-beam lithography (Figure 3.5).  First 

a bilayer of e-beam resist (first MMA/MAA then PMMA) is spun on the surface.  Then 

we expose the target area that will later become nanowires using an electron beam.  At 

this stage, the exposed area is discontinuous in the middle and looks like two needles 

with >100 nm separation (see Figure 3.5).  Carefully timed development of the e-beam 

resists in the MIBK/isopropanol solution will dissolve the PMMA resist in the e-beam 

exposed areas but it will develop to a slightly larger area in the bottom MMA/MAA layer 

since this layer dissolves in the MIBK solution faster than the PMMA layer.  As a result, 
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we will have a suspended PMMA layer with a hollow tunnel underneath in the 

MMA/MAA layer.   

Viewed from the top, the two exposed areas will still look like two separated 

needles and a direct evaporation of metal alone will not form a continuous nanowire.  To 

fabricate continuous nanowires, we use an angle evaporation that is described below (see  

Figure 3.5 Fabrication of 
nanowires.  The top view 
(above) shows the two 
discontinuous e-beam 
exposed areas.  Timed 
developing produces a 
suspended PMMA structure 
that will be used for a mask 
for subsequent angle 
evaporations.  An SEM 
image of the final structure is 
shown below.

PMMA

MMA/MAA

e-beam 
a e-beam exposure

b timed developing

c first angle evaporation

d second angle evaporation

e thick Au evaporation

Cr/Au

Top view

e-beam exposed area 

Side view

SEM image

200 nm
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Figure 3.5(c) through (e)).  First, the whole wafer is tilted 15 degrees versus the direction 

of evaporation and 3 nm of Cr and 10 nm of Au is evaporated.  Then the wafer is tilted 15 

degrees in the opposite direction and again 3 nm of Cr and 10 nm of Au is evaporated.  

Finally the wafer is rotated back to the original orientation in which its surface is vertical 

to the evaporation direction.  The final evaporation of 3 nm of Cr and 80 nm of Au is 

done in this orientation.  This three-step metal evaporation will leave continuous 

nanowires with a thin (~15 nm) Au layer with small thicker overlap region in the middle.  

A liftoff in acetone will leave only the nanowires on the surface.  One advantage of this 

somewhat complicated nanowire fabrication process is that the dimension of the thin 

region is very small (< 200 nm).  In all other sections of the whole current path, the 

parasitic resistance is minimized by evaporating at lease 100 nm of Au.  An SEM image 

of one finished wire is shown in Figure 3.5.   

 

Device design II: Al/Al2O3 gate and direct evaporation 

Design I has several difficulties.  The angle evaporation requires careful 

parameter controls and can be irreproducible depending on the condition of the e-beam 

system.  Also the silicon gate oxide, even though it can be made thinner than 10 nm, is 

still thicker than aluminum oxide gates (2~3 nm) described below and limits the gate 

capability.  In the device design II, major changes have been made in the gate oxide and 

evaporation method for the nanowires.  The overall fabrication process is illustrated in 

Figure 3.6. 

The silicon wafer used for this design does not require degenerately doped silicon 

since it is no longer used as a back gate.  But it still needs to have a thick (>200 nm) field 

oxide for electric isolation between all the structures on the surface and the silicon 

substrate.  The field oxide also serves as a protective layer against any wirebonding-

induced short between electrodes and the substrate.  

The fabrication starts with photolithography and liftoff for macroscopic 

electrodes.  The device pattern is the same as the previous design.  It has a vertical 

common electrode and 36 individual electrodes grouped into six separate groups of 

electrodes.  Among these 36 electrodes, six of them are used to make contacts to the 

Al/Al2O3 gate electrode, as can be seen from the finished device design.  The 
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macroscopic electrodes are again made in two steps; a 20 nm thin Au layer and then a 

100 nm thick Au layer that does not cover the edges of the thin Au layer.  The edges of 

the thin Au layer are used to make contact to nanowires and gate electrodes.  

Then aluminum gate electrodes 20 nm thick and 2 µm wide are defined using 

photolithography followed by a low-temperature evaporation on a liquid-nitrogen-cooled 

evaporation stage.  Then the wafer is exposed to air in ambient condition so that it will  

Figure 3.6 Device design II.  Al/Al2O3 gate electrodes are used instead of silicon 
oxide.  The thin Au, thick Au and Al gate electrodes are made by photolithography 
and liftoff.  After the gate oxidation, nanowires are made using e-beam lithography.  
A topographic AFM image (5 µm by 5µm) is shown at the bottom.
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form a native aluminum oxide on the surface of the aluminum electrodes.  It is known 

that this process grows a 2~3 nm thick oxide[34].  Finally the wafer is immersed in 

acetone overnight for a liftoff.  One gate electrode is made for each electrode group so 

that each chip will have six separate gate electrodes.  This design helps to reduce the 

number of lost devices caused by gate leakage and gate failure since a gate failure or 

leakage of one gate electrode affects only five nanowires.  The low temperature used for 

the aluminum evaporation tends to crack the photoresist and the surface after a liftoff has 

small random aluminum wires.  It needs to be etched away using an aluminum etchant 

while the aluminum gate electrode is covered by photoresist.   

The nanowires are made by e-beam lithography as in the design I but the pattern 

used for the e-beam lithography is continuous in this case.  Therefore it requires no angle 

evaporation.  In terms of e-beam resists, either a PMMA single layer or a PMMA - 

MMA/MAA bilayer can be used.  We evaporate approximately 20 nm of Au with 1~2 

nm of Cr as a sticking layer.  The e-beam pattern that is designed for the nanowires has 

two tapering needle-like electrodes connected by a thin line.  This thin line becomes a 

nanowire after the e-beam process and a liftoff.  A topographic AFM image of the 

finished device is shown in Figure 3.6. 

Other materials have been used for the nanowires instead of Au.  To date, 

aluminum and platinum nanowires have successfully formed electrodes with a nm-size 

gap by the electromigration process. 

There are two other issues about the geometry of the nanowires.  First, in most of 

the experiments described in this thesis, a thin (1~2 nm thick) Cr layer was used as a 

sticking layer so that Au evaporated on top of it adheres well and forms a continuous 

wire.  It, however, raises a question about whether the presence of Cr atoms near the gap 

formed by the electromigration would affect the device conductance.  To test this, we 

also fabricated nanowires without a Cr layer and measured its properties.  Our 

measurements suggest that its presence does not change the breaking property of the 

wires or their conductance after the breaking significantly. 

Second, different thicknesses of nanowires have been used.  Normally we 

evaporate more than 15 nm of Au for nanowires.  It has been suggested that thinner 

electrodes will allow the target molecules to be located closer to the gate electrode, 
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increasing the gate efficiency[54].  Au electrodes without a Cr sticking layer tend to form 

grains and often become discontinuous when made thinner than 10 nm.  However, 10 nm 

thick platinum wires without Cr layer have been successfully made and used for 

measuring single molecules.  Due to lack of enough data, it is not clear whether thin 

electrodes increase the gate efficiency at this moment.  

 

3.3 Electromigration-induced breaking in nanowires 
Figure 3.7 shows the electromigration-induced breaking of the nanowires made  

Figure 3.7 Electromigration induced breaking of a nanowire.  (a) The nanowire 
shows an ohmic behavior until the current level drops to zero at high bias.  Note that 
Vtotal is not equal to the voltage drop across the nanowire.  (b) Average conductance 
(I/V) as a function of time while increasing the bias.  It drops to zero at a breaking 
voltage (Vb) of 546 mV and a breaking current of 7.6 mA.
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by the fabrication process in section 3.2.  We performed a four-probe measurement as 

shown in the Figure 3.7(a); the current (I) as well as the voltage drop (V) across the 

nanowires was measured at the same time.   

We plot the current versus the total bias (Vtotal) applied to the circuit in Figure 

3.7(a).  In this plot, the current keeps increasing until Vtotal reaches 1.56 V and then it 

suddenly drops to zero.  This breaking curve shows that the nanowire behaves like an  

ohmic conductor up to a certain current density and then fails, forming a physical gap 

within the nanowire.  The breaking process of a similar wire can be seen in a different 

plot shown in Figure 3.7(b).  The average conductance (I/V) instead of current was 

 

(a)

(b)

Figure 3.8 The breaking behavior of nanowires. (a) Breaking voltage Vb versus 
breaking current Ib measured from different nanowires.  Most nanowires break near 
0.5 V.  (b) Breaking curves of three different nanowires made from the same 
fabrication run show almost identical behavior.
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plotted as a function of time while ramping the total bias with a constant rate (~ 30 

mV/s).  The average conductance of the wire stays relatively constant until it reaches the 

critical point at Ib and Vb, where the conductance decreases to near zero suddenly.  

The breaking voltage Vb and breaking current Ib measured from ~ 30 nanowires 

are plotted in Figure 3.8(a).  One can clearly see Vb is near 0.5 V in most wires regardless 

of the breaking current (equivalently, initial resistance).  For a nanowire with the length L 

and the cross section A, the relation between the breaking voltage and the critical current 

density jb is as follows: 

 /b b b bV I R j A L A j Lρ ρ= = ⋅ =  (3.1) 

Here ρ  is the resistivity of the nanowire.  Since the length of the nanowires is relatively 

constant near 200 nm, equation (3.1) in conjunction with Figure 3.8(a) shows that the 

breaking process in the nanowires is dictated by the current density and that the critical 

current density required for breaking is almost constant over a large spectrum of initial 

resistance.  From the breaking current and the geometry of nanowires (Ib ~ 7 mA for A ~ 

15 nm×200 nm), we can estimate jb = Ib/A ~ 12 22 10 A/m× , which is similar to the value 

reported by Durkan et al[53].  These behaviors indicate that the main breaking 

mechanism in the nanowires is electromigration, whose main determinant is the current 

density as discussed below.  

The exact breaking voltage Vb can be slightly different from device to device 

depending on the nanowire geometry and material choices, but the nanowires that are  

fabricated in the same fabrication run usually show a very similar breaking voltage.  It 

can be seen from Figure 3.8(b), where breaking curves (I-Vtotal) taken from three different 

wires made in the same fabrication run show almost identical breaking properties.  Thus 

the wire breaking process shown here is a well-controlled process that can be reproduced 

over different wires; it is not a random process. 

  

Electromigration process 

Electromigration is frequently observed in many metallic structures.  When a 

metal wire is kept under a large current density over a long period of time, it finally fails 

due to a formation of a gap along the wire.  This causes a serious problem in 
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microelectronic circuits, and there have been many studies[55] about the origins of this 

failure mechanism, which will be described below. 

Electrons traveling in a solid undergo various scattering events caused by 

impurities, dislocations, and grain boundaries.  When an electron changes its motion due 

to a collision with one such scatterer, it transfers momentum to the scatterer and exerts a 

force on it.  This force can cause the scatterer to move out of its original site.  The 

frequency of these relocation events will be higher for a larger current density.  It will be 

also accelerated at higher temperatures because lattice phonons will help atoms move out 

of their original site.  This mass transport process caused by a large electric current 

density (“electron wind”) is called electromigration. 

Black[56, 57] gave a phenomenological description of electromigration, known as 

the Black equation.  It describes the median conductor failure time (MedFT) when it was 

kept under a set of certain conditions, such as current density and temperature.  The 

equation for a multi-domain wire is as follows: 

 expn a

B

EMedFT Aj
k T

−=  (3.2) 

This equation has been tested experimentally for different materials.  In (3.2), j is the 

current density and Ea is the activation energy for the electromigration process.  A is a 

constant that varies according to the geometry and the microstructure of the wire.  For 

Au, Ea is reported to be about 0.9 eV and n is measured near 2 in most reports[55].  

The Black equation predicts that the mean failure time is decided mainly by the 

current density and temperature.  From (3.2), a shorter failure time is expected for a 

larger bias at a constant environment temperature, because at a larger bias, the current 

density will be larger and the wire temperature will be higher due to Joule heating.  

Therefore, from these behaviors one can predict the presence of the critical current 

density (equivalently, critical bias), where the failure time is shorter than a few seconds.  

This is consistent with the breaking behavior of our wires, which display a sudden failure 

above a certain bias voltage (Vb) regardless of the initial resistance.   

The failure mechanism of gold nanowires was also studied by Durkan et al[53].  

They concurred that wide (> 100 nm) gold wires break at a typical current density of 

2×1012 A/m2 with slight variations depending on detailed wire geometry such as the 
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width, length, and oxide thickness.  The wires failed at lower current density when the 

oxide is thicker, because it slows down the heat dissipation, causing a higher temperature 

of the wire.   

One important issue is the wire temperature at the breaking current density.  

Durkan et al. estimated it to be near 500 K.  More recent experiments by Lambert et 

al.[58] showed that the average local temperature at the breaking current density is 

approximately 400 K, which will give the lower bound for the temperature of the 

breaking point.  These numbers will vary depending on the actual geometry of the wires 

and the thickness of the silicon oxide insulator.  As Durkan et al. pointed out, the oxide 

thickness is important since it decides the efficiency of heat dissipation through the 

surface, affecting the local temperature of the wires.  The temperature profile along a 

nanowire changes depending on its length, too.  Therefore, the breaking temperature 

proposed Durkan et al. or Lambert et al. can provide only a rough estimate for the 

breaking temperature of our nanowires.  However, it is clear that the mechanism of the 

wire failure in all cases is thermally activated electromigration. 

 

Formation of few-atom contacts 

The nanowires can sometimes be broken to form a few-atom contact (Figure 3.9).  

The breaking process was performed at below 4 K in a liquid helium cryostat in this case.  

The nanowire shown in Figure 3.9(a) initially breaks to an average conductance of 

approximately 160 µS and then subsequent increase in bias decreases the conductance to 

approximately 80 µS.  Finally, further bias increase breaks the nanowire to a very large 

tunnel resistance.  The intermediate conductance values measured in this breaking curve 

are approximate multiples of the conductance quantum, 2e2/h = 77 µS.  This suggests that 

the wire breaks first to a configuration where two gold atoms are bridging the two 

electrodes across the gap and then the number of gold atoms decreases to one when the 

bias is increased further.  It is completely broken when the bias is increased even more, 

forming a tunnel gap between the two electrodes.   

Two I-V curves from the same nanowire are shown in the inset to Figure 3.9(b).  

The I-V curve taken after the conductance decreases approximately to the conductance 

quantum shows an ohmic behavior, which is expected from a single atom contact (solid 
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curve).  It changes after the wire breaks further and it shows a nonlinear I-V curve 

(dashed curve).  Again, this suggests that the wire forms a few-atom contact and finally 

breaks to a tunneling gap that shows a nonlinear tunneling I-V curve. 

In Figure 3.9(b), a histogram of the intermediate conductance measured from 

breaking curves of 17 wires is plotted.  A prominent peak near 2e2/h is clearly visible in  

(a)

(b)

Figure 3.9 Formation of a single atom contact during the electromigration process.  
(a) The breaking curve shows two plateaus near multiples of the conductance 
quantum, suggesting the nanowire formed a few-atom contact.  (b) A histogram of the 
plateau conductance measured from 17 nanowires.  It shows a strong peak near the 
conductance quantum.  Inset: I-V curves taken at the conductance quantum and after 
the final breaking.
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this histogram, suggesting that the electromigration process in these wires can be 

controlled to a single-atom contact.  The formation of a stable single atom contact was 

not observed at room temperatures, presumably because of the instability of atomic 

configurations at higher temperatures.  

 

3.4 Characterization of the Tunnel Gap after Electromigration 
As discussed in the previous section, the electromigration process breaks the 

wires and forms a physical gap within them.  The formation of the gap can be seen from 

images taken by SEM or AFM.  

SEM images taken from a wire before and after the breaking are shown in Figure 

3.10(a).  The presence of a gap between the electrodes is clearly visible after the wire is 

broken and the size of the narrowest gap is below 5 nm.  However, an accurate 

measurement of the gap size is difficult because it lies below the resolution limit of the 

SEM.  The picture shows that the location of the gap is not always in the middle of the 

(a)

(b)

Figure 3.10 STM (a) and AFM (b) images of a nanowire before and after the electromigration-
induced breaking process.  The wire shown in (a) is fabricated using the design I explained in section 
3.2, whereas the wire in (b) was fabricated by the design II.  Both images taken after the breaking 
clearly show a physical gap formed within the nanowire (marked by an arrow in (b)).  Scale bar in (b): 
200 nm.  For comparison, an SEM image of an accidentally broken wire is shown in (a).

before after

before after
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wire.  This phenomenon has been observed by others[53].  An SEM image of an  

accidentally broken (by static, most likely) wire is also shown in Figure 3.10(a) for 

comparison. 

Figure 3.10(b) shows topographic AFM images of a wire before and after 

breaking.  Again they clearly show the gap in the middle of the wire, but it is not possible 

to measure the size of the gap because it is smaller than the size of the AFM tip.  In 

addition, the narrowest point of the gap may lie at the bottom, which an AFM tip cannot 

reach.   

We can identify the location of the tunnel gap using the electrostatic force 

microscopy (EFM) technique, which allows one to measure the voltage drop across a 

conducting material.  Figure 3.11 shows an EFM image of a wire after it is broken by 

electromigration process.  The voltage drop is abrupt in this image, unlike the gradual 

voltage drop that can be seen in the EFM image taken before the breaking (not shown).  

The electrode on the right side (where an AC bias is applied) has a constant electric 

potential up to the break point without showing any potential drop, whereas the one on 

the left completely disappeared in the image, showing that the two electrodes are 

electrically separated.  The location of the electrical break matches the location of the 

physical gap (both locations marked by an arrow) in the wire shown in Figure 3.10(b).  

This confirms that the tunnel gap actually coincides with the physical gap formed by the 

electromigration process.  It is also clear in this case that the gap is formed near the 

middle of the wire, where the highest current density and temperature are expected.  

However, the size of the tunnel gap still cannot be measured using these imaging 

techniques.  

Figure 3.11 An AC-EFM image taken after the wire is broken by electromigration 
process.  The electrode on the right side (bias side) shows up brightly whereas the 
other electrode completely disappeared.  This indicates that the two electrodes are 
electrically separated by the physical gap (arrow) formed by the electromigration 
process. (Courtesy of Ji-Yong Park and Markus Brink)  
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The size of the tunnel gap, therefore, needs to be measured indirectly from its 

tunnel conductance.  Figure 3.12 shows I-V curves taken from a nanowire before and 

after breaking.  Before the breaking, the resistance is 40 Ω .  Once the nanowire is broken 

by the electromigration process, its resistance increases to ~80 GΩ  and the I-V curve 

shows nonlinearity.  This non-ohmic I-V curve with a large resistance is strong evidence 

for the formation of a tunnel gap in the wire.  The resistance is related to the geometry of 

the tunnel gap.   

The width of the tunnel gap can be estimated from measured tunnel conductance.  

When electric current flows through a tunnel gap, the conductance depends on the width 

of the tunnel gap, s.  One can write the relation between the two as follows, assuming a 

simple one-dimensional model with a WKB approximation. 

 ( )0 0exp /G G s s= −  (3.3) 

In (3.3), G0 is the quantum of conductance and s0 is a characteristic length that depends 

on the work function of gold.  When s = 0, the conductance will be a quantum of 

conductance, which corresponds to a single atom contact.  As the gap grows larger the 

conductance across the tunnel gap will decrease exponentially.  For gold electrodes, the 

conductance is known to decrease by one order of magnitude for every one-Angstrom 

increase in s[59].  

Figure 3.13 shows a histogram of the tunnel resistance measured from 140 wires 

broken by the electromigration process.  The tunnel resistance varies from ~100 kΩ  to  

Figure 3.12 The conductance of a Au nanowire before (a) and after (b)  the 
electromigration process.  After the process, the resistance of the nanowire increases 
by many orders of magnitude.  The I-V curve is nonlinear after the breaking, 
signifying the formation of a tunnel gap. 

before after(a) (b)
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~10 GΩ  for most nanowires.  This wide spectrum in the tunnel resistance, however, 

corresponds to only ~1 nm variation in s.  It is also clear that the tunnel distance s is most 

likely within 1~2 nm.  

The actual size of the tunnel gap will differ from the value predicted by (3.3) due 

to many other effects present in the gap such as the image charge interaction and the 

tunneling through the insulating surface rather than the vacuum.  Previous measurements 

[49, 60] on the tunnel gap between two gold electrodes suggest that the resistance of ~1 

nm gap is ~ 1 GΩ .  Therefore, the histogram in Figure 3.13 suggests that the median s is 

about 1 nm with a variation of ~1 nm. 

These values were confirmed by more recent report by Lambert et al.[58]  In their 

report, they used a large bias I-V measurement instead of the linear conductance (V = 0).  

Once the bias is larger than the barrier height of the tunnel gap, it is in the well-known 

Fowler-Nordheim regime where I/V2 is proportional to 1/V with a slope that depends on 

the gap distance s.  Lambert et al. concluded that s is 1.5 +- 0.1 nm for most wires, which 

is consistent with the values (1~2 nm) inferred from the histogram in Figure 3.13. 

The stability of the tunnel resistance is also an important issue.  As long as the 

wires are kept at a liquid helium temperature, the tunnel resistance usually does not 

change on the time scale of days.  However, it changes at room temperature even when it 

is kept in vacuum.  In most Au wires, the tunnel gap widens to such an extent that one 

cannot measure any current across the tunnel gap after keeping them overnight at room 

temperature.  Compared to Au, the nanoelectrodes made with Pt show better stability at  

Figure 3.13 A histogram of low bias tunnel resistance of 140 nanowires broken by 
the electromigration process.  
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room temperature.  More than half of them show similar tunnel conductance after 

spending days in vacuum at room temperature.  

 

3.5 Deposition of a molecule in the gap 
As discussed in the previous section, nanowires broken by the electromigration 

process show tunnel resistances that are consistent with a 1~2 nm gap size.  Therefore, 

these electrodes can be used to wire up single molecules in our experiments if the 

molecules can be located in the gap between the electrodes.  The molecule deposition 

method used to accomplish this objective differs from molecule to molecule and will be 

explained in detail for each molecule in later chapters.  However, the general procedure is 

summarized below. 

First, the continuous wires (before breaking) are carefully cleaned.  We begin the 

cleaning process using typical organic solvents such as acetone, isopropanol, and 

methylene chloride to remove any organic residue left after all the fabrication steps.  

Then the chip with the wires is brought into an oxygen plasma cleaner to further 

eliminate organics.  The molecules, which are usually dissolved in a carrier solvent, are 

deposited onto the wires right after the plasma cleaning.  Finally the wires are inserted 

into a cryostat and broke by the electromigration process to form a tunnel gap.  Molecules 

deposited on the surface of wires before the breaking can be found in the gap by 

subsequent conductance measurements.  

Figure 3.14 The breaking curve of a nanowire with C60 molecules deposited on top.  
It shows a large residual conductance after major breaking (arrow) occurs.  
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We sometimes observe the effects of a molecule in the gap during the breaking 

process.  As shown in section 3.3, the conductance of a wire without molecules decreases 

abruptly once the breaking process begins and the final conductance becomes lower than 

the conductance quantum.  When the wires are broken with molecules deposited on the 

surface, the breaking curve sometimes shows a significant conductance larger than the 

conductance quantum even after the wire broke (Figure 3.14).  This large residual  

conductance is often a signature of a molecule incorporated into the gap and many wires 

that showed the residual conductance after breaking showed Coulomb blockade 

phenomena in later conductance measurements.   

Similar residual conductance is sometimes observed from wires without 

molecules when the wires are not cleaned thoroughly.  Therefore, the breaking curves 

and the presence of the residual conductance can be used as a measure of the surface 

cleanliness in test experiments.  

The mechanism of incorporation of molecules within the gap is not well 

understood.  One possible explanation is the electrostatic trapping mechanism.  Before 

the breaking, the molecules on the surface of a wire experience a weak local electric field 

typically less than 10 mV/nm.  Once the gap is formed due to the electromigration 

process, the electric field in the gap region increases to a large value, typically on the 

order of 1 V/nm.  The field strength decreases abruptly as one moves away from the gap 

region.  This strong field localized in the gap region can attract any polarizable molecules  

Figure 3.15 A low bias I-V curve taken from a nanowire broken with deposited C60
molecules.  It shows a Coulomb blockade and additional current steps that can be 
associated with a single C60 molecule located in the gap.
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into the gap region.  A similar mechanism has been previously used successfully to trap 

larger objects between two electrodes by other groups[61].   

As explained in the previous section, it is extremely difficult to image single 

molecules located in a tunnel gap.  But one can decide whether a molecule is located in 

the gap by looking at the I-V curves measured after the tunnel gap is formed in the wire.  

Once a molecule is positioned within the gap, the conductance between two electrodes 

will be affected by the presence of the molecule.  The contact between the molecule and 

the electrodes is usually poor, and it will form two tunnel barriers, each located between 

the molecule and either electrode.  As explained earlier in Chapter 2, the conductance 

measurement on such a device will be affected by the charging energy of the molecule, 

showing the characteristic behaviors of a single electron transistor.  

Figure 3.15 shows an I-V curve taken from a wire that is broken with C60 

molecules deposited on top.  It clearly shows current steps that are absent in the tunnel I-

V curve of a simple tunnel junction (see Figure 3.12 (b)).  The current steps in Figure 

3.15 are the result of the charging energy and discrete quantum levels of the C60 

molecule.  Hence, these features indicate the incorporation of a molecule into the gap. 

For devices showing the Coulomb blockade, individual devices show different 

detailed behaviors.  This can be seen from a wide variation in such parameters as the 

overall conductance, the charge degeneracy gate potential (VC), the energies of excited 

levels, the intensities of the dI/dV lines, and the capacitance values.  Such differences 

among single molecule devices are due to the random nature of the device geometry.  

Unlike the microelectronic devices fabricated with a well-controlled device geometry, the 

single molecules in our devices are randomly located in a tunnel gap formed by the 

electromigration technique.  For this reason, we need to rely on device statistics to 

attribute certain conductance features to the properties of individual molecules.  We will 

see examples of such reproducible features as well as non-reproducible ones in the 

following chapters.  

 

3.6 Measurement Setup 
Most transport measurements and the electromigration process were performed in 

a liquid helium cooled cryostat with a standard transport measurement setup.  Figure 3.16 
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Figure 3.16 A schematic diagram of the low-temperature DC conductance measurement setup. 
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shows the schematic of the whole measurement setup including the cryostat, device 

wiring and measurement circuit.  Let us go through individual components of the 

experimental setup one by one.  

 

The liquid helium cryostats 

Two major cryostats are used for conductance measurements.  The first one is the 

OXFORD variable temperature insert (VTI) system with a base temperature below 1.5 K 

(Figure 3.17(a)).  The sample sits in a liquid helium can that cools down by pumping the 

helium gas out of the can.  The amount of liquid helium flowing into the can is controlled 

by a needle valve.  The VTI system is relatively simple, requires minimal maintenance, 

and has a very short sample turn around time (< 2 hrs).  Since the cooling power is very 

high on this system, high resistance wires are not required (wire resistance < 10 Ω ).  

This is ideal for the breaking process, as described in section 3.2.  The VTI has a 

superconducting magnet that can go up to 12 T.  

The other cryostat shown in Figure 3.17(b) is the top loading OXFORD dilution 

refrigerator (DF).  The base temperature is below 20 mK and the sample sits in a 

He3/He4 mixing chamber.  Unlike the VTI, the DF requires a heavy maintenance and has 

a longer sample turn around time (> 5 hrs).  The wiring is also resistive (~ 500 Ω ), so 

that only very resistive nanowires (R > 1 kΩ ) can be broken in the DF.  We can measure 
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low resistance wires in the DF as long as they are broken outside of the DF and then 

loaded into it.  The DF also has a superconducting magnet with a maximum magnetic 

field of 9 T.  In both systems, no special filters were used in the wiring other than a 

carbon epoxy filter in the DF.    

 

Measurement circuit 

Figure 3.18(a) shows a schematic of the measurement circuit for a DC 

measurement.  For a DC I-V measurement, we apply a bias to the device and then 

measure the current flowing through the circuit using a low-noise current preamplifier 

(DL instruments 1211).  The voltage was applied and controlled by a computer-

controlled data acquisition card (National Instruments PCI-6052E) with a BNC I/O 

connector block.  The applied bias was directly recorded to the computer simultaneously 

with the current read from the current preamp using the data acquisition card.  

The maximum output voltage of the card is ± 10 V with a resolution of ~0.3 mV.  

For measurements at helium temperatures (T < 1.5K), a voltage divider (10:1 or 100:1) 

was always used to decrease the resolution to ~30 µV or ~3 µV.   

Figure 3.17 The two helium refrigerators used for low temperature conductance measurements. (a) 
The OXFORD variable temperature insert system with < 1.5 K base temperature. (b) The top loading 
OXFORD dilution refrigerator with the base temperature lower than 20 mK.  Only the top part is shown 
in the picture. Inset: the sample mount.

(a) (b)
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Figure 3.18 The measurement circuit for (a) a DC and (b) AC lock-in conductance measurement. 

Figure 3.19 The front panel of the data taking program “Mezurit”.
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 Figure 3.18(b) shows a circuit diagram for an AC lock-in measurement.  Instead 

of monitoring the current, the differential conductance (dI/dV) was monitored using a 

lock-in amplifier (Stanford Research Systems SR844 or EG&G 7265).  An AC bias with 

a small amplitude δV (< kBT) was applied to the device along with the DC bias.  The 

current was amplified by the current preamplifier and fed into the lock-in amplifier, 

which measures the AC current.  A computer and a data acquisition card are used to 

produce a DC bias and to record all the data.  

 

Mezurit 

Most data presented in this thesis were taken using a program called “Mezurit” 

(Figure 3.19).  It is a C-based program originally developed by Mark Bockrath and David 

Cobden using the National Instruments LabWindows/CVI programming environment.  

Mezurit can control two voltage outputs, which are usually used for controlling the 

source-drain bias and the gate bias.  It can also read several analog signals and record 

them in real time.  It is a very versatile program and has many useful functions specially 

developed for three terminal transport measurements.  It is, however, not optimized for 

fast data taking and also very difficult to customize or expand.  

 

3.7 Summary 
In this chapter, we discussed various issues concerning the device design, device 

fabrication, sample preparations, and the measurement setup.  To perform the 

electromigration-induced breaking successfully, the nanowires are required to meet a 

certain design criteria (section 3.2) and the gate material and its geometry should be 

wisely chosen.  The wire cleaning process and molecule deposition (section 3.5) is a 

critical process for successful device fabrication and requires careful parameter control.  

Finally the electromigration process is used to form two electrodes with a ~nm sized gap 

that can be bridged by single molecules previously deposited on the surface (section 3.3).  

Conductance measurements after the breaking show simple tunnel I-V curves (section 

3.4) or the Coulomb blockade (section 3.5) depending on whether a molecule is located 

in the gap or not. 



Chapter 4 

Nano-mechanical Oscillations in a Single C60 

Transistor 

 
4.1 Introduction 

Over the last decade, electron transport through quantum dots has attracted 

considerable attention from the scientific and engineering community.  The electronic 

motion through these structures is strongly modified by single-electron charging and 

energy level quantization (Chapter 2).  Recently, much effort has been directed toward 

extending these studies to chemical nanostructures, such as molecules[15, 16, 62-65], 

nanocrystals[7, 8, 52, 66, 67], and nanotubes[30, 31, 68, 69].   

In this chapter we will discuss the fabrication of single-molecule transistors based 

on individual C60 molecules.  Transport measurements of single-C60 transistors provide 

evidence for coupling between the center-of-mass motion of C60 and single-electron 

hopping[70], a conduction mechanism that has not been observed in previous quantum-

dot studies.  This coupling manifests itself as quantized nano-mechanical oscillations of 

C60 against the gold surface.  The frequency of this oscillation is determined to be around 

1.2 THz, in good agreement with a simple theoretical estimate based on van der Waals 

and electrostatic interactions between C60 and gold electrodes.  In general, the coupling 

between a vibrational mode of a quantum dot and single-electron hopping can be 

described within the framework of the Franck-Condon process[71] and a simple 

theoretical model based on this process will be discussed.  

This chapter is written based on a previously published paper[32] and parts of the 

text and the figures presented in this chapter are excerpted from it. 

 

4.2 Sample Preparation  
A schematic diagram of an idealized single-C60 transistor is shown in Figure 4.1.  

Single-C60 transistors were prepared by depositing a dilute toluene solution of C60 onto a 
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Figure 4.1 An idealized diagram of a single-C60 transistor fabricated in the experiment.

pair of connected gold electrodes fabricated using e-beam lithography.  The toluene 

solution of C60 was made by dissolving 10 mg of C60 powder in 3 mL of toluene solvent, 

which was subsequently sonicated for over 15 minutes and then centrifuged at 4000 rpm 

for 10 minutes.  The C60 solution was filtered using 0.2 µm filter, after which a UV 

spectrum was taken.  A five-times diluted solution (~ 1 mM) was used for the actual 

Figure 4.2 Electromigration-induced breaking of the electrodes.  A large bias was applied between the 
electrodes while the current through the connected electrode was monitored (black solid curve).  After 
the initial rapid decrease (solid arrow), the conductance stayed above ~ 0.05 mS up to ~ 2.0 V.  This 
behavior was observed in most single-C60 transistors, but it was not observed when no C60 solution was 
deposited (red dotted curve).  The bias voltage was increased until the conductance fell low enough to 
ensure that the current through the junction is in the tunneling regime (open arrow).  The low bias 
measurements were taken after this breaking procedure. 
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deposition.  The C60 solution was kept in a quartz vessel to minimize the formation of C60 

aggregates.  

The electrodes are made by the fabrication process described in section 3.2  

(device design I).  A break-junction technique was then used to create a gap between 

these electrodes by the process of electromigration.  The typical lateral size of the 

fabricated electrodes was on the order of 100 nm at the point of the gap formation, and 

the height of the electrodes was 15 nm.  Scanning electron microscope images of 

fabricated electrodes (Figure 3.10(a)) reveal that the gap between two electrodes is not 

uniform and that the narrowest gap is formed only between small protrusions (≤ 10 nm) 

of the two gold electrodes.  Current-voltage measurements of these electrodes at 

cryogenic temperatures without deposited C60 molecules show that the size of the gap is 

consistently around 1 nm as discussed in section 3.4.  In a significant fraction of the C60 

devices, the conductance of the junction after initial breaking is substantially enhanced 

compared to devices with no C60 deposited, indicating that C60 molecules reside in the 

junction (see Figure 4.2).  The entire structure was defined on a SiO2 insulating layer on 

top of a degenerately doped silicon wafer that serves as a gate electrode that modulates 

the electrostatic potential of C60.  All the measurements were performed in a pumped 

liquid He Cryostat (VTI) with a base temperature below 1.5 K.  

 

4.3 Coulomb Blockade in Single-C60 Transistors 
Figure 4.3 presents representative current-voltage (I-V) curves obtained at 1.5 K 

from a single-C60 transistor at different gate voltages (VG).  The device exhibited strongly 

suppressed conductance near zero bias voltage followed by step-like current jumps at 

higher voltages.  The voltage width of the zero-conductance region (conductance gap) 

could be changed in a reversible manner by changing VG.  In ten devices prepared from 

separate fabrication runs, the conductance gap could be reduced to zero by adjusting VG, 

although the gate voltage at which the conductance gap closed (VC) varied from device to 

device. 

Figures 4.4 and 4.5 show two-dimensional plots of differential conductance 

(dI/dV) as a function of both V and VG for four different devices.  Peaks in dI/dV, which 

correspond to the step-like features in Figure 4.3, show up as lines in these plots.  As seen 
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Figure 4.3 Current-voltage (I-V) curves obtained from a single-C60 transistor at 
T = 1.5 K.  Five I-V curves taken at different gate voltages (VG) are shown. 
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clearly in Figures 4.4 and 4.5, the size of the conductance gap and the dI/dV peak 

positions evolve smoothly as VG is varied.  As the gate voltage was varied farther away 

from VC in both positive and negative directions, the conductance gap continued to widen 

and the maximum observed gap exceeded 270 mV (shown in Figure 4.6).  Many dI/dV 

peaks outside the conductance gap are also observed. 

The  VG-dependent features described above were not observed in devices when 

C60 was not deposited on the electrodes.  In addition, the coverage of C60 on the 

electrodes was such that only ~ 10% of more than 300 fabricated electrodes show I-V 

characteristics different from a simple tunnel junction without C60.  This low C60 

coverage ensures that the probability of finding multiple C60 molecules bridging two 

electrodes is small.  Furthermore, many different devices exhibited similar conductance 

characteristics that are consistent with a single nanometer-sized object bridging two 

electrodes, as explained in detail below.  Although C60 could not be imaged directly in 

these devices due to its small size (~7 Å in diameter), these experimental observations 

indicate that individual C60 molecules are responsible for the conductance features 

observed in the experiment.   
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The global patterns observed in Figures 4.3 - 4.6 can be understood using the 

Coulomb blockade model described in Chapter 2.  The conductance gap observed in the 

data is a consequence of the finite energy required to add (remove) an electron to (from) 

C60.  This energy cost arises from the combined effect of single-electron charging of C60 

and the quantized excitation spectrum of the C60-transistor system.  The maximum 

observed gap in the experiment indicates that the charging energy of the C60 molecule in 

this geometry can exceed 270 meV.     

The conductance gap changes reversibly as a function of VG because more 

positive gate voltage stabilizes an additional electron on C60.  The conductance gap 

disappears at VG = VC where the total energy of the system is the same for two different 

C60 charge states.  When the gate voltage traverses VC in the positive direction, the 
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Figure 4.4 Two-dimensional differential conductance (dI/dV) plots as a function of 
the bias voltage (V) and the gate voltage (VG) obtained from four different devices 
prepared from separate fabrication runs.  The differential conductance values are 
represented by the color scale, which changes from black (0 nS) through pink to white 
(white representing 30 nS in a, b, c and 5 nS in d).  The white arrows mark the point 
where dI/dV lines intercept the conductance gap.  During the acquisition of data in d, 
one “switch” where the entire dI/dV characteristics shift along the VG axis occurred at 
VG = 1.15 V.  The right portion of plot d is shifted along the VG axis to preserve the 
continuity of the lines. 
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equilibrium number of charges on C60 

changes by one electron from -n
60C  to 

( )-1+n
60C , where n designates the number of 

charges on C60.  It is determined by both 

VG and the local electrochemical 

environment, that is the work function of 

the metal electrode and the local charge 

distribution around C60.  While the value 

of n cannot be determined solely from 

our experimental data, previous 

electrochemical and photoelectron 

spectroscopic studies of C60 on gold 

suggest that n is most likely zero or 

one[38].   

Figure 4.6 A 
differential conductance 
plot showing a large 
conductance gap.  This 
C60 device shows a 
conductance gap larger 
than 270 mV (arrow).  
Data was not taken in 
the white area to avoid 
excessive current 
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The position of each dI/dV peak outside the conductance gap in Figures 4.4 and 

4.5 provides detailed information on the quantized excitations of the single-C60 transistor 

system as discussed in Chapter 2 (see Figure 2.16).  These dI/dV peaks appear when a 

new quantized excitation becomes energetically accessible, providing an electron-

tunneling pathway between C60 and the gold electrodes.  Specifically, each dI/dV peak 

that intercepts the conductance gap on the VG > VC side signifies an opening of a new 
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Figure 4.5 A differential conductance plot 
showing a larger bias-voltage range than those in 
Figure 4.4.  Here two dI/dV lines that intercept the 
conductance gap at V = 35 mV are seen clearly 
(arrows).  The energy quantum of this excitation 
closely matches that of the C60 internal vibrational 
mode shown in the inset.
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tunneling pathway where an electron hops onto -n
60C  to generate ( )-1+n

60C in its ground or 

excited states; these peaks therefore probe the excitation energies of the ( )-1+n
60C  ion.  Each 

dI/dV peak that ends at VG < VC occurs when an electron hops off ( )-1+n
60C  to generate -n

60C ; 

these peaks thus probe the ground and excited states of -n
60C .  As explained in section 2.4, 

the energy of these quantized excitations can be determined from the bias voltage at 

which they intercept the conductance gap.  These points are marked by the white arrows 

in Figure 4.4. 

 

4.4 The Center-of-Mass Vibration (5 meV Excitation) in C60 Transistors  
A remarkable common feature of the different devices is that a quantized 

excitation is universally observed with an energy of ~5 meV (arrows, Figure 4.4).  

Moreover, this excitation is observed on both sides of VC in most devices, indicating that 

it is an excitation of both charge states of C60.  The exact value of this energy quantum 

varied from device to device and ranged from 3 to 7 meV.  This can be seen from the 

histogram of observed excitation energies, which shows a clear peak centered at 5 meV 

(Figure 4.7).  In some devices, multiple dI/dV features with almost identical spacing 

appear, as seen in Figure 4.4(d). 

The observed 5-meV excitation could arise from many possible degrees of 

freedom of the single-C60 transistor system.  One possibility, which has been commonly 

invoked in other nanometer-scale systems, is the excited electronic states of the system.  

However, this possibility is highly unlikely here because the 5-meV excitation is the 

Figure 4.7 The 
histogram of excited 
levels observed below 
10 meV from eight 
different C60 devices. 
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same for both charge states of C60 and also because multiple excitations with the same 

spacing are observed.  Although the exact electronic-level structures of the -n
60C  ions are 

not known experimentally, theoretical calculations predict that the electronic states do not 

follow such behavior[38] (see Figure 1.6). 

A more natural candidate is a vibrational excitation of the C60 system coupled to 

an electron tunneling on and off C60.  The observation of multiple dI/dV features with 

identical spacing would then result from the excitation of integer numbers of vibrational 

quanta.  Moreover, these vibrational modes would be present irrespective of the charge 

state of the C60. 

 The internal vibrational modes of the free C60 molecule have been extensively 

studied, both theoretically and experimentally[38, 72].  The lowest-energy mode is one 

with a vibrational quantum of 33 meV and corresponds to the C60 deformation from a 

sphere to a prolate ellipsoid, as shown in the inset to Figure 4.5.  In Figure 4.5, an 

excitation that likely corresponds to this mode can indeed be seen with an energy of 

~35 meV.  However, internal vibrational modes cannot account for the observed 5-meV 

features. 

Another possibility is the center-of-mass oscillation of C60 located within the 

confinement potential that binds it to the gold surface, as shown in Figure 4.8.  This mode 

has not been directly measured experimentally.  However, previous theoretical and 

experimental studies have shown that C60 is held tightly on gold by van der Waals 

interactions, with a C60-gold binding energy of ~1 eV and a distance of ~6.2 Å between 

the C60 center and the gold surface[38, 73, 74].  

The above parameters can be used to determine the shape of the potential that 

describes the C60-gold binding.  Assuming that the C60-gold interaction can be expressed 

by the Lennard-Jones form, the binding potential can be obtained by integrating the 

interaction over all pairs of a C60 carbon atom and a gold atom on a plane[74],   

 
( )

{ } { }

12 6
12 6

( , )

9 9 3 3

( ) ' '

( ) ( ) ( ) ( )

all C Au pairs

E r c r c r

A r R r R B r R r R

− −

− − − −

= −

= − − + − − − +

∑
 (4.1) 

where R is the radius of C60.  Using the binding energy (~1 eV) and the equilibrium 

distance (r0 ~ 6.2 Å), the constants A and B in the binding potential (4.1) can be decided, 
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and then it can be approximated very well near the equilibrium position by a harmonic 

potential with an estimated force constant of k ~ 70 N/m. 

 ( )21
2 0( ) bindingE r E k r r≈ + −  (4.2) 

Therefore, the C60-gold interaction can be represented by a spring as shown 

schematically in Figure 4.8.  This force constant and the mass M of the C60 molecule 

yield a vibrational frequency of f = (1/2π)(k/M)1/2 ~ 1.2 THz and a vibrational quantum of 

hf ~ 5 meV, where h is the Planck constant. 

Adding an additional electron to C60 compresses the C60-surface bond due to the 

interaction between the C60 ion and its image charge in the metal and this serves as the 

excitation mechanism of the center-of-mass vibration of C60.  An additional electron on 

C60 results in the shortening of the C60-surface distance by δ, whose value can be 

estimated as follows when the distance between the additional charge and the image 

charge (r) is ~1 nm. 

 
2 10
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Figure 4.8 Schematic of the center-of-mass oscillation of C60.  (a) A C60 molecule is 
bound to the gold surface by the van der Waals and electrostatic interaction.  The 
interaction potential is schematically illustrated in the figure. (b) When an electron 
jumps on to C60

n-, the attractive interaction between the additional electron and its 
image charge on gold pulls the C60 ion closer to the gold surface by the distance δ.  
This electrostatic interaction results in the mechanical motion of C60.  
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 However, the interaction between the additional electron and the image charge 

does not significantly change the vibrational frequency.  By comparison, the root-mean 

squared displacement xm of the C60 molecule in the m-th vibrational level is given by 

xm = 2m +1( )1/ 2 x0, where x0 = hf k( )1 / 2 ~ 3 pm.  Although the exact values of these simple 

estimates change when the second metal electrode is included in the model, the 

qualitative conclusions of the model remain essentially the same.  The present estimates 

pertain to the situation where the coupling between C60 and two electrodes is strongly 

asymmetric. 

The C60-surface vibration discussed above can account for the 5-meV 

conductance features in a unifying fashion.  The first dI/dV peak at the boundary of the 

conductance-gap region is observed when an electron hops on or off C60 with the system 

staying in the ground vibrational level.   Additional dI/dV peaks that intercept the ground 

dI/dV line at VG > VC appear when an electron hops onto -n
60C  to generate ( )-1+n

60C  in excited 

vibrational states.  The dI/dV peaks that end on the VG < VC side signify, on the other 

hand, an event where an electron hops off ( )-1+n
60C , leaving -n

60C  in excited vibrational levels.  

Multiple dI/dV peaks on the same side of VC indicate that multiple vibrational quanta are 

excited. 

This process is reminiscent of the Franck-Condon processes encountered in 

electron-transfer and light-absorption processes in molecules, where the vibrational 

excitation accompanies the electronic motion[71].  We will describe the Franck-Condon 

process in a single electron transistor more quantitatively in the next section.  As we will 

see in the following section, the vibrational matrix elements for these processes can be 

readily calculated within the harmonic approximation, and the ratio δ x0  determines the 

number of vibrational quanta typically excited by the tunneling electron.  According to 

the estimates discussed above, δ x0  ~ 1 in a single-C60 transistor.  The number of dI/dV 

peaks visible in Figure 4.4 generally confirms this expectation since only a few dI/dV 

peaks are observed in most devices. 

One device that does not follow this general trend is the one shown in Figure 

4.4(d).  As described previously, this device exhibits many dI/dV peaks on both sides of 

VC.  In addition, the peak intensities do not show simple variations expected from the 
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single-mode Franck-Condon picture.  The anomalous behavior may be related to the 

highly asymmetric coupling of C60 and the two electrodes in this particular device.  This 

asymmetry is demonstrated by the different slopes of the upward and downward dI/dV 

lines in the V-VG plane.  The variations of peak intensities may be due to the presence of 

other degrees of freedom in the system, such as the C60 motion perpendicular to the 

surface normal. 

Unexplained features exist in other devices as well.  In the data in Figure 4.4(a), a 

small (≤ 1 meV) energy splitting is observed for many of the lines.  This splitting may 

arise from the C60 center-of-mass motion perpendicular to the surface normal discussed 

above.  Unfortunately, the nature of the potential for this motion is not known due to the 

lack of detailed knowledge of the electrode geometry near C60, and quantitative support 

of this assignment is thus lacking in this experiment. 

 

4.5 Theory of a Vibrating Quantum Dot 
The coupling between tunneling electrons and the center-of-mass motion of C60 

can be more quantitatively described by extending the Coulomb blockade theory 

developed in Chapter 2 to accommodate vibrational degrees of freedom of a quantum dot.  

In the simple Coulomb blockade model discussed in Chapter 2, the current level 

of a single-level quantum dot in its on state is decided by the two tunneling rates ΓS and 

ΓD and the current amplitude is |e|Γ, where Γ = ΓS ΓD/(ΓS +ΓD) (equation (2.11)).  In this 

model, these tunneling rates are purely electronic and they are roughly proportional to the 

electronic wave function overlap between the quantum dot and the electrodes.  Once we 

release the quantum dot so that it can freely move under a certain binding potential, the 

tunneling rates will change because the lattice wave function can be different before and 

after the electron tunneling.  Therefore, the tunneling rates become modified to take into 

account the overlap between the two vibrational wave functions.   

 
2

( ) ( )S D S D after beforeΓ → Γ Ψ Ψ  (4.4) 

Here Ψbefore and Ψafter are the vibrational wave functions of the quantum dot (a C60 

molecule in the present experiment) before and after the electron tunneling.  It is obvious 
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(a) Fixed dot (b) Vibrating dot

QD

e-

e- QD

e-

e- beforeΨ

afterΨ

δ

Tunneling rate: ΓS & ΓD

2

( )S D after beforeΓ Ψ Ψ

Figure 4.9 Tunneling rates for (a) a fixed quantum dot and (b) a vibrating quantum 
dot.

that one does not need to consider the vibrational overlap 
2

after beforeP = Ψ Ψ  when the 

dot is fixed since the value will be always 1.  The difference between the two cases (a 

fixed dot and a vibrating dot) is illustrated in Figure 4.9.  

The vibrational overlap can be easily calculated when the quantum dot is bound 

by a simple harmonic potential with the same force constant for both charge states 

(Figure 4.10).  Only the equilibrium position of the quantum dot changes by δ between 

the two charge states.  The overlap between the two vibrational ground states can be 

readily calculated to produce,  

Figure 4.10 The energy 
diagram of a quantum dot 
when the quantum dot is 
bound by a simple harmonic 
oscillator before and after 
the electron hopping.  The 
solid arrow represents the 
tunneling between the 
ground vibrational states 
whereas the dotted arrow 
represents a tunneling into 
an excited state. energy
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22

/ 2
00 0 0( ) ( )SHO SHO gP x x eδ −= Ψ − Ψ = , (4.5) 

where 0/ /g x k hfδ δ= = .  This ratio between the displacement δ and the ground state 

vibrational amplitude x0 is called the Franck-Condon factor.  The current that is carried 

by the ground level becomes exponentially smaller as g grows bigger or equivalently, as 

the quantum dot moves more upon changing the charge state.  

When one of the charge states is in a vibrational excited state, the vibrational 

overlap can be calculated as follows. 

 
2

22
/ 2
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1( ) ( )
! 2

n
SHO SHO g

n n
gP x x e

n
δ − ⎛ ⎞

= Ψ − Ψ = ⎜ ⎟
⎝ ⎠

 (4.6) 

Assuming the electronic overlap does not change between various vibrational states, Pn0 

will decide the excitation probability for each vibrational excited level when an electron 

hops on or off the quantum dot.  In Figure 4.11, Pn0 (n = 0 ~10) for different values of g is 

plotted.  In general, Pn0 increases with n until n ~ g2/2 and then monotonically decreases.  

The maximum of Pn0 can be found near n ~ g2/2 (arrows).  In the C60 transistor case, g is 

near 1, which suggests, within this model, that the tunneling will be larger for the ground 

state than for the excited states (see Figure 4.11).  Furthermore, only the lowest excited 

states will have a large enough excitation probability to be observable in the experiment.   

I-V curves can be calculated using (4.6) for a vibrating quantum dot with very 

asymmetric tunneling rates and electrode capacitances.  Five I-V curves calculated for 

different values of g are shown in Figure 4.12.  When g = 0, it is a fixed quantum dot and 

its I-V curve shows a current step with an amplitude of |e|Γ after the Coulomb blockade.  

As g grows larger, the first current step corresponding to the tunneling between two 

vibrational ground states becomes smaller.  At the same time, other current steps that 

correspond to vibrational excited states grow larger with increasing g.  In the I-V curves 

of a C60 device shown in Figure 4.3, the first current step is generally larger than the 

second current step.  This again suggests a small Franck-Condon factor for the C60 

device.   

Other properties of a vibrating quantum dot whose tunneling rates are described 

by (4.6) can be predicted.  One such example is the temperature dependence of a 

Coulomb oscillation curve.  The Coulomb oscillation of a single-level quantum dot was 
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Figure 4.11 The vibrational overlap Pn0 for different Franck-Condon factors.  The arrows mark g2/2.
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Figure 4.12 I-V curves 
calculated for a quantum 
dot at 0 K with one 
vibrational mode with 
the excitation quantum 
of hf.  The calculation is 
done for a quantum dot 
with extremely 
asymmetric tunnel 
barriers and electrode 
capacitances.  At zero 
bias, the ground level is 
assumed to be 2hf away 
from the Fermi level. 

described earlier in Chapter 2 (see equation (2.16)).  The peak height monotonically 

decreases with increasing temperature (1/T dependence) and the peak width (FWHM) is 

linearly proportional to the temperature (see Figure 2.8).  When there are multiple 
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vibrational levels present in the quantum dot and all the tunneling rates are described by 

the vibrational wave function overlap, a different behavior is expected 

One can calculate the Coulomb oscillation curve in this case by following the 

method described in Beenakker et al[21].  The result is the following. 
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/ /
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∑  (4.7) 

Here Pmn is the square of the vibrational overlap ( ) ( )m nx xδΨ − Ψ  that can be 

calculated as follows for a simple harmonic oscillator. 
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 (4.8) 

Equation (4.7) clearly suggests that the Coulomb oscillation peak (Gmax) will be 

no longer proportional to 1/T.  Instead, it can show a non-monotonic behavior depending 

on the value of g.  However, the FWHM will display the linear temperature dependence 

as in a fixed quantum dot.  Figure 4.13 plots calculated Gmax as a function of temperature 

for four different values of g.  It is clear that the peak height does not follow the 1/T 

dependence any more.  It rather decreases more slowly or even shows a dip when g is 

larger than 2.   

For comparison, the Coulomb oscillation peak measured from a C60 device is 

plotted in Figure 4.14 for different temperatures.  It shows a monotonic decrease of the 

peak height with increasing temperature, but it decreases very slowly, changing only by a 

factor of 2 between 1.5 K and 13 K (left inset).  The peak width (FWHM) grows 

approximately linearly with temperature (right inset).  Figure 4.14 clearly shows a 

departure from the standard behavior of a fixed single-level quantum dot.  Instead, it can 

be qualitatively explained using similar behaviors of a vibrating quantum dot with g < 2 

as described above.  

Further quantitative description of a vibrating quantum dot requires more 

sophisticated calculation that incorporates various interactions with the environment.  For 

example, any normal mode vibration of a quantum dot can be coupled to the phonon bath 

of the substrate.  This coupling causes the dissipation of the vibrational excitation of the 
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Figure 4.13 The temperature dependence of the Coulomb oscillation peak height with different 
Franck-Condon factors.  When g is above 2, it shows a non-monotonic behavior unlike the case with a 
fixed quantum dot.

Figure 4.14 The Coulomb oscillation peak measured from a C60 device at different temperatures.  The 
curves are shifted in VG so that the peak is located at 0 V.  Measured  peak heights and the FWHM are 
plotted as a function of temperature in the insets.
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quantum dot, therefore reducing the quality factor Q of the oscillator.  In fact, the center-

of-mass motion of C60 is expected to strongly couple to the substrate and hence will have 
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a smaller Q.  Using a simple physical argument, Braig and Flensberg estimated Q for the 

C60 center-of-mass motion[75]. 

 0/s AuMQ
M M

ρυ ω
≈ =  (4.9) 

Here ρ and sυ are the mass density and the sound velocity of a gold substrate, and 

0/Au sM ρυ ω= is the mass of a gold layer located within the wavelength of the phonon 

mode.  Based on (4.9), one gets Q between 1 and 10 for the C60 center-of-mass vibration.   

Braig and Flensberg[75] also incorporated the coupling with environment into the 

rate equations and solved them.  Using the calculated results, they could qualitatively 

match the experimental I-V curves shown in Figure 4.3, when g = 1 ~ 2 and Q = 2 ~ 6.  

Therefore, the center-of-mass vibration of C60 molecule is strongly damped (low Q 

factor) and it finishes the oscillation cycle only several times before dissipation, which 

limits the lifetime of this vibration to several ps.  Compared to this, the typical time scale 

that the electron resides on the C60 molecule is on the order of 100 ps.  Therefore, the 

electron tunneling rate in C60 devices is slower that the vibration dissipation and hence it 

is an equilibrium process.  The vibrational excitation created by one tunneling event 

dissipates before the next tunneling event occurs. 

All the discussions above assume that there is only one vibrational mode to the 

quantum dot, which resembles the C60 transistor case.  However, molecules in general 

have more than one vibrational normal mode, including center-of-mass vibrations and 

intramolecular vibrations.  Furthermore, the excitation probability for each vibrational 

mode can vary according to its normal vectors and the electrostatic environment.  The 

description of the coupling between tunneling electrons and various normal modes of a 

molecule requires a more general approach than the one presented here.   

 

4.6 Summary 
In this chapter, we discussed transport measurements performed on single-C60 

transistors.  They exhibit a Coulomb blockade with a large conductance gap and we also 

observe quantum excitations of the molecule.  The most notable feature is the 5 meV 

excitation, a signature of the center-of-mass vibration of C60 against a gold surface.  This 
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observation serves as an example where a tunneling electron can be used to both excite 

and probe a nano-mechanical vibration of a single molecule.  

This coupling between the tunneling electrons and the molecular vibration can be 

theoretically addressed using the Franck-Condon model which includes the vibrational 

wave function overlap into the tunneling rates.  This process is expected to be important 

in electron transport in other single molecules as well.  We will see more examples in the 

following chapters.  



Chapter 5 

Vibration-Assisted Electron Tunneling in C140 

Single-Molecule Transistors 
 

5.1 Introduction 
In this chapter, we study electron tunneling in single-molecule transistors made 

from C140, a molecule with a mass-spring-mass geometry chosen as a model system to 

study electron-vibration coupling.  We observe vibration-assisted tunneling at an energy 

corresponding to the stretching mode of C140.  The interaction between a local electric 

field and the induced dipole moment of the molecule explains why this mode couples 

better to electron tunneling than do the other internal vibrational modes.  We make 

comparisons between the observed tunneling rates and those expected from the Franck-

Condon model. 

As we saw from C60 transistors in the previous chapter, vibrational modes of 

molecules can affect the current flow when electrons travel through molecules.  

Molecular-vibration-assisted tunneling was first measured in the 1960's using devices 

whose tunnel barriers contained many molecules[76, 77].  Recently, effects of vibrations 

in single molecules have been measured using a scanning-tunneling microscope[65], 

single-molecule transistors made using nanofabrication techniques[32, 33] and 

mechanical break junctions[48].  Theoretical considerations of the coupling of vibrational 

modes to electron tunneling have predicted a rich range of behaviors, with different 

regimes depending on the relative magnitudes of the rate of electron flow, the vibrational 

frequency, and the damping rate of vibrational energy, and also on whether or not 

electrons may occupy resonant states on the molecule [51, 70, 78-80].  

A quantitative analysis of electron-vibration interactions has been difficult to 

achieve in previous molecular-transistor experiments.  In [33], neither the precise nature 

of the vibrational modes nor their energies was determined independently of transport 

measurements.  In the experiments described in the previous chapter, the “bouncing-ball” 

mode of a single C60 molecule against a gold surface was observed, a mode not intrinsic 
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to the molecule itself, and one that had not been previously observed in spectroscopic 

measurements.  In this chapter we discuss single-molecule transistors made using a 

molecule, C140, chosen specifically to have low energy internal vibrational modes that are 

well understood.  We observe clear signatures of one of these modes and discuss 

theoretically why it has the strongest coupling to the tunneling electrons.    

Most text and figures presented in this chapter are prepared based on Pasupathy, 

et al[81].  

 

5.2 Sample Preparation 
The C140 molecule consists of two C70 balls joined together by two covalent C-C 

bonds (Figure 5.1(a)).  The vibrational modes of C140 have been measured by Raman 

spectroscopy and modeled numerically[82] (shown in 5.1(b) and (c)).  The six lowest-

energy modes are intercage vibrations in which each C70 ball moves essentially as a rigid 

unit, so that the molecule can be thought of as a mass-spring-mass oscillator.  The simple 

stretching mode is observed most prominently in Raman spectroscopy, with an energy of 

11 ± 0.5 meV.  The other intercage modes involve bending or twisting of the C140 

molecule, and they are predicted to be at 2.5, 2.7, 4, 15, and 17 meV.  The lowest 

intracage excitation of a C70 molecule by itself is approximately 29 meV[38] and this 

value does not change significantly in C140 (Figure 5.1(b)).  The C140 we use was 

synthesized by pressure treatment of polycrystalline C70 at 1 GPa and 200 C° , and 

purified by chromatography and characterized by C13 NMR, Raman and infrared 

spectroscopy[82].  This process produces predominantly the C2h isomer of C140 (Figure 

5.1(a)) out of several possible isomers[82].   

An atomic force microscope image of our transistor structure is shown in Figure 

5.2(a) and its geometry is illustrated in Figure 5.2(b).  A C140 molecule bridges source 

and drain electrodes that are about 1 nm apart.  The molecule is also capacitively coupled 

to a gate electrode.  To make these devices, we followed the fabrication procedure 

described in section 3.2 (device design II).  We evaporate an Al pad 20 nm thick and 2 

µm wide to serve as the gate electrode, and then oxidize in air to form the gate insulator.  

On top of the gate we pattern by liftoff a gold wire 200-600 nm long, 20 nm high and 50-
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Figure 5.1 Vibrational properties of C140 (a) Two fullerene molecules measured in 
this experiment: C70 and C140 (b) Vibrational Raman spectroscopy of C140 shows low 
energy modes (< 200 cm-1) that corresponds to intercage vibrations of C140.  
(c) Normal mode calculation on C140 also shows the presence of six such intercage 
vibrational modes.   
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(b)
C70 C140
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C70 after pressure treatment

C70 dimer (C140)

Raman Spectroscopy

0 5 10 15 20 25 30 35 40 45 50
Energy (meV)

(c) Calculation

Intercage normal modes

100 nm wide with 2-3 nm of Cr as an adhesion layer or a platinum wire having a similar 

geometry without the adhesion layer.   

We deposit approximately 10 µl of a 100 µM solution of C140 molecules in o-

dichlorobenzene onto the device area, and we allow the solvent to evaporate or we blow 

dry after approximately 10 minutes.  After the molecules are deposited, we cool the 

devices to cryogenic temperatures and use electromigration to create a nm-sized gap in 

the wire within which a molecule is sometimes trapped.  The success rate for 

incorporating a molecule is approximately 10% for both the gold and platinum wires.  
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Figure 5.2 (a) A topographic AFM image (5 by 5 µm) of a finished device.  (b) A 
schematic of a C140 transistor with the measurement circuit.  
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The orientation of the molecule in the device is not known and likely varies from device 

to device.  All the measurements were performed in either a pumped He-4 cryostat at 1.5 

K or in a dilution refrigerator with an electron base temperature lower than 100 mK. 

 

5.3 Coulomb Blockade in C140 Transistors 
In Figure 5.3, we show several current versus bias voltage (I-V) curves measured 

from a C140 device at different gate voltages (VG).  The device exhibits Coulomb-

blockade behavior; electron flow is suppressed at low voltages because electrons must 

overcome a charging energy to tunnel on or off the C140 molecule.  Two-dimensional 

plots of differential conductance (dI/dV) as a function of V and VG are shown in Figure 

5.4 for four of the fourteen C140 devices we have examined.  The dark areas on the left 

and right of each plot are the regions of Coulomb blockade.  The boundaries of the dark 

areas show what source-drain voltage is required at a given value of VG to enable 

tunneling via the lowest-energy electronic state of the molecule with one more or one less 

electron.  Tunneling can occur close to V = 0 only near one value of gate voltage, VC, 

which varies from device to device because of variations in the local the electrostatic 
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Figure 5.3 I-V’s taken from a C140 single electron transistor.  VG increases by 0.04 V 
from gray (0.23V) to blue curve.  Inset: the Coulomb oscillation curve from the same 
device. VG axis is offset to position the peak at the center.  
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Figure 5.4 Color scale dI/dV plots for four C140 devices.  White arrows indicate 
excited levels at ~11meV and ~22meV.  The conductance is represented by the color 
scale increasing from black (zero) to white (maximum).  The maximum conductance 
is 200 nS (device I), 600 nS (II), 15 nS (III), and 100 nS (IV), respectively.  
Measurements were done at 1.5 K for I-III and 100 mK for IV. 
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environment.  Because current flow at low bias occurs only near a value of VG that is 

different for each molecule, we can be confident that the current flows through only a 

single molecule as long as we perform our measurements sufficiently closely to VG = VC. 

Additional dI/dV lines are observed in Figure 5.4 at values of |V| larger than the 

boundary of the Coulomb-blockade regions.  As we discussed in Chapter 2, these lines 

correspond to thresholds for current pathways involving excited quantum states of the  

molecule.  The lines which meet the dark blockade area at VG < VC  (VG > VC) correspond 

to excited quantum levels of the VG < VC  (VG > VC) charge state.  The energy of each 

excited level can be read off from the bias voltage of the point where the dI/dV line 

intercepts a boundary of the blockade region (white arrows).   

 

5.4 Observation of the Stretching Vibrational Mode (11meV) in C140 

Transistors 
The details of the excited-state energy spectra that we measure differ from device 

to device.  In Figure 5.5(a), we plot a histogram of all of the excited state energies that 

are resolved below 20 meV in fourteen C140 devices; excitations in each charge state are 

recorded separately.  An excitation at 11 ± 1 meV is seen in eleven out of the fourteen 

devices.  In seven of these devices, the 11 meV line is present for both of the accessible 

charge states, while in four others it is seen for only one.  In one sample (device I), well-

resolved excited levels are also observed near 22 meV for both charge states, twice the 11 

meV energy.   

As a control experiment, we also measured eight devices made with single C70 

molecules.  A dI/dV plot for one of the C70 devices is shown in Figure 5.5(c).  A 

histogram of the observed excited levels for C70 devices is shown in Figure 5.5(b).  The 

prominent peak observed near 11 meV for C140 is absent in C70 devices.  

 The presence of the 11 meV excitation in C140, but not C70, indicates that it is an 

excitation of the entire molecule, and not the C70 sub-units.  The presence of the same 

excitation for different charge states of the same molecule, and the observation of an 

excitation at 2 x 11 meV in one device strongly suggest that the 11 meV excitation is 

vibrational in nature.  A purely electronic excitation should not be the same in both 

charge states nor appear as multiples of a fundamental excitation.  Based on its energy, 
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Figure 5.5 (a) A histogram of 
observed excited energies from 
fourteen C140 devices.  There is a 
strong peak near at 11meV, the 
energy of the stretching 
vibration of C140.  (c) A similar 
histogram for C70 devices.  (c) A 
color scale dI/dV plot for a C70
device.  White arrows indicate 
excited levels at 4 meV.  
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we identify this excitation with the intercage stretch mode of C140[82].  This is the 

principal observation in the experiment presented in this chapter. 

The C70 histogram exhibits excitations below 5 meV.  These are likely associated 

with the bouncing bouncing-ball mode of the molecule, as demonstrated in previous 

experiments on C60 (Chapter 4).  For C140 devices, sub-5 meV excitations are also 

observed.  These may also arise from the bouncing-ball mode of the entire C140 molecule.  

An alternative candidate is the internal modes of C140 at 2.5, 2.7 and 4 meV.  We cannot 

experimentally distinguish between these possibilities.  However, calculations (see 
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below) suggest that the tunneling electrons couple strongly to only the intercage stretch 

mode, but not the other internal modes.  Significantly, peaks in the histogram are not 

observed near the bending/twisting intercage modes of C140 at 15 and 17 meV. 

 

5.5 Excitation Mechanism of the Stretching Vibrational Mode 
The coupling between vibrational excitations and an electron tunneling onto or off 

of a molecule can be understood within the framework of the Franck-Condon model[71].  

Basic concepts of this model were already discussed in the previous chapter to explain 

the coupling between tunneling electrons and the bouncing ball mode of C60 (section 4.5).   

We will analyze the data from C140 devices also within the framework of the 

Franck-Condon model.  C140 has a large number of vibrational states we denote by α j, 

where α labels the mode of frequency αω  and j is the number of vibrational quanta 

excited in the mode.  For each vibrational mode, the tunneling electron drives a transition 

from the ground vibrational state with A electrons to a vibrational state αj with B 

electrons, where   B − A = +1 (-1) for tunneling on (off) the molecule.  The energy 

landscape for a transition from the charge state A to B is illustrated in Figure 5.6(a).  The 

tunneling rate is determined by the overlap of the starting configurational wavefunction, 
A
gΨ , with the one after tunneling, B

jαΨ : 

 
2

,  where  and 1.
j j j j j

A B B A
electron g

j

P P Pα α α α α
→Γ = Γ = Ψ Ψ =∑  (5.1) 

If the electronic contribution   Γelectron  is assumed constant for the different vibrational 

transitions and if the rate-limiting step for current flow is the  A → B transition, the 

current step associated with a given vibrational excitation is:  

 / /
j jg gI I P Pα α∆ ∆ =  (5.2) 

where ∆Ig is the ground state current.  In order to predict the size of the current steps, we 

must therefore calculate the atomic rearrangements that occur when a charge is added to 

or subtracted from the molecule.  We will first perform this calculation for an isolated 

C140 molecule and then discuss effects of the local electrostatic environment, before 

making comparisons to our measurements.   
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Figure 5.6 The Franck-
Condon model.  (a) A harmonic 
potential as a function of the 
generalized atomic coordinate 
(x) for two charge states.  When 
a molecule changes its charge 
state from A to B, it tunnels into 
either the ground state (solid 
arrow) or an excited state (dotted 
arrow).  (b) Excitation of the 
intercage vibrational mode in 
C140 molecules in the presence 
of a strong electric field.  An 
electric dipole interacts with the 
electric field to stretch the bond. 
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 For the isolated molecule, we calculate the overlaps 
j

Pα  using the semi-empirical 

method PM3 under Gaussian 03.  The charge state of C140 in our devices is not known, 

but since the fullerenes are easily reduced and not easily oxidized[83], we have analyzed 

the initial charge states     n
− = 0,  1− ,  2− ,  and 3−.   

The PM3 calculations indicate that the probability of tunneling without exciting 

any of the vibrational degrees of freedom is small.  This means that tunneling at low 

biases is suppressed.  The coupling is distributed over all of the vibrational modes, but it 

is large for a relatively small number.  Within our measurement range (|eV| < 30 meV) 

the calculations indicate that the coupling is dominated by a single mode, the 11 meV 

stretching mode (α = s).  For the  0 →1−  transition,   Ps1 / Pg = 0.25.  Couplings to all other 

vibrational modes in the measurement range are found to be smaller by at least a factor 

10.  The results are qualitatively similar for other charge states. 

The physics of the 11 meV stretching mode can be captured using a simple model 

of the molecule with two masses M/2 connected by a spring with a spring constant k, as 
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illustrated in Figure 5.6(a).  The vibrational frequency is   ωs = (4k / M )1/ 2  and the zero-

point rms amplitude of fluctuations in the vibrational coordinate is 1/ 2
0 [2 /( )]x Mω= h  = 2 

pm.  The length of the molecule changes by ∆x when one charge is added.  The Franck-

Condon result for the transition probability associated with one quantum of the stretching 

mode, normalized by the ground-state probability, is  

 ( )2
1 0/ / / 4s gP P x x= ∆  (5.3) 

Higher-order transitions involving j quanta of a vibrational mode have rates related to the 

one-quantum transitions:  

 ( ) j

1/ / / j!
js g s gP P P P=  (5.4) 

In going from the neutral to   1− charge state for isolated C140, PM3 predicts that ∆x = -1.9 

pm.  Equation (5.3) then gives Is1/Ig = 0.23, in good agreement with the full calculation 

above.  Multiple-quanta transitions should be much smaller by Eq. (5.4).  For other 

charge states, the calculated strength of the transition assisted by the stretching mode is 

weaker, because ∆x is smaller: for the  1− → 2−  transition ∆x = -0.4 pm, for   2− → 3− ∆x = -

0.1 pm, and for   3− → 4− ∆x = -0.3 pm. 

The electrostatic environment in the neighborhood of the C140 molecule may also 

play an important role.  In general, we expect that the C140 molecule will be subject to a 

strong local electric field E due to image charges, work-function differences, and/or 

localized charged impurities.  For example, an image charge at a distance 0.8 nm 

generates E = 2 V/nm.  We have not succeeded in making quantitative estimates of these 

field-enhancement effects because the Gaussian 03 implementation of PM3 does not 

allow for solutions in an external field.  However, a local field can be expected to 

preferentially enhance vibration-assisted tunneling associated with the stretching mode.  

When an extra electron tunnels onto C140, the presence of E will produce unequal charges 

on the two C70 cages, as illustrated in Figure 5.6(b).  The rearrangement of charge density 

within the molecule will produce changes in chemical bonding forces, leading to changes 

in ∆x.  In addition, the interaction of E with the charge polarization ( δδ −+ ,  in Fig. 

5.6(c)) will stretch the C140 by a length ∆x = Eδ/k.  To estimate the magnitude of this 

stretching, assume that the charge is fully polarized: δ = e/2, and E = 2 V/nm.  Then the 
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Figure 5.7 Values of I11meV/Ig, the measured current step for the excited-state signal 
relative to the ground-state current.  Values for both charge states n- (squares) and 
(n+1)- (diamonds) are shown.  One value is not displayed: for device XII,  I11meV/Ig = 8 
± 2.5  for the (n+1)-- charge state.  Samples IV, XIII, and XIV have no visible 11-meV 
levels.

I 11
m
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 / 

I g

electrostatic stretching is ∆x ~ 1 pm.  Both this stretching and the chemical-bonding 

rearrangement may therefore produce displacements of comparable magnitude to the 

values calculated above for isolated C140.    

We expect that these electric-field effects will be strongly dependent on the angle 

between the field and the molecular axis, because C140 is most easily polarized along its 

long axis.  This angular dependence means that the strength of the excited-state tunneling 

at 11 meV could vary significantly between devices because the orientation of the 

molecule in the junction may vary.  

Figure 5.7 shows the measured ratio ∆Is1/∆Ig for all of the devices.  These were 

determined by taking the ratio of the current step height at the 11 meV peak to the current 

just before the step.  In addition to the steps, an overall increasing background was 

observed that gives significant uncertainties in the step heights.  In five of the devices (I, 

II, V, VIII, and X), the ratios were the same in both charge states, as expected within the 

simple Franck-Condon picture if the vibrational energies are not altered significantly by 

the addition of an electron.  In three of these devices, ∆Is1/∆Ig < 0.6, consistent with the 

PM3 estimates above.  Only the j = 1 vibrational state was observed for these three 

devices, in agreement with theory.   For device I, ∆Is1/∆Ig = 3.6  ± 2.0 and 2.0 ± 0.5 for 
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the   n− and     (n +1)− state, respectively, indicating stronger coupling than expected from 

our estimate for isolated C140.  For this sample, additional lines were observed 

corresponding to the emission of two vibrational quanta (j = 2) with amplitudes ∆Is2/∆Ig = 

7.3 ± 4 for the   n− charge state and 2.3 ± 1.5 for the   (n +1)− charge state.  Equation (5.3) 

predicts 6.5 ± 4 and 2 ± 1 respectively, in good agreement with the measurements.  For 

device II, strong coupling was also observed, but no j = 2 line was resolved, although the 

increasing background may have masked its presence.  Overall, then, this subset of five 

devices is in reasonable agreement with the Franck-Condon predictions. 

In the other devices showing an 11 meV feature, unusual behavior was seen that 

is not expected within our simple Franck-Condon picture.  Large differences were 

observed in ∆Is1/∆Ig for the two charge states; in many cases, a line was observed only in 

one charge state (devices III, VI, VII, and XI).  In addition, anomalously large values of 

∆Is1/∆Ig were observed.  These could either reflect strong electron-phonon coupling or an 

anomalous suppression of tunneling into the ground state by vibrational or other 

phenomena.  Pronounced negative differential resistance was present in one device (VI).  

 

5.6 Summary 
In summary, in single-molecule transistors made from C140 we observe vibration-

assisted tunneling associated with an internal stretching mode of the molecule.  The 

strong coupling of this mode to tunneling electrons, relative to the other molecular 

modes, is consistent with molecular modeling.  Variations in the measured strength of 

vibration-assisted tunneling between different devices may be associated with an 

enhancement of the coupling between tunneling electrons and stretching-mode 

excitations by local electric fields 



Chapter 6 

Coulomb Blockade and the Kondo Effect in Single 

Atom Transistors 
 

6.1 Introduction 
Using molecules as electronic components is a powerful new paradigm in the 

science and technology of nanometer-scale systems[12].  Experiments to date have 

examined a multitude of molecules conducting in parallel[17, 18], or, in some cases, 

transport through single molecules[5, 6, 15, 40, 62, 84].  In the previous two chapters, we 

discussed single molecule transistors made from fullerene molecules, where electrons 

flow by hopping on and off the molecule.   

The ultimate limit would be a device where electrons hop on to and off from a 

single atom between two contacts.  In this chapter, we will describe transistors 

incorporating a transition metal complex designed so that electron transport occurs 

through well-defined charge states of a single atom.  We examine two related molecules 

containing a Co ion bonded to polypyridyl ligands, attached to insulating tethers of 

different lengths.  Changing the length of the insulating tether alters the coupling of the 

ion to the electrodes.  In the longer molecule, the insulating tether forms a tunnel barrier 

at the contact and the device shows a Coulomb blockade with a low conductance.  In the 

shorter molecule, we observe the Kondo effect with a high conductance, which indicates 

that the contacts are more transparent in this molecule. 

This chapter is written based on a previously published paper[33].  Part of the text 

and figures are excerpted from the paper.  

 

6.2 The Molecules and Device Preparation 
The molecules that we have investigated are depicted in Figure 6.1.  They are 

coordination complexes in which one Co ion is bonded within an approximately 

octahedral environment to two terpyridinyl linker molecules with thiol end groups, which 

confer high adsorbability onto gold surfaces.  The two molecules ([Co(tpy-(CH2)5-
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Figure 6.1 The molecules used in this study.  (a) The geometry minimized structure 
of [Co(tpy-(CH2)5-SH)2]

2+ (where tpy-(CH2)5-SH is 4’-(5-mercaptopentyl)-2,2’:6’,2”-
terpyridinyl) and [Co(tpy-SH)2]

2+ (where tpy-SH is 4’-(mercapto)- 2,2’:6’,2”-
terpyridinyl).  The scale bars show the lengths of the molecules as calculated by 
energy minimization.  (b) Three-dimensional structure of the two molecules.  The 
cobalt ion at the center (dark blue) is surrounded by six nitrogen atoms (light blue) in 
an approximately octahedral environment.  The sulfur atoms (yellow) on either end 
bind to gold strongly.  The gray balls are carbon and the hydrogen atoms are not 
shown.

Co

SH

HS

N N
N

N
NN 13 Å24 Å

[Co(tpy-(CH2)5-SH)2]2+ [Co (tpy-SH)2] 2+

(a)

(b)

Co

SH

HS

N N
N

N
NN

SH)2]2+ and [Co(tpy-SH)2]2+) differ by a 5-carbon alkyl chain within the linker molecules.  

The length of the molecule is 24 Å for the longer [Co(tpy-(CH2)5-SH)2] molecule and 13 

Å for [Co(tpy-SH)2]. 

The synthesis of the longer molecule was described in Maskus et al[85].  It was 

synthesized from an ethanolic solution of tpy-(CH2)5-SH and aqueous CoCl2.  The 

molecule is stabilized by the strong ligand bonding between the cobalt ion and six pyrine 

units surrounding it.  Likewise, the shorter molecule, [Co(tpy-SH)2]2+, was a complex of 

cobalt with tpy-SH.  The tpy-SH ligand was prepared from 4’-chloro-2,2’:6’,2” 

terpyridinyl and sodium ethanethiolate by a nucleophilic aromatic substitution followed 
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by nucleophilic aliphatic substitution to give the thiolate anion and subsequent 

protonation to give the desired compound[86, 87].  

These molecules were selected because it is known from electrochemical studies 

that the charge state of the Co ion can be changed from 2+ to 3+ at low energy.  A cyclic 

voltammogram for [Co(tpy-SH)2]2+  adsorbed on a gold electrode in an 

acetonitrile/supporting electrolyte solution is shown in Figure 6.2, indicating that a 

positive voltage Vs ~ +0.25 V (measured against an Ag/AgCl reference) applied to the 

solution removes one electron from the ion.  Similar results were obtained for [Co(tpy-   

(CH2)5-SH)2]2+.  Compared to Co, other metal ions such as Fe and Mn are known to 

require a larger energy to change the charge state. 

Preparation of the single-molecule transistors (schematically shown in Figure 

6.3(a)) begins with the thermal growth of a 30 nm SiO2 insulating layer on top of a 

degenerately doped Si substrate used as a back gate.  Continuous gold wires with a width 

less than 200 nm, lengths of 200-400 nm and thickness of 10-15 nm are fabricated by 

electron beam lithography.  The detailed fabrication procedure is described in Chapter 3.  

The final device geometry used in this experiment was obtained by following the 

fabrication process illustrated in Figure 3.4 with a direct metal evaporation instead of an 

angle evaporation for the nanowires.  

The wires are cleaned with acetone, methylene chloride and oxygen plasma, and 

placed in a dilute solution of the molecules in acetonitrile for a day or more in order to 

0.00.20.40.60.81.0
V vs Ag/AgCl

0.2 µA

Co3+ Co2+ Figure 6.2 Cyclic 
voltammogram of 
[Co(tpy-SH)2]

2+ in 
0.1M tetra-n-
butylammonium
hexafluorophosphate/
Acetonitrile showing 
the Co 2+/3+ redox
peak. 
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Figure 6.3 (a) A schematic diagram of the device with the longer molecule bridging 
the two electrodes. (b) A topographic atomic force microscope image of the electrodes 
with a gap (scale bar, 100nm). 

(a)

(b)

form a self assembled monolayer (SAM) on the Au electrodes.  The formation of SAM 

was later confirmed by the water-contact-angle measurement.  The wires coated with 

molecules are then broken by electromigration, by ramping to large voltages (typically 

over 0.5 V) at cryogenic temperatures while monitoring the current until only a tunneling 

signal is present.  As we discussed in Chapter 3, this produces a gap ~1-2 nm wide across 

which a molecule is often found.  Electrical characteristics of the molecule are 

determined by acquiring current versus bias voltage (I-V) curves while changing the gate 

voltage (VG).  A topographic AFM image of the electrodes taken after the 

electromigration process is shown in Figure 6.3(b). 

 

6.3 Coulomb Blockade in [Co(tpy-(CH2)5-SH)2] Transistors 
First we discuss the results obtained for the longer molecule, [Co(tpy-(CH2)5-

SH)2].  Most measurements were performed in a dilution refrigerator with an electron 

temperature < 100 mK.  In about 10% of 400 broken wires we see I-V curves similar to 

those shown in Figure 6.4.  The current is strongly suppressed up to some threshold 

voltage that depends on VG and then it increases in steps.  In Figure 6.5 we show higher-

resolution color-scale plots of the differential conductance dI/dV at low bias, as a function 
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Figure 6.4 I-V curves of a [Co(tpy-(CH2)5-SH)2]
2+ single-electron transistor at 

different gate voltages from -0.4 V (red) to -1.0 V (black) with ∆Vg ~ -0.15 V 
(temperature: 1.5 K).  Lower inset: A Coulomb oscillation curve measured from 
another device.  It was taken at 1.5 K and the red line is a theoretical fit with 
temperature at 1.9 K.  Upper inset: a conceptual image of the longer molecule 
[Co(tpy-(CH2)5-SH)2] connecting two gold electrodes. 
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of V and VG for three different devices.  The darkest areas on the left and right of the plots 

indicate the regions of no current.  The bright lines located outside of these regions 

correspond to a fine structure of current steps visible near the voltage thresholds.  In 

Figure 6.6, we also show larger-bias dI/dV plots measured from two devices; in (b) the 

conductance gap keeps opening and exceeds 100 mV.   

As we explained in Chapter 2, this behavior is the signature of a single-electron 

transistor (SET), a device containing a small island which is attached to electrodes by 

tunnel barriers and whose charge state can be tuned using a gate voltage.  In this case the 

island is a single Co ion.  For most values of VG, the charge state of the ion is stable at 

low V (dark regions).  An electron does not have sufficient energy to tunnel onto the 

island and therefore current is blocked (Coulomb blockade).  The bright lines that define 

the boundaries of the Coulomb-blockade regions illustrate the tunneling thresholds for 

transitions between charge states.  Conductance in the vicinity of V = 0 is allowed at a 

value of gate voltage VC where the charge states are degenerate (Coulomb oscillation; see 
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Figure 6.5 Color-scale 
plots of differential 
conductance (dI/dV) as a 
function of the bias voltage 
(V) and the gate voltage 
(VG) for three different 
[Co(tpy-(CH2)5-SH)2] 
single-electron transistors 
at zero magnetic field.  
Black represents zero 
conductance and white the 
maximum conductance.  
The maxima of the scales 
are 5nS in (a), 10nS in (b), 
and 500nS in (c).  The 
dI/dV values were acquired 
by numerically 
differentiating individual I-
V curves.  

Figure 6.6 Large-scale color plots of differential conductance (dI/dV) for two 
different [Co(tpy-(CH2)5-SH)2] single electron transistors.  Device (a) is the same 
device as the one in Figure 6.5 (a) and it shows a strong excited level near 30 meV 
(arrow).  Device (b) displays a large conductance gap exceeding 100 mV.  No data 
was taken in the white rectangular regions.  Maximum conductance is 30 nS in (a) and 
50 nS in (b).
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Figure 6.7 Histogram of E0, the electrochemical potential of the Co3+/Co2+ transition 
measured relative to the electrode Fermi level from nine [Co(tpy-(CH2)5-SH)2] 
devices.  Here negative value corresponds to the case where the molecule is (2+) 
charge state at VG = 0.  The energy diagram is shown in the inset.
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the lower inset to Figure 6.4).  We label the charge states as Co2+ and Co3+, in analogy 

with the electrochemical measurements, and this is supported by a spin analysis presented 

below. 

In control experiments, this behavior has not been observed for any of 100 bare 

gold wires or 50 gold wires coated with tpy-(CH2)5-SH linker molecules alone without 

Co ions.  This provides strong evidence that the island of the SET is indeed the Co ion. 

We can be confident that the current near each degeneracy point is due to a single 

molecule because the degeneracy voltage VC will be different for each molecule due to 

local variations in the electrostatic environment.  The non-blockaded resistance of 

devices range from 100 MΩ to ~1 GΩ.  This is comparable to the resistance measured for 

alkanedithiol molecules[40] whose length is comparable to the linker molecule used here.  

These results clearly illustrate that the properties of the molecule are reflected in the 

electrical properties of the SET. 

To test the correspondence between the redox (Co2+/Co3+) potential measured in 

the cyclic voltammogram (Figure 6.2) and E0, the electrochemical potential for the 

Co2+/Co3+ transition (see equations (2.4) and (2.5), for a more careful definition), we plot 

in Figure 6.7 a histogram of E0 measured from nine different [Co(tpy-(CH2)5-SH)2] single 

electron transistors.  E0 can be measured from transport data using equation (2.5).  For 

most devices, E0 as well as VC has a negative value, which indicates that the charge state 

of the cobalt ion is 2+ at VG = 0.  This is consistent with the electrochemical result 
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(Figure 6.2), where the redox peak is found at a positive potential.  However, the number 

of devices used for the histogram is not large enough to develop a strong correspondence.  

For most devices, VC changes significantly (sometimes over 1 V) after a series of VG 

scans due to changes in local electrostatic environment, and hence the error associated 

with measured VC values is large. 

 

Vibrational excited levels 

Additional lines in Figure 6.5 running parallel to the tunneling thresholds indicate 

the contributions of excited states to the tunneling current.  Lines that end in the Co3+ 

(Co2+) blockade region correspond to excited levels of the Co3+ (Co2+) charge state.  The 

pattern of excited states is qualitatively, but not quantitatively, similar from molecule to 

molecule.  Typically we observe several lines at energies below 6 meV.  No additional 

lines are resolved between ~6-30 meV, at which point additional strong peaks are 

sometime seen (see Figure 6.6 (a)).   

A notable feature of the excited-state spectra is that the pattern of low-lying 

excitations is the same for both charge states of a given molecule.  This, together with the 

small energy scale, suggests that the low-energy excitations are not associated with 

different electronic configurations.  In order to test whether the excitations may be 

associated with the emission of a phonon, we have calculated the normal modes of the 

molecule using a quantum chemistry package (HyperChem 7.0).  The simulations show 

normal modes with energies beginning at approximately 1 meV, with a density of ~2 

modes/meV, in reasonable consistency with our observations.  However, depending on 

how the molecule is held by the electrodes, the normal mode structure is expected to 

change.  Therefore, it is difficult to find the correspondence between the excited levels 

observed in Figure 6.5 and theoretical normal modes in these devices, unlike in the 

fullerene devices we studied in Chapter 4 and 5.  

 

Magnetic field studies: Zeeman splitting 

We have applied a magnetic field B to determine the magnetic state of the Co ion.  

Figure 6.8(a) shows a color plot of dI/dV at a magnetic field of 6T for the same device as 

in Figure 6.5(a).  A new excited Co2+ level, denoted by a triangle, has split from the Co3+ 
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to Co2+ ground-state transition.  The energy difference between these two states is linear 

in B, with a slope corresponding to a g-factor of 2.1±0.2 as shown in Figure 6.8(b).  

There is no corresponding Co3+ excited state splitting from the Co2+ to Co3+ ground-state 

transition.   

As we discussed in section 2.4 (see Figure 2.15), these results indicate that the 

Co2+ state is spin-degenerate, while the Co3+ state is not.  An unambiguous identification 

of the Co2+ ground state as S=1/2 and the Co3+ ground state as S=0 is indicated by an 

Figure 6.8 Magnetic field dependence of the tunneling spectrum of a [Co(tpy-
(CH2)5-SH)2] single-electron transistor. (a) Differential conductance plot of the 
device shown in Figure 6.5(a) at a magnetic field of 6 Tesla.  There is an extra level 
(indicated with the triangle) seen due to the Zeeman splitting of the lowest energy 
level of Co2+.  The arrows denote the spin of the tunneling electron.  (b) Magnitude of 
the Zeeman splitting as a function of magnetic field. 
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analysis of the tunneling current amplitudes (see Figure 6.9).  The lower-energy Zeeman-

split state in Figure 6.8(a) carries a current of 1.0 pA, and the second is nearly equal, 0.8 

pA.  Nearly equal currents are expected for S=0 to S=1/2 tunneling, for a tunneling 

threshold across the higher-resistance tunnel junction[41, 88].  For any higher spin, the 

current carried by the second state would be suppressed by a Clebsch-Gordan coefficient 

by at least a factor of 2 compared to the first state[89]. 

The electronic structure inferred above is consistent with the expected electronic 

structure of the Co ion if its angular momentum is quenched due to the binding to ligand 

molecules.  A Co2+ ion (3d7) has an odd number of electrons and possesses Kramers'-

degenerate states that will split in a magnetic field, while Co3+ (3d6) has an even number 

of electrons and may have a total spin S=0 so that it will not undergo Zeeman splitting.  

Previous magnetization studies in bulk material suggest that Co2+ in the molecule is 

S=1/2 at cryogenic temperatures[90].  Our measurements provide a confirmation of this 

result.  

 

6.4 The Kondo Effect in [Co(tpy-SH)2] Transistors 
We now turn to the results for the shorter molecule, [Co(tpy-SH)2] where we 

expect significantly larger conductances due to the shorter tether length.  In fact, we 

observe conductances large enough that we can see directly when a molecule becomes 

inserted in the gap between the electrodes (Figure 6.10).  During the course of 

electromigration, the conductance initially decreases below the conductance quantum 

(2e2/h), indicating a tunneling gap between the electrodes.  If the voltage is increased 

further, the current often suddenly increases by up to a factor of 10 (red dot, Figure 

6.10(a)).  The low bias conductance curves measured before and after such event are 

shown in Figure 6.10(c).  The conductance after the current jump (solid dot, ~ 50 µS) is 

approximately five times larger than the one measured before the current jump (open dot 

~ 10 µS) and it sometimes shows a peak near zero bias, a behavior we will discuss below 

in detail.  The behavior described in Figure 6.10 is not observed for bare gold electrodes.  

We therefore interpret the jump as the inclusion of at least one molecule in the gap 

between electrodes[61].  We stop the electromigration process once this happens and 

study the devices at lower V. 
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The differential conductance dI/dV for one [Co(tpy-SH)2] device is shown in 

Figure 6.11(a).  The most striking property is a peak in dI/dV at V = 0.  The peak becomes 

smaller with increasing temperature and it shows a logarithmic temperature dependence 

between 3 and 20K (Figure 6.11(b)).  The peak also splits in an applied magnetic field   

(Figure 6.12(a)), with a splitting equal to 2gµBB, where g ~ 2 and µB is the Bohr 

magneton.  The peak spitting in a magnetic field is more pronounced in the device shown 

in Figure 6.12(b).  The peak splitting is linear in B and the measured g-factor is 

2.0± 0.05, which is consistent with the value measured from the longer molecule (see the 

Figure 6.10 The electromigration process with the shorter molecule [Co(tpy-SH)2].  
(a) Breaking trace of a gold wire with adsorbed [Co(tpy-SH)2] at 1.5K.  After the wire 
is broken the current level suddenly increases (dot) due to the incorporation of a 
molecule in the gap.  Inset: a conceptual image of a [Co(tpy-SH)2] molecule 
connecting two gold electrodes.  (b), (c) After a wire is initially broken to a tunnel 
conductance, its low bias conductance was measured to be ~10 µS ((c), dotted curve).  
When the bias was increased to approximately 0.9 V the current suddenly increases 
(b), after which the conductance is ~50 µS ((c), solid curve) and shows a peak near 
zero bias.
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Figure 6.11 The Kondo effect in [Co(tpy-SH)2]
2+ devices.  (a) Differential 

conductance of a [Co(tpy-SH)2]
2+ device at 1.5 K showing a Kondo peak.  The inset 

shows dI/dV plots for bare gold point contacts for comparison. (b) The temperature 
dependence of the Kondo peak for the device shown in (a).  The right panel shows the 
V=0 conductance as a function of temperature.  The peak height decreases 
approximately logarithmically with temperature and vanishes around 20 K. 
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previous section).   

In approximately 30% of ~100 wires broken with the molecule, this peak has been 

clearly observed with the temperature and field dependence described above.  As a 

control experiment, we measured more than 150 gold wires with or without Cr sticking 

layer.  Enhanced zero bias conductance was observed in less than 8 % of them, but most 

of them did not show the temperature and field dependence observed in the wires with 

the molecule.  This indicates that the conductance behavior observed in [Co(tpy-SH)2] 

devices arises from the presence of the molecule and it is different from the zero-bias 

anomaly we sometimes observed from bare gold wires.  

The logarithmic temperature dependence and the magnetic-field splitting in 

[Co(tpy-SH)2] devices indicate that the peak is due to the Kondo effect[59].  The Kondo 

effect is a bound state that forms between a local spin on an island and the conduction 

electrons in the electrodes that enhances the conductance at low biases.  The observation 
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Figure 6.13 The VG dependence of the Kondo peak in a [Co(tpy-SH)2]
2+ device is 

shown.  The peak conductance becomes larger at more negative gate voltages, 
indicating that the energy of the electronic state on the Co ion is tuned closer to the 
Fermi level.
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Figure 6.12 Magnetic field dependence of the Kondo peak in [Co(tpy-SH)2]
2+ 

devices. (a) The Kondo peak splits with magnetic field (the same device as shown in 
Figure 6.11).  (b) A color scale dI/dV plot as a function of V and B measured from a 
different device at 100 mK.  The peak splitting is 2gµBB with g = 2.0. 
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of the Kondo effect is consistent with the identification of S = 1/2 for the Co2+ ion given 

above. 

The Kondo effect in single electron transistors was previously observed in a 

quantum dot formed in a semiconducting heterostructure or a carbon nanotube[91-93].  

The strength of the Kondo coupling is dictated by TK, the Kondo temperature.  It is 

roughly the temperature at which a Kondo peak disappears and depends on several 

quantum dot parameters such as the charging energy (EC), electronic coupling (Γ) and µ, 

the electrochemical potential measured from the electrode Fermi level[92]. 
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The Kondo temperature can be estimated from the width of the Kondo peak measured at 

temperatures low enough that the peak does not change any more.  By setting the low-T 

full-width at half-maximum of the Kondo peak equal to 2kBTK/|e|[93], we estimate that 

TK in different [Co(tpy-SH)2] devices varies typically between 10 and 25 K.  These are  

large Kondo temperatures compared to the ones previously reported from other systems.  

It indicates that the coupling between the localized state and the island is strong, 

consistent with the high conductances found for the shorter linker molecule.  Liang et 

al.[34] also observed a strong Kondo effect from single electron transistors made from a 

divanadium molecule. 

From equation (5.5), one expects that the Kondo temperature will change with VG, 

since the electrochemical potential µ can be controlled by changing VG (see equation 

(2.3)).  In three devices the gate coupling was strong enough that TK was increased by 

sweeping VG to more negative values, indicating that the energy of the electronic state on 

the ion is tuned closer to the Fermi level.  Figure 6.13 shows the VG dependence of the 

Kondo peak of one such device.  However, in most other devices the gate effect is not 

observed, which is most likely due to the strong coupling with electrodes and a relatively 

weak gate coupling.   

 

6.5 Summary  
In this chapter, we have discussed transistors made from single molecules in 

which one cobalt ion is connected to gold electrodes by organic barriers.  By tuning the 

length of the organic barrier we are able to control the coupling between the ion and the 

electrodes.  For relatively long linker molecules, giving weak coupling, the molecule 

functions as a quantum dot.  For stronger coupling, we observe Kondo-assisted tunneling.  

This experiment shows that the properties of a molecular transistor can be controlled by 

the chemical properties of the molecule.  

The ability to design the electronic states of a molecular device using chemical 

techniques, together with the ability to measure individual molecules, will play an 

important role in molecular electronics and in the physics of nanometer-scale systems. 



Chapter 7 

Electrical Conductance of Single-Wall Carbon 

Nanotubes 
 

7.1 Overview 
 In the previous three chapters, we studied electrical conductance of molecules that 

are smaller than 3nm.  Those molecules form tunnel barriers at the contact with the leads; 

electrons tunnel on and off a molecule to flow current.  Due to a large charging energy 

combined with the presence of tunnel barriers, the devices made from these small 

molecules form a quantum dot and electron transport was described using the Coulomb 

blockade theory discussed in Chapter 2.   

 In this chapter, we discuss electrical conductance of semiconducting single-wall 

carbon nanotubes (SWNTs), which allow us to study electron transport in other regimes.  

Especially, they can be studied in ambient conditions thanks to their thermal and 

chemical stability.  

After a brief introduction to carbon nanotubes (section 7.2), we discuss low 

temperature behaviors of SWNT devices (section 7.3).  In this case, the contacts are poor 

and they display the Coulomb blockade behavior due to the charging energy of the 

nanotube.  However, contact effects in a semiconducting SWNT device sometimes leads 

to the formation of a multiple-dot configuration when the main body of the SWNT is 

electron (n)-doped.   

We then study the room temperature field effect transistor (FET) behavior of 

SWNT devices with better contacts.  An electrolyte gate with a good gate coupling is 

used instead of a back gate.  In this regime, the high mobilities, low contact resistances, 

and excellent gate coupling of these devices yield device characteristics that significantly 

exceed previous reports.   

This chapter is written based on two previously published papers[94, 95].  Most 

figures and texts in sections 7.3-7.4 are excerpted from the two papers.  
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7.2 Introduction to Carbon Nanotubes  
 A carbon nanotube is a carbon-based tube-like molecule that is a rolled-up 

graphene sheet[38].  Multi-wall carbon nanotubes were first made by Iijima[96] in 1991.  

Later Iijima et al. and Bethune et al.[97, 98] also reported a SWNT (shown in Figure 

7.1).  One unique property of a SWNT is its aspect ratio; most SWNTs have a diameter 

less than several nanometers, but they can be as long as several hundreds of 

micrometers[99].  Therefore, electrons in a SWNT are confined within several 

nanometers in two directions but they can travel freely in the third direction, which 

makes a SWNT a prototypical one-dimensional (1D) conductor[68]. 

 

Electrical conductance of SWNTs 

Electrical conductance of a SWNT has been intensely studied the last several 

years and many key experimental results were reported.  Many of them can be found in 

several recent review papers[4-6].   

 Depending on how a graphene sheet is rolled up, a SWNT can become a metal or 

a semiconductor.  This remarkable electronic property of a SWNT stems from the 

unusual band structure of a graphene sheet.  A single graphene sheet has cone-shaped 

conduction and valence bands, which meet at the Fermi energy to form point-like Fermi 

surfaces (Fermi points).  Since electrons in a SWNT can move freely only along the tube 

axis, they form 1D subbands.  A SWNT becomes a metal if there exists a subband that 

crosses one of the Fermi points of a graphene sheet.  Otherwise, a SWNT has a bandgap 

at the Fermi energy and becomes a semiconductor.  More detailed explanation of the 

Figure 7.1 Single-wall carbon nanotubes (SWNTs).  (a) Images of two SWNTs with 
different chirality.  The top one is metallic whereas the bottom one is semiconducting. 
(images from Smalley web gallery)  (b) An electron micrograph of a SWNT with a 
diameter ~ 1.4 nm (Iijima et al., Nature (1993)). 

(a) (b)
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electronic structure of SWNTs can be found in existing review papers[4-6].  

When a SWNT is a metal, it has two 1D electron subbands (+k and -k) that meet 

at the Fermi energy (see the inset to Figure 7.2(a)).  On the contrary, when a SWNT is 

semiconducting, there is a band gap Eg, between the conduction band and the valence 

band.  In the language of the molecular orbital theory, Eg corresponds to the HOMO-

LUMO gap of a molecule.  It is known that the size of Eg is inversely proportional to the 

diameter of a nanotube, d [38, 100]. 

 0.8 eV
[nm]gE

d
=  (7.1) 

In both cases, additional electron subbands can be found at much higher or much lower 

energy  (typical energy scale ~ eV). 

 Electrical conductance of a SWNT shows different behaviors depending on 

whether it is metallic or semiconducting.  The room temperature conductance versus the 

gate voltage VG curve is shown in Figure 7.2 for each case.  In a metallic nanotube, the 

conductance shows little dependence to VG as expected from its band structure.  On the 

contrary, a semiconducting nanotube shows a strong VG dependence.  It conducts well 

when the Fermi level is located in the valence band (p-doped regime) and the 

conductance keeps decreasing as the Fermi level approaches the band gap region.  The 

conductance increases again when the Fermi level is in the conduction band (n-doped 

regime).  Such conductance behavior allowed the fabrication of FETs made from 

Figure 7.2 Electrical conductance of carbon nanotubes.  (a) Conductance of metallic 
nanotubes does not depend on the gate voltage VG.  (b) Conductance of 
semiconducting nanotubes shows a strong gate dependence.  A schematic band 
diagram for each case is shown in the inset.   
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SWNTs, which have been intensely investigated[101-106] since they were first made in 

1998[69]. 

At low temperatures, SWNT devices show Coulomb oscillations due to the charge 

addition energy CE E+ ∆  of nanotubes[30, 31].  In this regime, a SWNT serves as a dot 

over which an electron is delocalized.  Therefore, the charging energy CE  can be roughly 

estimated from the length of the tube L, using, 

 
2

0

1.44 meV
4  [ m]C

eE
L Lπε µ

≈ = . (7.2) 

This gives an order-of-magnitude estimate of CE .  The electronic excitation energy E∆ , 

on the other hand, can be obtained for a metallic nanotube from the dispersion /dE dk  at 

the Fermi level[38, 107, 108].  

 0.5 meV
2  [ m]

F FE E E E

dE k dEE
dk dk L L

π
µ= =

∆⎛ ⎞ ⎛ ⎞∆ ≈ ≈ ≈⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (7.3) 

From (7.2) and (7.3), we see that the charging energy is roughly three times larger 

than E∆  regardless of the length of a nanotube.  This length independent behavior is a 

consequence of the 1D electronic structure of a SWNT.  We also expect a SWNT shorter 

than 1 µm to form a quantum dot at liquid helium temperatures since both CE  and E∆  

are larger than Bk T .  

 

Fabrication of SWNT devices 

 Since carbon nanotubes are much longer than other small (< 3nm) molecules, they 

can be wired up using conventional lithography techniques.  Details of the fabrication 

procedure for a SWNT device, however, vary depending on the nanotube synthesis, 

deposition and wiring-up scheme. 

 Here we will discuss the fabrication procedure that employs the CVD (chemical 

vapor deposition) nanotube growth[109] method and alignment marks fabricated by e-

beam lithography.  The overall fabrication procedure is illustrated in Figure 7.3.  Similar 

procedures were used for the fabrication of devices that will be discussed in the following 

sections.  
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Doped Si (gate)

Figure 7.3 A fabrication procedure for a carbon nanotube device.  The schematic of 
a finished device is shown at the bottom.
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 The fabrication begins with defining islands of catalyst islands (composed mainly 

of Fe and alumina nanoparticles) on a silicon wafer covered with a silicon oxide (step I).  

The catalyst islands (~ 2 by 2 µm) were defined using an e-beam lithography followed by 

lift-off.  The silicon substrate is degenerately doped, so that it can serve as a gate 

electrode at cryogenic temperatures.  A chip with catalyst islands is then inserted into a 

tube furnace, where nanotubes are grown at ~ 900 C°  in a methane flow (step II).  For 
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proper growth conditions, this CVD technique produces predominantly single-wall 

nanotubes[109].   

To wire up tubes grown on the chip, we first make gold alignment marks using e-

beam lithography and lift-off (step III).  Then nanotubes are located relative to these 

alignment marks using SEM or AFM images (step IV).  Finally, gold electrodes are 

fabricated to contact nanotubes by another e-beam lithography and lift-off (step V), 

completing a nanotube device illustrated in Figure 7.3.  In other cases (section 7.4), 

electrodes are deposited right after the nanotube growth (step II) to randomly contact 

them[95].  This alternative procedure can mass-produce nanotube devices in one 

fabrication run, but each device may have more than one conducting nanotube.  

Therefore, the number of nanotubes conducting in each device needs to be confirmed by 

other means (e.g. SEM or AFM). 

 

7.3 Formation of a p-type Quantum Dot at the End of an n-type 

Nanotube 
Semiconducting SWNTs were initially shown to operate as hole (p-type) FET 

devices[69, 102], with the metallic contacts serving as p-type contacts to the 1D hole gas.  

Subsequently, electron-donating dopants such as potassium were used to create electron 

doped (n-type) devices and p-n junctions[110-113].  The initial signatures of n-type 

behavior have been seen in previous experiments on strictly field-effect (gated) 

devices[103], but before the work presented here there had not been a systematic study of 

both p- and n-type behavior using only field effect doping. 

Here a back gate is used to study both p- and n-type transport in the same 

nanotube device.  A schematic diagram of the SWNT device is shown in Figure 7.4(a).  

This device is prepared using the fabrication procedure described in the previous section.  

Figure 7.4(b) shows the current (I) through the nanotube versus the gate voltage (VG) and 

source drain bias (V).  The large dark region in the center corresponds to the Fermi level 

in the bandgap of the tube.  The region on the left corresponds to p-type conduction, 

while the data on the right to n-type conduction.  These regimes are illustrated 

schematically in Figure 7.6. 
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Figure 7.4 (a) Schematic 
diagram of the device.  The 
thickness of the insulating 
silicon oxide layer is 500 nm.  
(b) Current as a function of 
the bias (V) and the gate 
voltage measured at 77 K.  
Current is zero for black 
regions and the maximum 
(100 nA) for dark red regions.  
A non-conducting bandgap
region (black) separates p-
type (left) and n-type (right) 
region. 
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p- and n-type transport in a SWNT 

We begin by discussing the p-type region.  At low temperatures, Coulomb 

oscillations are seen (Figure 7.6(c)) with a period in gate voltage GV∆ ~ 9 mV.  Using 

standard Coulomb blockade analysis of linear and nonlinear transport[26] as described in 

Chapter 2, we can determine the charging energy, CE = 3 meV, and barrier resistances, 

R(right) ~ 1 MΩ and R(left) < 100 kΩ.  The capacitive couplings of the nanotube 

quantum dot to the gate, right and left electrodes are 18 aF, 15 aF, and 16 aF, 

respectively.  These measurements indicate that the entire 1.5 µm long carbon nanotube 

acts like a single quantum dot with tunnel barriers for entering and exiting the tube.  As 
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we discussed in the previous section, this behavior has been seen previously in long 

metallic nanotubes[30, 31].  Furthermore, the right tunnel barrier is observed to be the 

dominant one.  Because of the small charging energy, at temperatures higher than 5 K, 

the Coulomb oscillations were washed away, and the linear conductance showed almost 

no gate dependence, except very near turn-off (Figure 7.5).   

 Let us now turn to n-type operation.  The device conducts in this region, but with 

a conductance that is a factor of 5-10 smaller.  Most surprisingly, Coulomb oscillations 

with much larger gate voltage period, GV∆ ~ 200 mV, are observed, as seen in Figure 7.5.  

These oscillations are well-defined at 30 K, long after the Coulomb oscillations observed 

in the p-type region have been washed out, and they persist to ~ 100 K.  This, combined 

with nonlinear measurements such as those shown in Figure 7.7, yields a charging energy 

of approximately 50 meV.  This indicates the presence of a quantum dot approximately 

ten times smaller than the one formed in the p-type region.     

 

Formation of an end-dot 
The n-type behavior described above can be easily understood using the band 

diagrams in Figure 7.6.  At large positive VG, the center of the tube is electrostatically 

doped n-type.  However, the contacts still dope the ends of the tube p-type and screen out 

the effects of the gate.  The net result is the formation of a small p-type quantum dot at 

the end of the nanotube.  It is confined on one side by the tunnel barrier to the metallic 

electrode and on the other by the depletion region between the p- and n- type regions of 

the nanotube.  In general, we expect the formation of two end-dots, one at each end of the 

nanotube.  However, the transport properties shown above can be understood by 

considering only one end-dot.  This is because the tunnel barrier to the right contact is 

much larger than the one to the left contact (as determined from measurements in the p-

type region – see above).  As a result, the p-type dot formed at the right high resistance 

contact dominates transport.  The dot at the left contact is well coupled to the electrode 

and effectively behaves like an extension of the electrode under most circumstances[114-

116].  From the measured charging energy and period in VG, we estimate the size of the 

end-dot to be ~ 100 nm.  A theoretical estimate of the size of this dot would require 
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Figure 7.6 Band diagrams and schematic pictures of a semiconducting nanotube 
device when it is field doped (a) p-type and (b) n-type.  Note that the right barrier is 
thicker than the left.  (c) Coulomb oscillations in p-type regime at 1.5 K.  The gate 
period is 9mV.  (d) Coulomb oscillations in n-type regime at 50 K.  The gate period is 
approximately 200 mV.
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detailed modeling, but this size is roughly consistent with the distance to the gate divided 

by the dielectric constant of SiO2, d ~ (500 nm) / 3.8 ~ 130 nm.   

Similar behavior – the formation of a large charging energy quantum dot - has 

recently been reported in two experiments on potassium doped devices[112, 113].  The 

tentative explanation given was an inhomogeneous-doping-induced dot formed inside a 

tube.  This explanation is highly unlikely in the current experiment because no dopants 

were used.  Furthermore, local potential variations induced by chemical inhomogeneity 

or impurities are not likely to explain our data, for two reasons.  The first is that the 
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measurements in the p-type region show that there are no large scattering centers along 

the length of the tube.  Second, the persistence of the Coulomb oscillations over a very 

wide range in VG (see Figure 7.5) is inconsistent with a quantum dot formed in a shallow 

potential minimum.  Indeed, we believe that the physical origin of the dots observed in 

the previous experiments is the same as that found here.  The contacts doped the end of 

the tube p-type, while the potassium doped the remainder n-type, forming an end-dot.  

This model thus provides a simple and consistent picture of all of the experiments to date 

on n-type samples. 

 

Double-dot behaviors 

Other consequences follow from the picture of the nanotube in the n-type region 

represented in Figure 7.6(b).  In addition to the p-type dot at the end, we would expect a 

longer, n-type dot to be formed in the center of the tube.  Indeed, low-T measurements 

reveal a clear signature of a second dot in series with the first.  This is evident from the 

data in Figure 7.7, where a gray scale plot of the differential conductance versus V and VG 

at T = 1.5 K is shown.  The boundary of the large Coulomb gap associated with the end-

dot exhibits a sawtooth structure, and a series of lines are observed with a periodic 

spacing in GV∆ ~ 22 mV.  Note that these lines are not parallel to the boundaries of the 

VG (V)

V 
(m

V)

50

-50
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Figure 7.7 Differential conductance plot as a function of V and VG in the n-type regime.  The 
conductance is zero for white regions and the maximum conductance (black) is 0.1 µS.  Two periodic 
features are present.  There are Coulomb diamonds with a charging energy ~50 meV and a gate period 
∆VG ~ 200 mV.  Along the edge of these diamonds, another periodic feature with ∆VG ~ 22mV period 
is observed.  This corresponds to single-electron charging of the main nanotube dot.
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Figure 7.8 Formation of reduced dimensional structures in semiconducting materials.  
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Coulomb blockade diamonds.  This indicates that they are not excited states of the small 

dot, but rather associated with charging of a second, larger dot in series with the first.  

Transport through the device is thus dominated by Coulomb charging through two dots in 

series, with one dot approximately ten times larger than the other.  The period in GV∆  of 

the larger dot is of the same order of magnitude of that observed in the p-type region, 

again indicating that it arises from the large n-type center portion of the tube.   

Two quantum dots in series have been widely studied in previous experiments on 

lithographically patterned dots[26].  A number of novel phenomena, such as negative 

differential resistance (NDR) due to the alignment of the energy levels of the two dots, 
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have been observed.  We indeed observe dramatic NDR in this device (not shown), 

further supporting the overall picture outlined here.   

These experiments demonstrate that a 0D quantum dot can be electrostatically 

formed at the end of a 1D semiconductor.  This is the final step in a now well-established 

trend in semiconductor physics (Figure 7.8).  Two dimensional electron gases at the 

boundary of 3D semiconductors (e.g. MOSFETs) are well known[117], and are of 

tremendous fundamental and practical interest.  One-dimensional electron gases have 

also been created at the edge of 2D systems[114].  Continuing this trend to 0D provides a 

simple and controlled way to create a very small quantum dot at the end of a 1D 

semiconductor.  

 

7.4 High Performance Electrolyte-Gated Carbon Nanotube Transistors 
We now turn to room temperature measurements of semiconducting carbon 

nanotubes.  Unlike the low temperature measurements described in the previous section, 

Coulomb oscillations disappear at a room temperature and carbon nanotube devices 

function as field effect transistors (FETs) as reported by other groups[69, 102]. 

The reported properties of nanotube FETs have varied widely due to variations in 

the quality of the nanotube material, the device geometry, and the contacts.  Optimizing 

their properties is crucial for applications in both electronics and in chemical and 

biological sensing.  For electronic applications, a number of parameters dictate the 

performance of an FET, such as the mobility and the transconductance.  For sensing[118, 

119], the ability to work in the appropriate environment (e.g. salty water for biological 

applications) is critical.   

The nanotube devices were prepared following a procedure[95] similar to the one 

described in section 7.2 (see Figure 7.9(a) and (b)).  An anneal at 600oC for 45 minutes in 

an argon environment was used to improve the contact resistance between the tubes and 

the electrodes (typically by an order of magnitude).   

 

Electrolyte-gated nanotube FETs 

In the experiments discussed in this section, we measure the conductance through 

the tube using an electrolyte as a gate, as schematically shown in Figure 7.9(c).  This 
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Figure 7.9 (a) Optical 
micrograph of the device. Six 
catalyst pads (dark) can be seen 
inside area of the common 
electrode.  Correspondingly, there 
are six source electrodes for 
electrical connection to tubes.  (b) 
AFM image of a tube between two 
electrodes.  The tube diameter is 
1.9 nm.  (c) Schematic of the 
electrolyte gate measurement.  A 
water-gate voltage VWG is applied 
to droplet through a silver wire. VWG

approach was first used by Kruger et al.[120] to study multi-wall nanotubes.  A 

micropipette is used to place a small (~ 10-20 micron diameter) water droplet over the 

nanotube device.  A voltage VWG applied to a silver wire in the pipette is used to establish 

the electrochemical potential in the electrolyte relative to the device.  For  -0.9 V < VWG < 

0.9 V, the leakage current between the water and the Au electrodes/SWNT was negligible 

(less than 1 nA); the electrolyte then functions as a well-insulated liquid gate.  Above this 

range, the electrolyte reacts with the Au electrodes and destroys the device.     

The main panels of Figure 7.10 show the low-bias conductance G vs. VWG for 

three nanotubes with increasing diameters, where the electrolyte is 10 mM NaCl.  The 

conductance is large at negative VWG, corresponding to p-type conduction in the tube, 

decreasing approximately linearly to zero.  It remains near zero for a range near 0 V, and 

then increases again at positive VWG.  This corresponds to n-type transport.  In the n-type 

region, the conductance is significantly less than in the p-type region, particularly for 

smaller diameter SWNTs.   

Note that the size of the gap between n- and p- behavior decreases with increasing 

the diameter of the tube, as does the on-state conductance in n-type region compared to 

the p-region.  This is evident from the traces of G vs VWG in Figure 7.10.  The 

suppression of n-type transport in small diameter tubes results from the fact that, under 

ambient conditions, Au contacts form p-type contacts to the tube.  As we already 
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discussed in the previous section, depletion barriers thus form at the contacts in n-type 

operation, creating a large contact resistance to the tube.  This barrier is larger the larger 

the bandgap of the tube.  As a result of these contact issues for n-type operation, we will 

concentrate our analysis on p-type operation.  

 

High mobility in nanotube FETs 

The conductance change in the linear p-region for the device in Figure 7.10(a) is 

dG/dVWG ~ 1 e2/h/V.  Measurements from many other devices show similar behavior, 

with no obvious correlation between dG/dVWG and the diameter of the tube or the salt 

concentrations.  For comparison, G versus back-gate voltage VBG applied to the substrate 

for the same device in operating in vacuum is shown in the inset, yielding dG/dVBG ~ 

0.08 e2/h/V.  The electrolyte gate is therefore ~ 10 times more effective in modulating the 

conductance of the tube than the back gate.  dG/dVWG  is also an order of magnitude larger 

than values obtained using thin-oxide back-gates[104] and top-gates[106].   

 To quantitatively describe the transport in the p-region, we note that, in the 

incoherent limit, the total resistance of a SWNT with one subband occupied is the sum of 

three contributions, R = h/4e2 + Rc + Rt.  The term h/4e2 is the quantized contact 

resistance expected for a 1D system with a fourfold-degenerate subband.  In addition, 

imperfect contacts to the tube can give rise to an extra contact resistance Rc.  Finally, the 

presence of scatters in the tube contribute a Drude-like conductance: 

 01/ ' - /t t G G GG R C V V Lµ= =  (7.4) 

where CG’ is the capacitance per unit length of the tube, VG is the gate voltage (back or 

electrolyte), VG0 is the threshold gate voltage at which the device begins to conduct, and 

µ is the mobility.  At low 0-G GV V , the device resistance is dominated by the intrinsic 

tube conductance Gt, which increases linearly with increasing VG if µ is a constant.  At 

large 0-G GV V , the device resistance saturates due to either the contact resistances or a 

VG-independent tube resistance.    

Using the equation for Gt given above, the mobility of carriers can be inferred if 

the capacitance per unit length of the SWNT is known.  For the case of vacuum 

operation, the capacitance to the back-gate CBG’ can be estimated from electrostatics[102] 
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Figure 7.10 Conductance G 
versus water gate voltage VWG
for three tubes with lengths 
and diameters given by: (a) L
= 1 µm, d = 1.1 nm, (b) L = 
1.4 µm, d = 3 nm  and (c) L = 
2.2 µm, d = 4.3 nm.  Inset to 
(a): G versus the back-gate 
voltage VBG for same device 
measured in vacuum; the 
slopes of linear regimes are 
given by the dashed lines.  
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r inferred from Coulomb-blockade measurements[30, 31, 121], yielding estimates from 

1- 3×10-11 F/m.  Using a value CBG’ = 2×10-11 F/m, we obtain an inferred mobility µ  ~ 

1,500 cm2/V-s for the vacuum data in Figure 7.10(a).  Mobilities in the range of 1,000 - 

4,000 cm2/V-s are routinely obtained, with a few devices showing much higher values.  

The mobilities reported here are significantly higher than those for holes in Si MOSFETs 

(µ < 500 cm2/V-s), indicating that SWNTs are remarkably high-quality semiconducting 

materials.  

 

High mobility in electrolyte-gated nanotube FETs 

For electrolyte gating, a simple estimate of the electrostatic capacitance between 

the tube and ions is given by: 0' 2 / ln(1 2 / )eWG DC dπεε λ= +  ~ 7 x 10-9 F/m for typical 

values of the dielectric constant and Debye screening length for salty water: ε = 80 and 

λD ~ 1 nm.  This value is more than 2 orders of magnitude larger than the back gate 
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capacitance given above.  There is an additional contribution to capacitance that is 

relevant in this case, however.  The total capacitance, which relates the electrochemical 

potential difference applied between the tube and the gate to the charge on the tube, has 

both electrostatic and quantum (chemical) components: 1/C’ = 1/Ce’+ 1/CQ’, where Ce’ is 

the electrostatic capacitance and CQ’ = e2g(E), where g(E) is the density of states for the 

SWNT.  For a 1D tube, g(E) is given by: 

 
2 2( / 2)4( ) g

F

E E
g E

v Eπ
−

=
h

 (7.5) 

where E > Eg/2 is the energy of the electron measured relative to the center of the 

bandgap.  The quantum capacitance is therefore of order: FQ veC hπ/4' 2= = 4 x 10-10 F/m 

for one subband occupied in the tube  

Note that it is the smaller of CQ’ and Ce’ that dominates the overall capacitance 

C’.  For the case of back-gating, CeBG’ is nearly an order of magnitude smaller than CQ’ 

and therefore CeBG’ dominates.  For water gating, on the other hand, CQ’ is an order of 

magnitude smaller than CeWG’ so CQ’ dominates.  In principle, CQ’ goes to zero at the 

subband bottom, but thermal effects and the electrostatic capacitance Ce’ will smear this 

out in the total capacitance C’.  Numerical calculations indicate that to a good 

approximation, CWG’~ Fve hπ/4 2  except very near turn-on.    

We therefore make the approximation CWG’~ Fve hπ/4 2 , which should be an upper 

bound for the true capacitance when only one subband is occupied.  We can then infer the 

mobilities of the tubes under electrolyte gating; for the data in Figure 7.10(a), this gives µ 

Figure 7.11 Colorscale plot 
of current on a logarithmic 
scale versus VWG and V for the 
device of Figure 7.10(b).  The 
band gap region is given by the 
dark trapezoid at the center.
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~ 1,000 cm2/V-s.  This is in good agreement with the mobility obtained for the same 

device in vacuum, µ = 1,500 cm2/V-s.  This agreement implies that (a) the mobility of the 

tube is not dramatically affected by the electrolyte, and (b) the elecrolyte-tube 

capacitance is near the quantum capacitance.  These measurements illustrate that water-

gated nanotube FETs approach the ultimate limit where the capacitance is governed by 

quantum effects and not electrostatics.   

 

Transconductance of electrolyte-gated nanotube FETs 

We now discuss the nonlinear transport performance characteristics of water-

gated nanotubes.  Figure 7.11 shows a color-scale plot of the current amplitude of the 

device shown in Figure 7.10(b) as a function of both V and VWG.  The low conductance 

region corresponding to the band gap of the tube is clearly seen, with p- and n- type 

conductance observed at negative and positive VWG’s respectively.  The low- conductance 

region is trapezoidal in shape, with the boundaries given by a line with slope dV/dVWG ≅1.  

Figure 7.12 shows I-V curves at different VWG’s in the p-region.  The current initially rises 

linearly with V and then becomes constant in the saturation region.  The transconductance 

in the saturation region, gm = dI/dVWG, grows approximately linearly with 0-WG WGV V , as 

shown in the inset, reaching a value of 20 µA/V.  Measurements on other samples give 

comparable results.  This transconductance is approximately one order of magnitude 

larger than the highest values previously reported for SWNT transistors[103, 106]. 

Figure 7.12 I-V
characteristics of the device 
shown in Figure 7.10 (b) at 
different water-gate 
voltages ranging from –0.9 
V to –0.3 V in 0.1 V steps 
(top to bottom).  The inset 
shows the transconductance 
gm = dI/dVWG taken at V =  
–0.8 V.
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 The large gm follows directly from the high mobility and large gate capacitance 

found above.  From standard FET analysis, gm = Cg’|VG-VG0|µ/L.  Using the linear-

response measurements above, this equation predicts a gm of 27 µA/V at an overvoltage 

of 0.7 V, in reasonable agreement with the measured value.  Normalizing the 

transconductance to the device width of ~ 3 nm gives gm/W ~ 7 µS/nm.  This is an order 

of magnitude greater than the transconductance per unit width for current-generation 

MOSFETs.  The results above show that nanotubes have very high transconductances.  

The ultimate limit would be a ballistic nanotube transistor with a gate capacitance given 

by CQ’:  gm = 4e2/h = 150 µA/V.  The transistors reported here are within a factor of 5-10 

of this limit.   

 

7.5 Summary 
 In this chapter we studied electrical conductance of semiconducting SWNTs in 

two different temperature regimes. 

 At low temperatures (section 7.3), the charging energy dominates electron 

transport and we observe Coulomb oscillations both in p-type and n-type regime.  In n-

type regime, a small p-type end-dot with a large charging energy is formed near the 

contact because the contacts dope the ends of the tube p-type.  Therefore, we see 

transport behaviors that correspond to a double-quantum dot.  This provides us a reliable 

way to fabricate very small quantum dots with a large charging energy.  There are 

applications of this in many areas, including high-temperature Coulomb blockade 

devices, the creation of multiple-dot structures, and novel scanned probe systems where a 

quantum dot is formed at the end of a nanotube AFM tip. 

The room temperature studies (section 7.4) of nanotube FETs with an electrolyte 

gate revealed that a SWNT is an excellent semiconducting material with a high mobility 

and transconductance.  The excellent device characteristics of SWNT transistors in salty 

water also indicate that they may be ideal for biosensing applications.  Since a SWNT has 

dimensions comparable to typical biomolecules (e.g. DNA, whose width is 

approximately 2 nm), they should be capable of electrical sensing of single biomolecules.  

The large transconductances indicate that the signal from single molecules should be 

readily observable. 



Chapter 8 

Conclusion 

 
8.1 Summary 

In the previous four chapters (Chapters 4 through 7), we have discussed examples 

of single molecule transistors that are made from various molecules, including fullerenes, 

single cobalt molecules, and carbon nanotubes.   

To measure such small molecules (< 3nm, except carbon nanotubes), we 

developed the electromigration junction technique (Chapter 3) to fabricate electrodes 

with a nanometer-sized gap.  In the experiments of this thesis, these nanoelectrodes were 

successfully used to “wire-up” various single molecules.  The development of this 

experimental tool for single molecule measurements is one of the main conclusions of 

this thesis.   

Single molecule devices made from different molecules exhibited several 

common behaviors.  First, single molecules in our devices form quantum dots due to a 

large charging energy and the energy level quantization.  Second, the overall conductance 

of a single molecule device is dominated by the properties of the contacts between the dot 

(the molecule) and the electrodes.  These common properties are described below in 

further detail.   

We also observe different characteristics that reflect the unique properties of each 

molecule as discussed below.  This shows that the transport measurement technique 

described in this thesis can be used more generally to study electron transport properties 

of a variety of molecules and to investigate the coupling between various quantum 

excitations of a molecule and its electronic degree of freedom. 

 

Single electron transport and the Coulomb blockade 

The entire single molecule devices described in this thesis, when measured at 

cryogenic temperatures, exhibited Coulomb blockade.  This shows that single molecules 

formed a dot, thanks to their large charging energies.  This allows us to analyze the data 
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from single molecule devices using the standard Coulomb blockade theory described in 

Chapter 2.  

The overall conductance of most single molecule transistors is significantly lower 

than the conductance quantum e2/h.  This is due to a large tunnel contact resistance 

between the molecule and the electrodes, which is consistent with the formation of a 

single electron transistor.   

 

Quantum excitations and dI/dV peaks 

In most single molecule transistors, we could resolve additional dI/dV peaks 

outside of Coulomb blockade areas.  These additional peaks correspond to quantum 

excitations of the device.  Traveling electrons tunnel on and off the molecule using well 

defined quantum states, and useful information on individual quantum states can be 

learned from the measured properties of corresponding dI/dV peaks.  

The origin of the quantum excitation can be electronic, magnetic, or vibrational.  

Due to variations in the local environment of each single molecule device, the observed 

excitation spectrum usually differs from device to device.  However, there are 

reproducible conductance features over many different devices, which allow one to 

identify the origin of the responsible quantum excitations and the excitation mechanism.  

 

Vibrational excitations and the Franck-Condon model 

 A vibrational excitation is the one that is the most frequently observed.  When an 

electron tunnels on to or off from a molecule, the molecular equilibrium configuration 

undergoes a certain change that also reflects the change in the local electrostatic 

environment.   

 The dI/dV features that correspond to a vibrational excitation are usually charge 

state independent and sometimes show multiples of the principle excitation.  In C60 

devices, the C60 center-of-mass vibration against a gold surface (the bouncing-ball mode) 

was observed near 5 meV, which is consistent with a simple ball-and-spring model.  In 

C140 devices, the intercage stretching mode was the most prominent one, and was 

observed near 11 meV.  In both cases, the Franck-Condon model provides a theoretical 

platform for analyzing the data.  Using this model, we can obtain detailed information on 
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each vibrational mode, such as the vibrational excitation probability and the Q-factor of 

the mode. 

However, the specific nature of the responsible vibrational mode is not always 

identifiable, as is the case with the single Co molecules.  In this case, the number density 

of the normal modes is too high and the eigenenergy is very susceptible to the local 

environment, both of which prevent us from identifying the exact origin of the vibrational 

conductance features observed from these devices. 

 

Contact with electrodes and the Kondo effect 

The overall conductance of a single molecule transistor is determined by the 

tunnel resistances of the contacts.  In general, the contact between a molecule and the 

electrodes are observed to be poor and the overall conductance is significantly lower than 

the conductance quantum.  Within the experimental scheme of this thesis, one usually 

does not have a good control over how a molecule is contacted by electrodes.  Therefore, 

the conductance varies from device to device even for the devices made with the same 

molecule.  

However, in the experiments with single Co molecules with different lengths 

(Chapter 6), we demonstrated how one could control the overall resistance by changing 

the length of the insulating linker group of the molecule.  When a shorter linker group 

was used instead of a longer one, the overall conductance of the device increased by 

several orders of magnitude.  Furthermore, we observed the Kondo effect from these 

devices, which can be explained by the large coupling between the single Co molecule 

and the electrodes. 

 

8.2 Future Directions 
 The experiments described in this thesis are still somewhat simple in a couple of 

ways.  First, the electrodes are made with noble metals - mainly Au and sometimes Pt.  

For this reason, all the devices measured to date have nonmagnetic electrodes with 

identical Fermi levels for the left and right electrodes.  Second, the molecules studied in 

this thesis have electrons delocalized over the entire molecule or have only one active 
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part over which an additional electron is located.  Therefore, these molecules can be 

thought of as a single quantum dot. 

 Naturally, one interesting direction is to make more sophisticated electrodes.  In 

other words, one can incorporate “functionality” to the electrodes.  One example of such 

electrodes is recently reported by Deshmukh et al[122].  In [122], Deshmukh et al. 

fabricated each electrode in a pair with a different metal (e.g. one electrode with Au and 

the other with Cu).  This allows one to make asymmetric junction, having electrodes with 

different Fermi levels.  One can also make the electrodes using magnetic or 

superconducting materials.  Single electron transistors made with nanoparticles were 

previously studied using such electrodes[43, 88], and interesting behaviors were observed 

in those experiments.  

 Another exciting direction is to design single molecules with more complex 

Figure 8.1 A single molecule transistor with two metal atoms.  (a) A schematic of 
M2(tppz)(tpy-SH)2, where M, tppz, and tpy-SH represent a metal atom, tetra-2-pyridyl-1,4-
pyrazine, and 4’-(mercapto)- 2,2’:6’,2”-terpyridinyl, respectively.  (b) A conductance plot 
measured from a device with a molecule shown in (a) with two cobalt atoms. 
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electronic properties.  As mentioned in the beginning of this thesis, one unique property 

of molecules as active electronic elements is their vast diversity and functionality.  These 

diverse properties will be reflected to the conductance properties of single molecule 

devices.  Therefore, designing molecules with desirable properties and incorporating 

them into electronic devices is a goal that will have a huge impact on the scientific and 

industrial communities.  One experiment in this direction, even though still simple, is 

described in Figure 8.1.  In this experiment, a molecule that is similar to the single Co 

molecule of Chapter 6 is measured using a similar device geometry.  The molecule 

shown in Figure 8.1(a) has two metal atoms instead of one and the coupling between the 

two Co atoms can be controlled by using different linkers between them.  One can 

develop even more complex molecules based on the same scheme.  For example, a 

synthesis procedure for making a series of molecules with multiple metal atom centers is 

described in [85].   

Figure 8.1(b) presents a conductance plot measured from a double Co molecule 

(M = Co).  Since the coupling between the two Co atoms is strong, the molecule is still 

expected to form a single quantum dot in this case.  

 

8.3 Concluding Remarks 
 In this thesis we discussed the fabrication and the measurements of single 

molecule transistors where electrons tunnel one by one through the molecule.  We found 

that electrical conductance changes depending on how tunneling electrons interact with 

various quantum excitations of the molecule.  One can apply the results of this thesis to 

investigate the electronic motion in single molecules and also to design new molecules 

that have useful properties for novel electronic devices. 
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