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Abstract

Carbon Nanotubes: Electrons in One Dimension

by

Marc William Bockrath

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Paul McEuen, Chair

The work presented in this thesis will discuss transport measurements on

individual single-walled nanotubes (SWNTs) and SWNT bundles.  SWNTs, which are

essentially rolled-up sheets of graphite, are either one-dimensional (1D) metals or 1D

semiconductors depending on how they are rolled-up.  Measurements on both metallic

and semiconducting SWNTs will be presented.

Chapter 1 will present an introductory overview to the thesis, discussing prior

related experimental work and introducing basic concepts that are used in subsequent

chapters.  Chapter 2 discusses the experimental methods we have used to study

transport in SWNTs.

Chapters 3 and 4 discuss low temperature measurements of metallic SWNTs.

Chapter 3 will discuss the low temperature behavior of the conductance of a SWNT

bundle, or rope, that shows quantum mechanical effects resulting from the finite size of

the sample.  Chapter 4 will discuss how these finite size effects can be used to

experimentally study the quantum level structure in metallic nanotubes and the effects

of an applied magnetic field.
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In chapters 5 and 6, we discuss transport measurements of semiconducting

SWNTs.  In chapter 5, we show that semiconducting SWNTs can be doped with

potassium. Chapter 6 presents experiment and theory that indicate that the elastic mean

free path in metallic tubes is far longer than in semiconducting tubes.

Chapters 7 and 8 address the effects of electron-electron (e-e) interactions on the

transport properties of metallic SWNTs.  Chapter 7 discusses some theoretical aspects

of 1D wires when e-e interactions are taken account, giving a simplified picture of the

Luttinger-liquid state expected for a 1D system of interacting electrons.  Finally,

chapter 8 will discuss measurements on metallic samples with extremely long mean

free paths.  These experiments show evidence of this Luttinger-liquid behavior, in

which the electron-electron interactions lead to a qualitatively different ground state

than what would be expected with Fermi-liquid theory.
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Chapter 1

Carbon Nanotubes: Electrons in One Dimension

1.1 Introduction

The dimensionality of a system has a profound influence on its physical

behavior.  With advances in technology over the past few decades (e.g. molecular beam

epitaxy), it has become possible to fabricate and study reduced-dimensional systems in

which electrons are strongly confined in one or more dimensions.  The study of

reduced-dimensional systems has yielded many important new results. This is evident

from Fig. 1-1, which shows a table of the properties of systems with different

dimensionalities.  As can be seen from the table, much of the basic physics of electrons

in any dimension can be understood in terms of non-interacting electrons in a perfect

crystal.  For example, non-interacting electrons models can explain why bulk Si is a

semiconductor or why two-dimensional (2-D) graphene is a semi-metal.

However, many striking phenomena require models that go beyond the above

simple picture.  When considering such models the dimension of the system plays an

important role.  For example, in three dimensions (3-D) it is possible for electrons to

remain delocalized even in the presence of disorder, unlike in one-dimensional (1-D)

systems.  The dimensionality is no less important in determining the effects of electron-

electron interactions.  For a 3-D electron system, unless the interactions are very strong,

the low energy excitations from the ground state behave
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Figure 1-1: Electronic systems in varying dimensions. While the non-interacting 
electron  picture explains many of the basic features, many phenomena require 
including the effects Coulomb interactions, particularly in reduced dimensions. 

Figure 1
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essentially like weakly interacting electrons.  This is the well-known Fermi-liquid

behavior; electron-electron interactions do not qualitatively change the picture given by

the independent electron model.

Electrons in 2-D at low magnetic fields are also well described by Fermi-liquid

theory.  This has been demonstrated by a wealth of experiments on 2-D electron gasses

in GaAs heterojunctions.  When a magnetic field is applied, the single-particle states

are Landau levels, which are then filled with electrons up to the Fermi level.  The

number of filled Landau levels at a given magnetic field is referred to as the filling

factor ν.  When ν is an integer greater than one, the electrons behave like a Fermi

liquid, as in the integer quantum Hall effect (IQHE).  However, at high magnetic fields

when only one Landau level is partially filled, the fractional quantum Hall effect is

observed.  Unlike the IQHE, understanding the FQHE requires the inclusion of

electron-electron interactions.  Coulomb interactions break the degeneracy of the lowest

Landau level leading to a unique ground state and a gap for excitations.  These

excitations can be very different from the bare electrons, having for example fractional

charge.  Unlike a 3-D electron system, a 2-D electron system is qualitatively altered by

the effects of electron-electron interactions.

The study of 1-D electron systems based on e.g., semiconductor wires or

constrictions has also yielded important results.  Most of these results, such as

conductance quantization, have been explained in terms of non-interacting electrons.

Unlike in 2-D and 3-D, however, the question of what role e-e interactions play in real

1-D systems has been difficult to address, because of the difficulty in obtaining long,

relatively disorder-free 1-D wires.  Nevertheless, the prediction of dramatic effects in 1-
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D due to e-e correlations has motivated a lengthy search for a good experimental

realization of a 1-D system.  At last, single-walled carbon nanotubes (SWNTs) have

emerged as a material that promises to overcome these difficulties and provide a model

system for the study of electrons in 1-D.

1.2 Brief History of Carbon Nanotubes

 The history of SWNTs begins with the discovery of multi-walled carbon

nanotubes (MWNTs.) MWNTs were first observed by transmission electron

microscopy (TEM) in carbon-arc soot by Iijima in 1991 [1].  These micron-long

nanotubes consisted of two or more concentric shells and range in outer diameter from

~2-20 nm (see Fig. 1-2A-B).  Soon after, techniques were developed to increase the

yield of nanotube material[2].  Approximately two years after the discovery of

MWNTs, single-walled nanotubes (SWNTs) consisting of only a single shell of carbon

atoms were discovered independently by Iijima and by Bethune[3, 4].  In contrast to

MWNTs, the typical diameter of these SWNTs was ~ 1 nm.  Later work enabled the

bulk production of  ~1 nm diameter SWNTs[5].  Figure 1-2C shows an image of an

isolated SWNT.  The bulk production of these nanotubes has led to a vast array of

experiments exploring their chemical, mechanical, and electrical properties.  Here we

will concentrate on the electrical properties.
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A B100 nm 10 nm

Figure 1-2: A) TEM images of multi-walled nanotubes. Image is a few hundred
nanometers by few hundred nanmeters. B) High resolution TEM image of Multi-
walled nanotubes showing the concentric walls of the two nanotubes and hollow core.
C) TEM image of an individual 1.4 nm diameter single-walled nanotube.

C

Figure 2
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1.3 Nanotube Band structure

A SWNT is essentially a single 2-D layer of graphite (a graphene sheet) rolled

into a tube.  Graphene is an sp2 bonded network of carbon atoms arranged in a

hexagonal lattice with two atoms per unit cell.  This is shown in Fig. 1-3A, which

depicts the honeycomb lattice in which a carbon atom is located at each vertex.  Figure

1-3A also shows the primitive lattice vectors a1 and a2, as well as the lattice constant a.

A nanotube of a particular radius and chirality may be specified by choosing a “roll-up”

vector that maps two given hexagons in the lattice on top of each other.  The blue

arrows in Fig. 1-3A show an example of this for the two hexagons shown in gray.

Since any vector connecting two hexagons in the lattice is a Bravais lattice vector, it is

a linear combination of the primitive vectors with integer weight.  Thus, a given

nanotube is associated with two indices that specify these integers.  The nanotube

formed by identifying the two gray hexagons in Fig. 1-3A would thus be a (3,1)

nanotube.  Note that this indexing scheme is one of convention as the choice of

primitive lattice vectors is not unique.  However, this scheme appears to be the most

commonly used in the literature.  Figure 1-3B shows how a (10,10) nanotube may be

rolled up from graphene.

For a very large radius tube, one might expect that the properties of the tube are

very similar to that of graphene.  It has been found that even for very small diameter

tubes (~1 nm) that the basic electronic properties of nanotubes may be deduced from

the band structure of graphene[6].  Figure 1-4 shows this band structure in the first

Brillouin zone.  Since there are two atoms per unit cell, the lower band is completely
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Figure 1-3: A) Lattice parameters for graphene: a1 and a2 are the Bravais lattice vectors, 
a = .243 nm is the lattice constant, and the blue arrows show how a  (3,1) nanotube may 
be formed by rolling the hexagons shown in gray on top of each other. B) A (10,10) 
nanotube rolled up from graphene 
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Figure 1-5: In a nanotube, the periodic boundary conditions quantize the allowed k-
values. The nanotube may be insulating or metallic depending on whether the Fermi  
points coincide with an allowed k-value. 
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filled.  The Fermi surface then consists of two inequivalent Fermi points at the opposite

corners of the hexagonal Brillouin zone where the conduction band (CB) and valence

band (VB) touch.  The six points where the CB and VB touch shown in Fig. 1-4 are

obtained by translating the two inequivalent points by reciprocal lattice vectors.

In the simplest possible model, the band structure of nanotubes can be derived

directly from the band structure of graphene.  This is accomplished by imposing strictly

periodic boundary conditions for translations by the roll-up vector that defines the

nanotube.  The allowed k values are then quantized in the direction perpendicular to the

roll-up vector R: kìR  = 2πn, where n is an integer.  Thus, the band structure of a

nanotube consists of 1-D subbands.  For a 1 nm diameter tube the subband splitting is

expected to be on the order of one eV[7], and therefore nanotubes are expected to be

truly 1-D materials.  Figure 1-5 depicts these allowed k values for a (5,5) tube and a

(6,4) tube.  The nanotube will have a band gap unless the lines of allowed k pass though

the two gapless points.  Thus, the (5,5) tube is metallic while the (6,4) tube is

semiconducting, despite the fact that their radii are identical to within less than 1%.  In

general, an (n,m) nanotube will have a band gap unless n-m = 3p, where p is an

integer[6-8].  This behavior may also be derived within the context of a low-energy

effective theory[9].  Effects due to curvature result in corrections to this picture.  For

example, some tubes that the above model would predict to be metallic may actually

develop a small band gap.  However, since these effects have not been observed

experimentally, we will not discuss them here, but refer to the literature (see e.g.  [9-

11].)
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1.4 Experimental Work

 

STM experiments on individual ~1 nm SWNTs have been able to provide

conclusive evidence for the above theoretical picture[12, 13].  In these experiments,

both the atomic structure and the tunneling spectra for a variety of nanotubes could be

simultaneously measured.  The picture given above was found to describe the

experimental results quite well.  Depending on the chirality of the nanotube, they were

either metallic or had a band gap of ~0.6 eV.  Furthermore, Van Hove singularities in

the density of states were observed at the band edges arising from the one-

dimensionality of the nanotubes.  In addition to the STM work, resonant Raman

scattering[14] and transport experiments (for review see e.g. [15]) have also supported

this picture.

A number of these transport experiments will be discussed in the remainder of

this thesis.  Some of the chapters describing these experiments have appeared

previously as publications.  Specifically, Chapter 3 has been published as Science 275

1922 (1997), Chapter 4 as Phys. Rev. Lett. 81 681 (1998), and Chapter 8 as Nature 397

598 (1999).  Other chapters have been submitted for publication but have not yet

appeared.  Chapter 5 has been submitted to Applied Physics Letters, and Chapter 6 has

been submitted to Physical Review Letters
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Chapter 2

Experimental Techniques

2.1 Sample Preparation

As discussed in the introduction, SWNTs represent a ready-made 1-D electron

system. Thus, all that is required to study the electrical properties of electrons in 1-D is

to connect these nanotubes to external wires. This section will describe how we attach

leads to individual nanotubes or nanotube bundles and make electrical measurements.

We begin with the raw “felt” material, which is shown in Figure 2-1A.  We

obtain this material from Professor Richard Smalley and co-workers at Rice University,

where it is made by laser vaporizing carbon along with small amounts of Co and Ni,

which act as a catalyst. Closer inspection with a scanning electron microscope (SEM)

such as shown in Fig. 2-1B reveals that the felt material consists of very long, tangled

strands. These strands are bundles of SWNTs as shown in cross section in Fig. 2-1C.

They consist of 2D hexagonally packed SWNTs of a nearly monodisperse diameter ~1

nm. An isolated individual SWNT is shown in Fig. 2-1D.  In order to make electrical

measurements of single nanotubes or few-nanometer bundles, the individual nanotubes

or bundles must first be isolated from the felt.

To accomplish this, the raw felt material shown in Fig. 2-1A is placed in a

liquid and exposed to ultrasound. The ultrasound produces microscopic bubbles in the

liquid.
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Figure 2-1: Single walled nanotube material shown at various levels of magnification. A) 
Nanotube material as it appears on a macroscopic scale. B) At the lowest level of 
magnification, the material appears as a tangled mass of rope-like strands. (Image from 
R. E. Smalley.) C) Higher magnification reveals bundles of SWNTs  arranged in a 
hexagonal 2D lattice. (Image from R. E. Smalley.) D) The highest level of magnification 
shows a side view of a single 1.4 diameter SWNT. (Image from Nasreen Chopra.)
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When these bubbles collapse, the resulting shock waves serve to cut the ropes and

disperse them in the solvent. The diameter of the bundles, the prevalence of single

nanotubes, and the degree to which they are untangled by this procedure depends

critically on precisely which solvent is used. It has been found that 1,2 Dichloroethane

(DCE) is an excellent solvent in this regard.  Ultrasounding the felt material in DCE

results in a suspension of nanotubes and bundles with a spectrum of lengths ranging

from < 1 µm to ~ 10 µm, and diameters in the 1-10 nm range. Presently, it is not

understood why DCE works so well. However, the attractive forces between suspended

particles in a liquid depends on many physical properties of the liquid, such as the

dielectric constant, the surface energies of the solvent and solute, etc. Thus, it is not

surprising that different liquids will have different levels of effectiveness at suspending

nanotubes and preventing them from coalescing.

Once the nanotubes are suspended in DCE, they can be deposited on a surface

by placing a drop of the suspension on a substrate. It is found that nanotubes suspended

in DCE will readily adhere to SiO2 by Van der Waals forces. After a few seconds and

before the DCE dries, the suspension is rinsed away with 2-propanol (IPA). This results

in a relatively uniform coverage of nanotubes on the surface. Once the IPA is blown

dry, the tubes remain immobilized on the surface. Figure 2-2 shows an atomic force

microscope (AFM) image of silicon dioxide with tubes deposited in this way.

To attach leads to the nanotubes, we start with a degenerately doped Si wafer

that has 1 µm of thermal oxide grown on the surface. Optical lithography is used to etch
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Figure 2-2: AFM image of tubes and  ropes on SiO2. Faintest objects are ~1 nm in height. 
(Image courtesy of Michael Fuhrer.)

1 µm
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holes in the oxide and define Al contacts to the degenerately doped Si, which is used as

a gate. In this procedure, the wafer is first covered with photoresist. Exposure to UV

light through a mask chemically changes the resist. The pattern defined by the mask is

then developed to produce holes in the resist layer. The wafer is then immersed in HF,

which removes the exposed oxide. Finally, Al is evaporated onto the wafer, and then

the unwanted metal is removed by lift-off. These steps are shown in Fig. 2-3A-C.

Starting with this wafer with back gate contacts, making electrical contact to the

nanotubes is then done in either of two ways. In the first method[1], leads are first

defined using a combination of optical lithography and electron-beam lithography

(EBL) to make an array of 42 junctions on a few-mm by few-mm chip. Tubes are

deposited on top of the leads, as is shown schematically in Fig. 2-3D and 2-3E.

Promising candidate devices are then found by using a probe station to test the

electrical properties. These devices are then examined with an AFM to determine the

number and size of the nanotubes/bundles bridging the contacts. Figure 2-4A shows a

device made using this technique.

In the second method[2], nanotubes are deposited on an oxidized Si wafer that

has pre-defined alignment marks in addition to the back gate contacts. These alignment

marks consist of ~ 1 µm Au squares that were formed in a prior lithography step. A

suitable tube or bundle is located with an AFM, and its position is noted relative to the

alignment marks. A resist polymer (either PMMA or PMMA/MAA) is then spun on the

sample and leads to the nanotubes are defined with EBL. A completed device is shown

in Figure 2-4B.
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Figure 2-3:  Fabrication steps for a nanotube device. A) Starting substrate consisting 
of a degenerately doped Si wafer with 1 µm of thermally grown oxide. The 
degenerately doped Si is used as a gate electrode. B) optical lithography and an HF 
etch creates windows in the oxide layer. C) Contact to the gate is made by evaporating 
Al through the windows. D) Leads are defined using a combination of optical and e-
beam lithography. E) Nanotubes are deposited on the leads to form the completed 
device.
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Fig 2-4: A) A device made by  depositing the tubes on top of the leads.  B) A device 
made by evaporating the  leads on top of the nanotubes. The source  and drain leads 
are shown as well as the lead to the back gate.
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In either method, once the leads have been attached, the device is mounted in a

chip package using colloidal silver paint. Electrical contact between the bonding pads

on the chip and the package is made by 2-mil Al wire, using ultrasonic wire bonding.

Finally, the package can then be inserted into standard 16-pin sockets and is ready for

electrical measurements.

2.2 Low Temperature Electrical Measurements

Making transport measurements of the samples requires that we apply voltages

and measure the resulting currents. To apply voltages to the sample, we use a standard

Windows PC computer with a National Instruments analog-to-digital (ADC) and

digital-to-analog (DAC) converter card. The voltages are applied via the output from

the DACs, which are software controlled. Using multiple DACs allows both a source-

drain voltage to be applied as well as a voltage on the gate. The current is measured

using an Ithaco current pre-amplifier that outputs a voltage proportional to the

measured current. This output voltage is read by the ADC and data acquisition software

allows the data to be plotted in real time.

The DACs can produce independent voltages from –10 V to +10 V with

approximately 0.5 mV resolution. Typically, the voltage applied to the sample is < 100

mV, and thus using the full range of the DAC is seldom necessary. Hence, depending

on the desired bias, the DAC output voltage can be divided down with a resistive

divider before appearing across the sample to sacrifice the full range of voltage for

increased resolution. For example, dividing by 100 gives a full range of –100 mV to
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+100 mV with 5 µV resolution. A schematic of the typical measurement circuit is

shown in Figure 2-5.

To enable low-temperature measurements of nanotube devices, we have

employed several different methods. The simplest method involves dipping the package

into a partially filled liquid 4He dewar. By raising the sample above the liquid level, the

sample can be brought to equilibrium at different temperatures. The temperature is

measured by mounting a resistance thermometer near the sample. This allows

measurements over a temperature range from 4.2 K to approximately room

temperature.

For increased thermal stability and a temperature range from 1.4 K to 280 K, we

use an Oxford variable temperature system. This cryostat is designed to work while

immersed in liquid 4He (LHe.) The sample is isolated from the LHe by a vacuum

jacket. However, 4He may enter the sample space through a motorized needle valve and

heat exchanger. The temperature of the heat exchanger is regulated by a feedback

system, which can apply voltage to a heater and control the needle valve. By pumping

on the sample space, the sample temperature can then maintained by flowing 4He gas.

Finally, for the lowest temperature measurements, we have used an Oxford

Kelvinox 300 4He/3He dilution refrigerator (DR). This works as follows. A mixture of

3He and 4He is known to phase separate at low temperatures into a dilute and

concentrated phase. In the limit of zero temperature, the dilute phase will still be

approximately 6% 3He. In a DR, the cooling power is obtained by pumping the 3He
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Figure 2-5: Typical measurement setup. The nanotube device is indicated 
schematically by the dashed circle. The device consists of a nanotube contacted by 
two leads a gate electrode. A source-drain voltage is applied through the voltage 
divider formed by R1 and R2. The gate voltage Vg is applied through the low-pass 
filter formed by the resistor R3 and the capacitor C. R3 is typically one the order of 
100 MΩ, which serves to protect the device in case of a gate oxide breakdown or 
some other mishap. The current though the device is measured with the Ithaco current 
amplifier as shown.

Voltage Divider
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from the dilute phase. To restore the equilibrium concentration, 3He from the

concentrated phase must migrate across the phase boundary into the dilute phase. Since

the highest energy atoms leave preferentially, this cools the concentrated phase. The

3He removed from the dilute phase can be recondensed and returned to the mixture,

resulting in closed cycle refrigeration. The circulation rate can be increased

significantly by heating the dilute phase, and because there is always 3He present in the

dilute phase the DR can continue to provide cooling power down to extremely low

temperatures. In our lab, we typically reach a base temperature of ~50 mK.

2.3 Basic Observations

How these devices operate at room temperature depends on whether the

nanotubes bridging the contacts are semiconducting[3] or metallic[1, 2]. The

conductance of semiconducting nanotubes shows strong gate voltage dependence,

while the conductance of metallic nanotubes does not. This behavior is shown in Figure

2-6, which shows the linear response conductance of a metallic and a semiconducting

nanotube vs. the gate voltage.  As can be seen, the conductance of the metallic tube is

~20 µS over the entire gate voltage range. In contrast, the semiconducting tube can be

made insulating by applying a positive voltage to the gate (note the log scale for the

conductance). This implies that the carriers are holes.  This hole doping is believed to

result from charge transfer due to work function differences between the nanotube and

the gold leads[3].  A diagram depicting the band structure for
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both types of nanotube is shown to the right of the data. We have performed extensive

low-temperature measurements on both types of nanotube, as will be discussed in detail

in the following chapters.
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Abstract

The electrical properties of individual bundles, or "ropes," of single-walled carbon

nanotubes have been measured.  Below ~10 Kelvin, the low bias conductance was

suppressed for voltages below a few millivolts.  In addition, dramatic peaks were

observed in the conductance as a function of a gate voltage that modulated the number

of electrons in the rope. These results are interpreted in terms of single electron

charging and resonant tunneling through the quantized energy levels of the nanotubes

comprising the rope.
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In the past decade, transport measurements have emerged as a primary tool for

exploring the properties of nanometer-scale structures.  For example, studies of

quantum dots have illustrated that single-electron charging and resonant tunneling

through quantized energy levels regulate transport through small structures[1].

Recently, much attention has been focused on carbon nanotubes[2].  Their conducting

properties are predicted to depend upon the diameter and helicity of the tube,

parameterized by a rollup vector (n, m).  One type of tube, the so-called (n, n), or

armchair, tube, is expected to be a one-dimensional (1D) conductor with current carried

by a pair of 1D subbands[3] whose dispersion relations near the Fermi energy EF are

indicated in the right inset to Fig. 3-1.  A recent breakthrough has made it possible to

obtain large quantities of the (10,10) single-walled nanotube (SWNT), which is ~1.4

nm in diameter[4].  This advance, in combination with recent successes in performing

electrical measurements on individual multi-walled nanotubes (MWNTs)[5-8] and

nanotube bundles[9], makes possible the study of the electrical properties of this novel

1D system.

We have measured transport through bundles, or ropes, of nanotubes bridging contacts

separated by 200 to 500 nm.  We find that a gap (suppressed conductance at low bias)

is observed in the current-voltage (I-V) curves at low temperatures.  Further, dramatic

peaks are observed in the conductance as a function of a gate voltage Vg that modulates

the charge per unit length of the tubes.  These observations are consistent with single-

electron transport through a segment of a single tube with a typical addition energy of ~

10 meV and an average level spacing of ~ 3 meV.
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Figure 3-1: The I-V characteristics at a series of different temperatures for the rope
segment between contacts 2 and 3.   Left inset: an atomic force microscope (AFM)
image of a completed device. The bright regions are the lithographically defined
metallic contacts, labeled 1-4. The rope is clearly visible as a brighter stripe
underneath the metallic contacts.  In between the contacts (dark region) it is difficult to
see the rope because of the image contrast.  Note that the width of the rope in the AFM
image reflects the convolution of its actual width with the AFM tip radius of
curvature.  The actual thickness of the rope is experimentally determined by the
measuring its height with the AFM and assuming that the rope is cylindrical.  Right
inset: schematic energy-level diagram of the two 1D subbands near one of the two
Dirac points [3], with the quantized energy levels indicated.  The k-vector here points
along the tube axis.
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The device geometry (Fig. 3-1, left inset) consists of a single nanotube rope to which

lithographically defined leads have been attached.  The tubes are fabricated as

described in[4] and consist of ropes made up of ~1.4-nm diameter SWNTs.

Nanodiffraction studies[10] indicate that ~30 to 40% of these are (10,10) tubes.

Contacts were made to individual ropes as follows.  First, the nanotube material was

ultrasonically dispersed in acetone and then dried onto an oxidized  Si wafer on which

alignment marks had previously been defined.  An atomic force microscope (AFM)

operating in the tapping mode was used to image the nanotubes.  Once a suitable rope

was found, its position was noted relative to the alignment marks.  Resist was then spun

over the sample, and electron beam lithography was used to define the lead geometry.

A metal evaporation of 3 nm Cr then 50 nm of Au followed by liftoff formed the leads.

This device has four contacts, and allows different segments of the rope to be measured

and four-terminal measurements to be performed.  The rope is clearly seen underneath

the metal layer in the left inset to Fig. 3-1, although it is not visible in betweeen the

contacts because of the contrast of the image.  The device was mounted on a standard

chip carrier, contacts were wire bonded, and the device was loaded into a 4He cryostat.

A dc bias could be applied to the chip carrier base to which the sample is attached. This

gate voltage Vg modified the charge density along the length of the rope.  Four samples

were studied at liquid helium temperatures. All of the data presented here, however,

were obtained from a single 12 nm diameter rope containing ~60 SWNTs.

Figure 3-1 shows the I-V characteristics of the nanotube rope section between

contacts 2 and 3 as a function of T.  The conductance is strongly suppressed near V = 0

for T < 10 K.  Gaps of a similar magnitude were obtained for the other nanotube ropes

with diameters varying from 7  to 12 nm and lengths from 200 to 500 nm.  There was
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no clear trend in the size of the gap or the high-bias conductance with the rope length or

diameter.  We note that measurements of MWNTs by ourselves and others[5,7,8]

displayed no such gap in their I-V curves.   These results are in rough agreement,

however, with those reported previously by Fischer et al.[9] on similar, but longer,

ropes of SWNTs.  In their experiments, the linear-response conductance also decreased

at low temperatures.

Figure 3-2A shows the linear response conductance G of the rope segment as a

function of Vg at T = 1.3 K.  Remarkably, the conductance consists of a series of sharp

peaks separated by regions of very low conductance.  The peak spacing varies

significantly but is typically ~ 1.5 V.  The peaks also vary widely in height, with the

maximum amplitude of isolated peaks approaching e2/h, where e is the electronic

charge and h is Planck’s constant.  The peaks are  reproducible, although sudden

changes ("switching") in their positions sometimes occur, particularly at larger

voltages. Figure 3-2B shows the temperature dependence of a selected peak.  The peak

width increases linearly with T (Fig. 3-2C) while the peak amplitude decreases.  The

most isolated peaks remain discernible even at T = 50 K.  Figure 3-3 shows the

differential conductance dI/dV as a function of both V and Vg for the rope segment

between contacts 2 and 3.  The data are plotted as an inverted gray scale, with dark

corresponding to large dI/dV.  The linear response conductance peaks (such as point A

in the figure) correspond to the centers of the crosses along the horizontal line at V = 0.

The gap in dI/dV corresponds to the white diamond shaped regions between the crosses

(such as the region containing point B). These crosses delineate the point of the onset of

conduction at finite V (point C).  Because the application of large biases led to
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38

significant switching of the device, our sweeps were limited to ± 8 mV, and only the center

of the diamond regions are visible.  Additional features (point D) are also observed above

the gap.

These results are reminiscent of previous measurements of Coulomb blockade

(CB) transport in metal and semiconductor wires and dots[1].  In these systems,

transport occurs by tunneling through an isolated segment of the conductor or dot that

is defined by either lithographic patterning or disorder.  Tunneling on or off this dot is

governed by the single-electron addition and excitation energies for this small system.

The period of the peaks in gate voltage, ∆Vg, is determined by the energy for adding an

additional electron to the dot.   In the simplest model that takes into account both

Coulomb interactions and energy level quantization, which we refer to as the CB

model, the peak spacing is given by

∆Vg = (U + ∆E)/eα , (1)

where U = e2/C is the Coulomb charging energy for adding an electron to the dot, ∆E is

the single-particle level spacing, and α = Cg/C is the rate at which the voltage applied to

the back gate changes the electrostatic potential of the dot.  Here C is the total

capacitance of the dot and Cg is the capacitance between the dot and the back gate.

To understand the dependence on V and Vg in more detail, consider the energy

level diagrams in Fig. 3-4.  They show a dot filled with N electrons, followed by a gap

U + ∆E for adding the (N+1)th electron.  Above this, additional levels separated by ∆E
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Figure 3-4: Schematic energy-level diagrams within the Coulomb blockade model
corresponding to the points marked on Fig. 3: (A) at a Coulomb peak, where linear-
response (V = 0) transport is possible; (B) between peaks, where linear-response
transport is blockaded (the addition energy U+∆E and the level spacing ∆E are
indicated here); (C) and (D) at two different applied voltages, where transport occurs
through the first and second occupied states respectively.

Figure 3-3: Gray scale plot of the differential conductance  dI/dV of the rope segment
between contacts 2 and 3, as a function of V and Vg.  To enhance the image contrast a
smoothed version of the data was subtracted from the differential conductance.  The
points marked A-D correspond to the diagrams in Fig. 4.
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are shown, which correspond to adding the (N+1)th electron to one of the excited

single-particle states of the dot.  At a gate voltage corresponding to a CB peak, the

energy of the lowest empty state aligns with the electrochemical potential in the leads

and single electrons can tunnel on and off the dot at V = 0 (Fig. 3-4A).   At gate

voltages in between peaks (Fig. 3-4B), tunneling is suppressed because of the single

electron charging energy U.  However, if V is increased so that the electrochemical

potential of the right lead is pulled below the energy of the highest filled state, an

electron can tunnel off the dot, resulting in a peak in dI/dV (Fig. 3-4C).   Further

increasing V allows tunneling out of additional states, giving additional peaks in dI/dV

(Fig. 3-4D).  Similar processes occur for negative bias, corresponding to tunneling

through unoccupied states above the Coulomb gap.  At its largest, the required

threshold voltage for the onset of conduction of either type is

Vmax = U+ ∆E . (2)

To apply this model to our system, we must postulate that transport along the

rope is dominated by single electron charging of a small region of the rope, or perhaps a

single tube within the rope (see below).  For now, we will use the CB model to infer the

properties of this isolated region.  We initially restrict ourselves to the data of Figs. 3-2

and 3-3, which corresponds to the rope segment between the two central contacts.

In the CB model the temperature dependence can be used to deduce the

parameters in Eq. 1.  The width of a CB peak is given by d(∆Vg)/dT = 3.5 kB/αe, where

kB is Boltzmann’s constant.  Comparison with the data in Fig 3-2C gives α = 0.01.

From this, and the measured spacing between peaks of 1 to 2 V, we obtain a typical
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addition energy: U + ∆E  = 10 to 20 meV.  Also note that the disappearance of the

oscillations above ~50 K yields a similar estimate for the addition energy.

The amplitude of the conductance peak increases with decreasing temperature at

low temperatures.  Within the extended CB model, this result indicates that ∆E >> kBT

and that transport through the dot occurs by resonant tunneling though a single quantum

level.  The peak height decreases as T is increased up to ~10 K.  This sets a lower

bound on the energy level splitting of ∆E ~ 1 meV.  In addition for some peaks, such as

those in the center of Fig. 3-2A, the intrinsic linewidths of the peaks are clearly

observable.  Fitting the peak shapes (not shown) reveals that they are approximately

Lorentzian, as expected for resonant tunneling through a single quantum level.[1]

The nonlinear I-V measurements confirm the addition and excitation energies

deduced above.  The maximum size of the Coulomb gap Vmax in Fig. 3-3 is a direct

measure of the addition energy - for the two peaks in the figure, it is ~ 14 meV .

Tunneling through excited states was also visible above the Coulomb gap for some

peaks, and the level spacing to the first excited state ranged from 1 to 5 meV[11].  For

example, in Fig. 3-4 the level spacing between states labeled by C and D is ∆E = 1

meV.

These parameters compare well with expectations.  Consider a single (n, n) nanotube.

The tube is predicted to be metallic[3], with two 1D subbands occupied at EF.  The

order of magnitude of the average level spacing should be related to the dispersion

dE/dk at the Fermi level:[3,12]

∆E ~ (dE/dk)∆k/2 ~ (dE/dk)(π/L) ~ 0.5 eV / L[nm] , (3)
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where the 2 arises from non-degeneracy of the two 1D subbands (see Fig. 3-1, right

inset.)  The charging energy is more difficult to estimate accurately.  The actual

capacitance of the dot depends on the presence of the leads, the dielectric constant of

the substrate, and the detailed dielectric response of the rope[13].  For an order of

magnitude estimate, however, we take the capacitance to be given by the size of the

object, C = L.  We then have:

U
e

C

e

L

eV

L nm
= = ≈

2 2 14.

[ ]
. (4)

Note the remarkable result that in 1D, both ∆E and U (Eqs. 3 and 4) scale as 1/L, and

hence the ratio of the charging energy to the level spacing is roughly independent of

length.  This means that the level spacing will be important even in fairly large dots,

unlike in 3D systems. For a length of tube L ~ 200 nm (the spacing between the leads)

we  obtain U = 7 meV and ∆E = 2.5 meV, consistent with the observed values.

To relate these theoretical results for a single tube to the measurements of rope

samples, we first note that current in the rope is likely to flow along a filamentary

pathway[14] consisting of a limited number of single tubes or few-tube segments.  This

is because, first, 60 to 70 % of the tubes are not (10,10), and hence the majority of the

tubes in the rope will be insulating at low T[15].  Second, the intertube conductance is

small compared to the conductance along the tube, inhibiting intertube transport.

Finally, the metal probably only makes contact to those metallic tubes which are on the

surface of the rope, further limiting the number of tubes involved in transport.
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Disorder along a filamentary pathway will tend to break it up into weakly

coupled localized regions.  This disorder may result from defects[17], twists[18], or

places where intertube hopping is necessary along the pathway.   Generally, the

conductance should then determined by single electron charging and tunneling between

a few such localized regions.  For other rope segments that we have measured, the

characteristics were consistent with transport through a few segments in series or

parallel, each with different charging energies.  For the particular rope segment we have

focused on here, however, a single well defined set of CB peaks was observed,

indicating that transport was dominated by a single localized region.  We believe this

region is a section of a single tube, or at most a few-tube bundle.  The measured

charging energies and level spacing indicate that the size of this region is roughly the

length between the contacts.

Each peak therefore corresponds to resonant tunneling though a coherent

molecular state that extends for up to hundreds of nanometers in a localized region

within the nanotube bundle.  Furthermore, the amplitudes of some isolated peaks

approach the theoretical maximum for single-electron transport of e2/h.  This is only

possible if the barriers which confine this state at either end are approximately equal,

and there is no other significant resistance in series with the localized region.  This is

consistent with the barriers being at the contacts between the metal leads and the rope.

It is also possible that the barriers are within the rope, in which case the metal-rope

contacts must be almost ideal so as not to reduce the maximum conductance from

e2/h[16].  Variation in the coupling to each lead from level to level can account for the

varying peak sizes apparent in Fig. 3-2.
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Although the above interpretation accounts for the major features in the data,

many interesting aspects of this system remain to be explored.  First, one would like to

establish absolutely that transport is indeed occurring predominantly along a single

tube.  Second, it should be determined whether all details of the data can be explained

within the simple CB model discussed above, since Coulomb interactions may

significantly modify the low-energy states from simple 1D non-interacting levels[19].

Of great interest would be measurements of disorder-free tubes, where the intrinsic

conducting properties of the tube can be measured without the complications of single-

electron charging. To address these issues, experiments on individual single-walled

tubes are highly desirable, and progress is being made in this direction[20].  Yet

another important experiment would be to measure directly the intertube coupling by

making separate electrical contact to two adjacent tubes.
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Abstract

The level spectrum of a single-walled carbon nanotube rope, studied by transport

spectroscopy, shows Zeeman splitting in a magnetic field parallel to the tube axis.  The

pattern of splittings implies that the spin of the ground state alternates by ½ as

consecutive electrons are added.  Other aspects of the Coulomb blockade characteristics,

including the current-voltage traces and peak heights, also show corresponding even-odd

effects.
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The spin state of small multi-electron systems is an important testing ground for

our understanding of interacting quantum systems. For N non-interacting electrons in

non-degenerate levels with spin, the single-particle states are occupied in order of

energy, leading to a total spin S = 0 for even N and S = 1/2 for odd N.  Coulomb

interactions among the electrons can alter this behavior, however.  In atoms, for

example, the exchange interaction among electrons in a shell leads to Hund’s rule and a

spin-polarized ground state for a partially filled shell.  Recently, attention has been

focused on similar questions in quantum dots.  In small 3D metallic dots, Zeeman

splitting consistent with an alternation between S = 0 and 1/2 was found [1].  This may

be understood within the constant interaction (CI) model [2], where the energy for

adding an electron is the non-interacting level spacing ∆E plus a constant charging

energy U.  On the other hand, in two-dimensional dots evidence for spin polarization in

the ground state has been found in recent experiments on both high symmetry [3] and

low symmetry dots [4], requiring explanations beyond the CI model.

Of considerable interest is the situation in 1D, where Coulomb interactions are

predicted to profoundly influence the properties of the system [5].  Here exact

theoretical results are available for many model systems.  For instance, for electrons in a

box in strictly one dimension (1D), Lieb and Mattis [6] proved that in spite of

interactions the ground state has the lowest possible spin.  In real systems, however, a

variety of factors, such as finite transverse dimensions, multiple 1D subbands, and spin-

orbit coupling, may lead to a spin-polarized ground state.

Here we present measurements of the spin state of single-walled carbon

nanotubes, a novel quasi-1D conductor where the current is carried by two 1D subbands



50

[7].  It has recently been shown experimentally [8,9] that when contacts are attached,

these nanotubes behave as quasi-1D quantum dots.  Here we concentrate on a very short

(~200 nm) nanotube dot with a correspondingly large level spacing.  To study the spin

state, we apply a magnetic field along the axis of the nanotube and examine the Zeeman

effects in the transport spectrum.  From the pattern of the spin splitting, we conclude that

as successive electrons are added the ground state spin oscillates between S0 and S0+1/2,

where S0 is most likely zero.  This results in an even/odd nature of the Coulomb peaks

which is also manifested in the asymmetry of the current-voltage characteristics and the

peak height.  It may also be reflected in the excited state spectrum.

The devices are made [9] by depositing single-walled nanotubes [10] from a

suspension in dichloroethane onto 1-µm thick SiO2.  The degenerately doped silicon

substrate is used as a gate electrode.  A single rope is located relative to prefabricated

gold alignment marks using an atomic force microscope (AFM).  Chromium-gold

contacts are then deposited on top using 20 keV electron beam lithography.  An AFM

image of a 5-nm diameter rope (consisting of about a dozen tubes) with six contacts is

shown in the inset to Fig. 4-1.  Leads labeled s (source), d (drain) and Vg (gate) are

drawn in to indicate the typical measurement configuration.

Figure 4-1 shows the linear-response two-terminal conductance, G, versus gate

voltage, Vg, at magnetic field B = 0 and temperature T = 100 mK.  It exhibits a series of

sharp Coulomb blockade oscillations [8,9,2] that occur each time an electron is added to

the nanotube dot.  For T <~ 10 K all the peaks have the same width, proportional to T

[9], and a T-independent area, indicating that the level spacing ∆E is >> kBT and that
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Figure 4-2: A) Greyscale plot of the differential conductance dI/dV of Coulomb
peaks P0 and P1 at B = 0 (darker = more positive dI/dV.)  B) Same as A but at B
= 5 T.  C) B-dependence of the relative positions of the peak in dI/dV labeled T-
Z in A, at a bias of V = -7 mV as indicated by the dashed line in A.  On the x-
axis we plot ∆Vg = Vg - Vg

T, where Vg
T is the position of peak T, to remove

unreproducible temporal drift of the characteristics along the Vg - axis.
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transport is through a single quantum level.  We deduce that the dot electrostatic

potential Vdot is linearly related to Vg, with a coefficient α ≡ dVdot/dVg = 0.09.

Figure 4-2A is a greyscale plot of the differential conductance dI/dV as a

function of V and Vg at B = 0.  Dark lines here are loci of peaks in dI/dV.  Crosses P0 and

P1 are formed by the identically labeled Coulomb peaks in Fig. 4-1.  The interpretation

of such a plot in the CI model is well known [3].  Each line is produced by the alignment

of a quantized energy level in the dot with the Fermi level in a contact.  From the

spacing of the lines we infer a typical level spacing ∆E ~ 5 meV, and from the average

Coulomb peak spacing we obtain a charging energy U ~ 25 meV.  These values are

consistent with expectations based on previous measurements [8,9] for a 100-200 nm

length of tube.  Thus we find as before [9] that the portion of nanotube rope forming the

dot appears roughly equal in length to the distance between the contacts (nominally 200

nm.)

Figure 4-2B shows the results of the same measurement at B = 5 T.   Most of the

lines observed at B = 0 have split into parallel pairs.  The splitting is linearly

proportional to B.  This can be seen in Fig. 4-2 C, where the relative positions of the

peaks in dI/dV at V = -7 mV (dotted line in Fig. 4-2A) are plotted as a function of B.

One group of peaks (denoted by open symbols) moves downwards in Vg relative to the

other (solid symbols) by an amount proportional to B.  Note that not all the lines at B = 0

split.  Over a series of ten consecutive crosses in the range -2 V < Vg < +1 V [11], the

following pattern emerges: on alternate peaks, (P0, P2, etc.,) the leftmost lines in the

cross (such as T) do not split, while on the other peaks, (P1, P3, etc.,) the rightmost lines

(such as Z) do not split.
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These measurements can be used to obtain information about the ground-state

spin SN of the dot with N electrons, as we now discuss.   The analysis is based on the

following spin selection rules: since the tunneling electron carries spin 1/2, both the total

spin, S, and its component along the magnetic field axis, Sz,, must change by ±1/2 for

observable transitions [12].

The energy required for a tunneling process is the energy difference between the

N- and (N+1)-electron states.  In the absence of orbital effects [13], this depends on B

only through the Zeeman term –gµBB∆Sz, where g is the electronic g-factor, ∆Sz is the

change in Sz and µB is the Bohr magneton.  In Fig. 4-2C we therefore associate the open-

symbol transitions with ∆Sz = +1/2 and the closed-symbol transitions with ∆Sz = -1/2.

Fitting their separation to gµΒB/α yields g = 2.04 ± 0.05, which is consistent with g =

2.0 for graphite and with the value g = 1.9 ± 0.2 obtained previously for a single excited

state in a nanotube [8].

From the pattern of splittings of the lowest-energy transitions (the edges of the

crosses in Fig. 4-2A) one can deduce the change in ground-state spin, ∆S = SN+1-SN =

±1/2, across each Coulomb peak.  The reason is as follows [1].  First consider an

electron tunneling into the N-electron ground state in a magnetic field, where initially

the total spin is aligned with the field, so that Sz = -SN.  For the case ∆S = +1/2, after

tunneling Sz may be either -SN-1/2 or -SN+1/2.  The corresponding line therefore splits

with B.  However, for the case ∆S = -1/2, only Sz = -S+1/2 is possible for the final state,

because of the requirement |Sz| ≤ SN+1 = S-1/2.  The corresponding line therefore does

not split with B.  A similar argument for an electron tunneling out of the N+1 ground

state shows that if ∆S = -1/2 the line splits, while if ∆S = +1/2 it does not.  To
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Figure 4-3: Explanation of splitting pattern within the CB model.  The
lowest-energy transition splits for an odd peak (left), where N changes from
even to odd, but not for an even peak (right), where N changes from odd to
even.
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summarize: if ∆S = +1/2 for a Coulomb peak, the lines on the right edge of the cross do

not split, while if ∆S = -1/2 the lines on the left edge do not split.

This general result is also predicted by the CI model, as indicated in Fig. 4-3.  If

N is even, SN = 0, and the next electron can be added to either spin-up or spin-down state

of the next orbital level (left sketch), resulting in SN+1 = 1/2.  On the other hand, if N is

odd, SN = 1/2 and the next electron can only be added to the one empty spin state of that

level (right sketch), resulting in SN+1 = 0.  A corresponding story can be told for

removing an electron.  The predicted pattern of splittings is the same as in the previous

paragraph, but with the additional implication that N is even if ∆S = +1/2 and odd if ∆S

= -1/2.

Comparing the above predictions with Fig. 4-2, we find that ∆S = +1/2 for peak

P0 and ∆S = -1/2 for peak P1.  Since the pattern of splitting alternates between the two

types over ten Coulomb peaks, we deduce that SN oscillates between some value S0 and

S0+1/2 as ten successive electrons are added.  We cannot rule out the possibility that S0

is finite.  However, since polarization of a system is usually related to states near the

Fermi level, and in this system we see the spin alternating as these states are filled, it is

most likely that that S0 = 0, as in the CI model.  If this is the case, the behavior is

consistent with the prediction of Ref. [6] for 1D electrons: the ground state spin

alternates between 0 and 1/2. This is our principal result.  We subsequently describe

Coulomb peaks where N changes from odd to even (P0, P2, etc.) as even peaks, because

the added electron is even.  Peaks P1, P3, etc. we call odd peaks, because the added

electron is odd.  This is indicated in Fig. 4-3.
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The alternating spin of the ground state should also be reflected in the I-V

characteristics at zero magnetic field, if the source and drain contacts have different

tunnel resistances.  If, for instance, the source contact dominates the resistance, the

magnitude of the current I- at negative source bias V is determined by transitions from

the N to the N+1 electron ground state, as long as the bias is less than the level spacing.

On the other hand, the current I+ at positive V is determined by transitions from the N+1

to the N electron ground state.  The ratio β = I+/I- therefore reflects the differences

caused by the spin selection rules in these two situations.  This can easily be understood

in the CI model, as illustrated for an even peak (∆S = -1/2) in Fig. 4-4A.  For negative V

(left sketch) an electron tunneling in from the source can only go into one available spin

state.  On the other hand, for positive V (right sketch), either of two electrons can tunnel

out.  The current is therefore larger for positive V.  An elementary calculation gives β =

(2Gs+Gd)/(Gs+2Gd), where Gs and Gd are the source and drain barrier conductances

respectively.  For Gs < Gd, this predicts 1 < β < 2.  In contrast, for an odd peak (∆S =

+1/2), the inverse ratio is found, and 1/2 < β < 1 is predicted.

The solid line in fig. 4-4B is the I-V characteristic measured at the center of peak

P0.  Near V = 0, the I-V is ohmic, but for |V| >~ 0.5 mV the current saturates into a

slowly varying form.  The saturation current is larger for positive than for negative V.

Moreover, if the same data is plotted (dashed line) with the current scaled by a factor -β,

where β = 1.57, the I-V’s in the two bias directions can be brought onto the same

interpolated curve (dotted line.)  For each peak an appropriate value of β can be chosen

to achieve a similar matching.  The results are plotted in the top panel of Fig. 4-4C.  We

find that 1 < β < 2 for P0 and P2, while 1/2 < β < 1 for P1 and P3.  Comparing these
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Figure 4-4: A) Current flow at high bias in the CI model.  Only the larger
barrier, between source and dot, is drawn.  B) Solid line: I-V measured at the
center of peak P0 in Figure 4-1.  Dashed line: the same trace with I multiplied
by -β = -1.57.  Dotted line: interpolation between these.  C) Lower: expanded
view of the peaks P0 - P3.  Upper: measured values of β for these peaks.  The
oscillating value of β implies that successive electrons are added with
opposite spin directions (see text).
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values with the predictions for β = I+/I- in the previous paragraph, we see that they are

perfectly consistent with our assignments of ∆S = +1/2 or -1/2 from the Zeeman splitting

[14].

We have seen from the Zeeman splitting and the I-V characteristics that the

ground state spin behaves as is predicted by the CI model.  However, this implies not

that effects such as exchange are small, but only that they do not change the spin of the

N-electron ground state of the system.  Exchange might for instance be manifested in the

excited state spectra, where one would anticipate a difference between even and odd

peaks.  For odd peaks, the added electron simply goes into higher unoccupied orbital

levels, giving rise to a single-particle spectrum.  For even peaks, however, the added

electron can form singlet and triplet states with the original unpaired electron, leading to

exchange splitting.  A singlet-triplet splitting has indeed been seen in the excitation

spectra of semiconductor dots [15]. We observe indications of this predicted behavior in

peaks P0-P3.  The lowest excited states visible at negative V on even peaks in each case

form a pair (such as lines U and V on peak P0 in Fig. 4-2A), while those on odd peaks

do not (such as line Y on P1).  This will be investigated further in future work.

A contradiction with the CI model is also seen in the peak heights.  These are

predicted to be identical for a pair of peaks arising from a single orbital level [16].

However, we find that the odd peaks tend to be considerably larger than the even peaks,

as apparent in Fig. 4-4C.  This behavior is not understood and deserves further

investigation.



60

In summary, our transport measurements of a short nanotube quantum dot show

that the ground state of this 1D electronic system alternates between S = 0 and S = 1/2.

A variety of even-odd effects are seen in the addition spectrum, some of which, such as

an alternation of the peak heights, require explanations beyond the simple Coulomb

blockade picture.
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Abstract

We report the effects of potassium doping on the conductance of individual

semiconducting single walled carbon nanotube ropes.  We are able to control the level of

doping by reversibly intercalating and de-intercalating potassium.  After doping, the

carriers are electrons.  Typical values for the doping level are found to be  ~ 100-1000

electrons/µm.  The effective mobility for the electrons is µeff ~ 20-60 cm2 V-1 s-1, a value

similar to that reported for the hole effective mobility in nanotubes[1].
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Recently, much attention has been focused on the transport properties of ~1-2 nm

diameter single-walled carbon nanotubes (SWNTs). The band structure of a given

SWNT depends on its chirality and is either a one-dimensional (1-D) metal or a 1-D

semiconductor with a band gap on the order of 0.6 eV[2, 3].  Recent work has shown

that semiconducting nanotubes can exhibit transistor action that is similar in operation to

a MOSFET[1, 4].  In these experiments, a gate electrode is used to electrostatically vary

the charge density in the nanotubes.  The dependence of the conductance on the carrier

density indicates that the carriers added to the tubes are holes.

Besides using a gate, another way to change the charge density in a

semiconductor is by chemical doping.  Previous work on mats of SWNTs has shown

that potassium acts an electron donor to the nanotubes[5] and that their conductance is

increased significantly by doping with potassium vapor[6, 7].  However, the

interpretation of these experiments is complicated by the fact that mats consist of both

semiconducting and metallic nanotubes, and that transport through the mats includes

hopping between nanotubes and/or bundles.

 Here we report the controlled chemical doping of semiconducting nanotube

ropes with potassium.  After doping, the carriers in the doped ropes are electrons.  We

estimate the number of carriers added and hence the number of intercalated potassium

atoms.  In addition we determine an effective mobility µeff for the electrons, which is

found to be similar in magnitude to the value reported for holes[1].

The samples are made by placing ropes on top of Au electrodes that have 500 nm

separation[8] as shown in the inset to Fig. 5-2.  These electrodes are on top of a
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degenerately doped oxidized Si wafer[9].  The degenerately doped substrate is used as a

gate.  Once the samples are made, semiconducting and metallic devices are

distinguished by their room temperature conductance behavior with respect to gate

voltage.  The conductance of metallic tubes shows relatively little dependence on gate

voltage, whereas the conductance of semiconducting nanotubes shows a very strong

dependence[4, 10].  An example of semiconducting behavior is shown in Fig. 5-1.  The

open circles in Fig. 5-1 show the conductance of a 3 nm diameter rope with as a function

of gate voltage.  At positive gate voltages, the conductance of the rope approaches zero.

As a negative gate voltage is applied, the conductance begins to increase as holes are

added to the rope[4].  This increase in conductance is approximately linear in gate

voltage.  A similar slope has been found in all the samples we have studied to within a

factor of three.

Once we have obtained samples that show the above semiconducting behavior,

we then dope them with potassium.  These doping experiments were carried out in a

controlled environment to prevent the potassium from reacting chemically with oxygen.

The doping vessel is essentially a glass tube that has wire feedthroughs in order to

enable transport measurements.  A diagram of the doping vessel is shown in the inset of

Fig. 5-2.  In an argon atmosphere, potassium is placed in the doping vessel at the

opposite end from the sample.  The potassium end of the doping vessel is then sealed

with a
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structure diagram corresponding to this situation.



67

0 1 2 3 4 5 6 7
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D

E

 

 

B

C

A
G

 (
µS

)

Time (hr)

Doping Vessel

500 nm

gate

source drain

K+

e-

Ts TK

potassium
vapor

sample
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begins to return to room temperature.  Inset: diagram of doping vessel and device
geometry.
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valve.  Finally, the vessel is connected to a pump and is evacuated through the attached

valve.

The doping vessel is heated differentially by heaters on each end of the vessel.

The temperature at each end is measured with thermocouples.  The temperature at the

sample end is denoted by Ts and the temperature at the potassium end is denoted by TK.

We have performed doping experiments on several samples.  All of the samples yielded

similar results.  However, all the potassium doping data shown here is taken from a

single sample.

Prior to heating the potassium, the sample is heated (Ts~400 K) while the vessel

is attached to the pump.  During this procedure, we find that the conductance of undoped

semiconducting nanotubes decreases dramatically until the sample becomes insulating.

Although we do not fully understand this behavior, we have considered two possibilities.

One is that the semiconducting nanotubes become insulating as a result of changes in the

local electrostatic environment of the nanotube (e.g.  neutralization of trapped oxide

charge).  Another possibility is that they may be doped by molecular species that are

adsorbed from the air, which are removed by heating in vacuum.  A more complete

understanding of this will require further work.

Following the bake-out, we have found that heating the potassium briefly with a

flame causes the conductance of semiconducting nanotubes to increase from zero to a

finite value.  Since the potassium donates electrons to the nanotubes one expects to be

able to observe n-type behavior in the doped nanotubes.  Indeed, we find that this is the

case, as shown in Fig. 5-1.  The data plotted with filled squares in Fig. 5-1 shows the
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conductance of the doped rope as a function of gate voltage after exposure to potassium

vapor.  Unlike what is observed for intrinsic nanotubes, the conductance of the doped

nanotubes increases with increasing gate voltage.  This implies that the carriers are

electrons, rather than holes[11].

We have found that this doping is reversible.  The main panel of Fig. 5-2 shows

the conductance of a semiconducting sample after the initial potassium doping.  No gate

voltage is applied, unless otherwise noted.  At point A, the conductance is relatively

stable at a value of ~0.6 µS.  At this point, we applied heat to the sample (Ts~400 K.) As

time evolves, the sample becomes less conductive as the potassium is de-intercalated

and electrons are removed[6, 7].  We stopped heating the sample at point B, at which

time the conductance begins to stabilize at a value of ~0.1 µS.  Further heating caused

the sample to become insulating (not shown,) implying that the majority of the

intercalated potassium has been removed.

To add potassium to the sample in a controlled way, we heated both the sample

and the potassium simultaneously using the heaters.  Throughout this procedure, the

sample was maintained at a slightly higher temperature than the potassium (Ts-TK~20 K)

to avoid gross deposition of potassium on the sample.  At point C, TK = 400 K, while T

s= 420 K.  At this point, the vapor pressure of the potassium is insufficient to dope the

sample, and it remains insulating.  At point D, TK = 450 K, and the vapor pressure of the

potassium becomes large enough to begin doping the sample.  As time evolves, the

conductance increases.  At point E both the sample and the potassium are allowed to

cool to room temperature.  Upon cooling down from point E, the conductance decreases

until the temperature stabilizes at room temperature, and the conductance stabilizes at G
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~ 0.12 µS.  The filled circles in Fig. 5-1 show the conductance of the sample as a

function of gate voltage after this procedure.  At negative gate voltages, the sample is

insulating.  At a threshold voltage Vth ~ -3.8 V, the conductance begins to increase, rising

approximately linearly with gate voltage.

We now discuss these results.  First, we estimate the number of potassium atoms

added to the sample.  When the gate voltage is zero, the charge density in the ropes is

determined by their local electrostatic environment, which includes the ionized

potassium donors.  If we make the assumption that when the device is off that the

electrons in the rope are depleted, then the number of electrons ne at Vg = 0 will be given

by ene = CL|Vth|.  Here, CL is the capacitance per unit length of the rope to the gate

electrode.  Measurements of metallic nanotubes in a similar geometry in the Coulomb

blockade regime give a typical value CL ~ 20 e-/V-µm[9]. With the approximation that at

Vg = 0 each potassium atom donates an electron to the rope, we have nK ~ ne.  Thus from

the data shown in Fig. 5-1 as filled circles we conclude that nK ~ 100 µm-1.  For the

higher conductance data (filled squares) we estimate that the number of carriers is nK ~

700 µm-1 from the ratio of the conductance between the two doping levels at Vg = 0.  In

comparison to the KC8 stoichiometric doping levels reported by Lee et al.  and

Grigorian et al.[6, 7], this is therefore very light doping.

We note that similar to the case of p-type semiconducting nanotubes[1], the

increase in conductance is approximately linear in gate voltage.  We can thus determine

an effective mobility for the carriers: µeff=L2/C dG/dVg, where L is the length of the

sample, C is the capacitance G is the conductance and Vg is the gate voltage.  For the

undoped sample in Fig. 5-1 we find that the hole mobility is given by µeff~ 60 cm2 V-1 s-1
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in agreement with values reported by others[1].  For the doped sample, the higher

conductance data in Fig. 5-1 (solid squares) yields µeff ~ 20 cm2 V-1 s-1, while the lower

conductance data (filled circles) yields µeff ~ 60 cm2 V-1 s-1.  These values for the

electron effective mobility are thus similar to typical values for the hole effective

mobility.  This indicates that the scattering mechanism for electrons and holes is likely

similar.

In conclusion, we report the chemical doping of individual semiconducting

nanotube ropes with potassium.  We find that this chemical doping changes their

conductance from zero to a value on the order of one µS.  From the gate voltage

dependence of the conductance, we deduce that the charge carriers are electrons.  This is

explained by a model in which the potassium donates electrons to the nanotube rope,

resulting in mobile charge carriers at the Fermi level.  The effective mobility for the

electrons is similar in magnitude to the effective mobility of holes. These experiments

open the way toward other experiments that require controlled doping, such as making

nanoscale p-n junctions.

We would like to thank Steven G. Louie and Marvin Cohen for helpful
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by DOE (Basic Energy Sciences, Materials Sciences Division, the sp2 Materials
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Abstract

We address the effects of disorder on the conducting properties of metal and

semiconducting carbon nanotubes.  Experimentally, the mean free path is found to be

much larger in metallic tubes than in doped semiconducting tubes.  We show that this

result can be understood theoretically if the disorder potential is long-ranged. The effects

of a pseudospin index that describes the internal sublattice structure of the states lead to

a suppression of scattering in metallic tubes, but not in semiconducting tubes.  This

conclusion is supported by tight-binding calculations.



74

Single-wall carbon nanotubes (SWNTs) are two-dimensional (2D) graphene

sheets rolled into nanometer-diameter cylinders[1,2] that can either be 1D metals or

semiconductors, depending on how the sheet is rolled up. This surprising behavior

follows from the unusual band structure of a graphene sheet.  It is a semimetal with a

vanishing gap at the corners of the first Brillouin Zone (BZ) where the π (bonding) and

π* (antibonding) bands touch at two inequivalent wavevectors K and K’ . (Fig. 6-1A).

As the Fermi level moves due to chemical or electrostatic doping, the Fermi surface

becomes circular arcs at the corners of the BZ, as is shown in Fig. 6-1A for hole doping.

This Fermi surface can be more simply represented in the extended zone scheme by

piecing together the arcs to form Fermi circles of radius k centered around K (K’)  point.

When a graphene sheet is rolled up into a tube, the allowed wavevector components

perpendicular to the tube axis become quantized, resulting in 1D subbands with allowed

k’s represented by dashed lines in Figures 6-1B and 6-1C.  For metallic tubes (Fig. 6-

1B), one set of allowed wavevectors goes through the K point and there are propagating

modes at Ef  at +k and –k.  This 1D mode has a linear (massless) dispersion, as is

indicated in the Figure.  For semiconducting tubes (Fig. 6-1C), the allowed wavevectors

do not go through the K point.  For small k, there are thus no allowed states at Ef, but if

the tube is doped sufficiently, the Fermi circle reaches the nearest 1D subband and

propagating modes exist, whose (massive) dispersion is shown in the Figure.

A wealth of scanned probe and electrical transport measurements have been

performed to probe the electronic structure and conducting properties of SWNTs[2].
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Figure 6-1 A) Filled states (shaded) in the first Brillouin Zone of a single p-type
graphene sheet.  The sheet contains of two carbon atoms  per unit cell (lower right
inset).  The dispersions of the states in the vicinity of Ef are cones (upper right inset)
whose vertices are located at the K and K’  points.  The Fermi circle around the K
point, the allowed k vectors, and their dispersion are shown in B) and C) for a metallic
and semiconducting tube, respectively.  The dumbbells represent the molecular
orbitals comprising the states, with white-white, white-black, and gray dumbells
representing a bonding, antibonding, and mixed orbitals, respectively.
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Overall, the experimental results agree with the predictions of band structure

given above.  Many interesting open issues remain, however, particularly concerning the

effect Coulomb interactions[3-6] and disorder[7-9]on the electronic states.  For example,

recent theoretical work has emphasized that the effects of disorder may be significantly

reduced in SWNTs for a number of reasons[7-9].  Experiments indeed give compelling

evidence that a metallic tube can have a very long mean free path l - on the order of

microns[10-14]  Initial experiments on doped semiconducting tubes, however, have

yielded l ’s that are orders of magnitude shorter[15,16].  This is perhaps surprising,

since the tubes are nearly structurally identical and the amount of disorder likely very

similar. In this letter, we address this apparent discrepancy between the properties of

metallic and doped semiconducting nanotubes.

We begin by discussing the experimental evidence that l  can be very long in

metallic SWNTs. Figure 6-2 shows a measurement of a nanotube rope ~ 8µm in length.

At low T, Coulomb oscillations in the conductance G vs. gate voltage Vg are observed as

electrons are added to the rope [10,11].  Using the charging energy U ~ 0.5 meV

determined from the T-dependence, the effective length Leff  of the segment of tube to

which the electrons are added can be estimated [10,11].  For this device, we find Leff ~ 10

µm, which is approximately the physical tube length, as previously observed by the

DELFT group[10].  Note that any significant backscattering within the tube would

localize the electronic states on the scale of l and effectively break the tube into a series

of dots[17].  This would result in multiple Coulomb blockade periods as a function of Vg
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Figure 6-2. Conductance versus gate voltage at different temperatures for the metallic
nanotube device shown in the upper inset.  The 3 nm diameter and 8 µm long nanotube
rope is draped over 2 contacts that make tunnel contact to a metallic tube in the rope.  A
voltage applied to the doped substrate is used to adjust the carrier density.  The appearance
of the CB oscillations only at very low temperatures ( ~1.5 K) indicates that the electrons
are delocalized over the entire length of the tube, an indicated in the lower inset.
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with larger charging energies.  The observation of a single, well-defined, and small

charging energy is thus very strong evidence that l is many µms in length.

Additional evidence for large l ’s comes from measurements of the two terminal

conductance of nanotubes with near-ohmic contacts.  For perfect contacts, the

conductance is predicted to be: ∑= iTheG )/( 2 , where Ti is the transmission coefficient

for each of the four 1D channels propagating through the tube.  Measurements by a

number of groups[11,13,14] have yielded conductances ~ e2/h, indicating that the Ti’s can

be on the order of unity, even for tubes many microns in length.  Clearly, then, metallic

tubes can have mean free paths at the micron length scale.

We now turn to experiments on semiconducting tubes.  Tans et al.[15] and Martel et

al.[16] measured electrostatically doped p-type tubes and Bockrath et al.[18] measured

n-type tubes that were chemically doped. These results can be analyzed using a model of

a diffusive conductor.  In the simplest version, transport though the tube is limited by

scatterers spaced at a distance l, each with transmission  probability Ti ~ ½.  The

conductance of a tube of length L is then: G ≅ (4e2/h) (l/L).  Using the physical length

of the tube and the maximum measured conductance, these experiments indicate l ~

2nm at the largest carrier densities.  This is three orders of magnitude shorter than the

l  found above for metallic tubes.

To investigate this striking discrepancy further, we have performed extensive

measurements on semiconducting tubes at both room and low temperatures.  Figure 6-3

shows the G vs. Vg measured one device.  At room temperature, the conductance

increases as Vg is decreased and holes are added to the valence band of the

semiconducting tube.  (The saturation of G at large negative Vg is believed to be due to
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Figure 6-3. G vs. Vg for a semiconducting nanotube device with contacts separated by
0.5 µm.  Holes are added to the tube below Vg = 5 V and the tube becomes conducting.
Irregular Coulomb oscillations are observed below T ~ 150 K. The lower inset shows
dI/dV vs. V and Vg plotted as a gray scale for a second device at T = 4.2 K. Complex
structure consistent with transport through a number of quantum dots in series is seen.
The T-dependence and typical charging energy indicates that the tube is broken up into
segments of length Leff ~ 100 nm, as indicated in the schematic.
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the contact resistance for tunneling into to the tubes[15,16].)   As T is lowered, G is

suppressed and breaks up into a series of peaks as a function of Vg.  At low temperatures

 (T < 20 K), G is immeasurably small at all Vg.  The lower inset to Fig. 6-3 shows the

differential conductance, dI/dV, for a different semiconducting tube device as a function

of Vg and V at T = 4.2 K.   The data is plotted as a gray scale.  There is a gap around the

origin where dI/dV = 0.  This gap shows complex behavior as a function of Vg and is

followed by a finite conductance region above V ~ 25 - 50 mV. Qualitatively similar

results have been obtained on a number of devices consisting of both ropes and single

tubes (as determined by AFM measurements of the rope/tube height).

The data in Fig. 6-3 are highly reminiscent of measurements of the Coulomb

blockade for a number of dots in series[19,20].  In these systems, an electron must hop

through a series of quantum dots, each with a typical charging energy U, for current to

flow.   Since at any Vg, some of the dots will be blockaded, dI/dV = 0  at low energies.

Thermal energies kT or finite bias energies eV on the order U are required to overcome

the Coulomb blockade and produce a finite conductance.  We therefore conclude that in

semiconducting tubes disorder effectively breaks the tube into a series of dots separated

by tunnel barriers, as is schematically illustrated in the inset to Fig. 6-3.  The

conductance is thus determined by tunneling through a series of quantum dots.

We can estimate the size of these disorder-induced dots from the temperature and

bias dependence of the Coulomb blockade features.  Since the features appear at energy

scales 100 times larger than for the metallic tube in Fig. 6-2, we find Leff  ~ 100 nm.

Since the device is ~ 500 nm long, this implies that the effective sample consists ~ 5 dots
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in series.  From the conductance at room temperature, where charging effects are

minimal, we estimate that the tunnel barriers between the dots each have transmission

probabilites ~ 0.001-0.1.

These measurements indicate that the diffusive transport model discussed

previously – consisting of a large number of scatterers each with Ti ~ ½ - is

inappropriate for these samples.  Instead, strong disorder over a much longer length

scale better describes this system.  It is still the case, however, that G  << e2/h, indicating

that semiconducting tubes are much more strongly influenced by disorder than metallic

tubes.

To understand this difference, we first review in detail the nature of the

electronic states in graphite near Ef.  The band structure in the vicinity of the K (K’)

point can be described within the k*p approximation by a 2D Dirac Hamiltonian for

massless fermions, H v kF= ⋅h σ [21].  Here k is the wavevector measured relative to the

K (K’)  point and the σ’s are the Pauli matrices. This Hamiltonian is well-known in both

condensed-matter and particle physics; in the latter case, it is used to describe, e.g. a 2D

massless neutrino. The states and their corresponding energies are given by[8,9,21]:
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where θ k  is the angle that k makes with the y-axis in Fig. 6-1A and b = 1(-1) for states

above(below) the energy at K.  Eq. 1 shows that, in addition to their real spin, the

electrons possess a pseudospin - a two-component vector that gives the amplitude of the

electronic wavefunction on the two sublattice atoms.   Inspection of Eq. 1 reveals that
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the spinor is tied to the k vector such that it always points along k. This is completely

analogous the physical spin of a massless neutrino which points along the direction of

propagation.  The states around K correspond to right-handed neutrinos (pseudospin

parallel to k), whereas those around K’  are left-handed (pseudospin antiparallel to k).

For the antiparticles (b= -1) this situation is reversed.  Physically, this pseudospin means

that the character of the underlying molecular orbital state depends upon the propagation

direction.  For example, a negative energy state near K with a positive kx is built from a

anti-bonding molecular orbitals while the state with -kx  is built from bonding orbitals.

This is schematically indicated in Fig. 6-1B.

Following Ando and collaborators[8,9], we now consider scattering between

these allowed states in a carbon nanotube due to long-range disorder, i.e. disorder with

Fourier components V(q) such that q << Κ.  In this case, the disorder does not couple to

the pseudospin portion of the wavefunction since the disorder potential is approximately

constant on the scale of the inter-atomic distance.  The resulting matrix element between

states is then[8]: )(cos|)’(|||)(|’| ’,2
1222

kkkkVkrVk θ−=>< , where ’,kkθ is the angle

between the initial and final states.  The first term is just the Fourier component at the

difference in the k values of the initial and final envelope wavefunctions.  The cos term

is the overlap of the initial and final spinor states.

For a metallic tube (Fig. 6-1B), backscattering in the massless subband

corresponds to scattering between |kx >and |-kx >.   Such scattering is forbidden,

however, since the molecular orbitals of these two states are orthogonal, as was clearly

emphasized by Ando et al.[8,9].  In semiconducting tubes, however, the situation is quite

different (Fig. 6-1C).  The angle between the initial and final states is < π, and scattering
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is thus only partially suppressed by the spinor overlap. As a result, semiconducting tubes

should be sensitive to long-range disorder, while metallic tubes should not. Note that

short-range disorder, q ~ Κ, will couple the molecular orbitals together and lead to

scattering in all of the subbands.

To support this picture, we have performed tight-binding calculations of the

conductance G of metal and semiconducting tubes in the presence of a scattering

potential.  We employ the Landauer formalism to calculate the conductance from the

transmission coefficients Ti of each subband.   A Gaussian disorder potential of the form

)2/exp()( 22 σrVrV o −= centered on one of the atoms on the nanotube wall is included in

the tight-binding Hamiltonian.  The transmission coefficients are obtained from

boundary condition matching between the disorder-free region and the disordered

region.

In Fig. 6-4, the calculated G(E) is shown for two realizations of a single

Gaussian scatterer with the same integrated strength but different widths corresponding

to long-range (dashed lines) and short-range disorder (dash-dot lines).  The massless 1D

band of a metallic tube is unaffected by a long-range scatter, but there is significant

backscattering of the states in the semiconducting tube in the region near the threshold

for transmission.  There is also backscattering of the higher subband states of the

metallic tube, as is expected from extending the arguments above.  This calculation

clearly demonstrates that the two types of subbands (massive and massless) are affected

very differently by long-range disorder in a manner accurately captured by the physics

of the pseudospin discussed above.
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Figure 6-4. Tight-binding calculation of the conductance of an A) metallic (10,10)
tube and B) semiconducting (17,0) tube in the presence of a Gaussian scatterer.  The
energy scale on the abscissa is 0.2 eV per division in both graphs.  The solid lines
show the results for a disorder free tube, while the dash and the dot-dash lines are
for, respectively, a single long-range (σ = 0.348 nm, ∆V = 0.5 eV) and short range (σ
= 0.116 nm, ∆V = 10 eV) scatterer centered on the wall of the tube.  Here ∆V is the
shift in the on-site energy at the potential center.  The massless band of the metallic
tube is unaffected by the long-range scatterer, unlike the massive bands of the
metallic and semiconducting tube.  All subbands are influenced by the short-range
scatterer.  The inset shows an expanded view of the onset of conduction in the
semiconducting tube at positive E, with each division corresponding to 1 meV.  To
compare to the experimental data, we estimate that a gate voltage change Vg of 1 V
in Figure 6-3 corresponds to a chemical potential change E of the on the order of 1
meV.
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These theoretical considerations agree very well with the experimental results.  Long-

length scale disorder due to, e.g. localized charges near the tube, breaks the

semiconducting tube into a series of quantum dots with large barriers and a dramatically

reduced conductance.  Metallic tubes, on the other hand, are insensitive to this disorder

and remain near-perfect 1D conductors.  In the future, it will be great interest to explore

other experimental manifestations of this pseudospin degree of freedom in graphene

materials.
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Chapter 7

Electrons in One Dimension: Theory

7.1 Introduction

Interacting electrons in 2- and 3-D are well described in terms of an approximate

model of weakly-interacting quasiparticles, namely Fermi liquid theory.  This model has

been highly successful in explaining the properties of 2- and 3-D conductors.  However,

this approximate picture does not hold in one dimension.  Instead, the ground state of an

interacting 1-D electron gas (I1DEG) is a strongly correlated state known as a Luttinger

liquid.  (For review, see e.g.[1].) Unlike in a Fermi liquid, in a Luttinger liquid the low-

energy excitations are bosonic sound-like density waves (plasmons).

One way to observe this Luttinger liquid behavior experimentally is to inject

electrons into a 1-D system from an external lead through a tunneling contact and

measure the resulting current.  By varying the energy of the injected electrons, one can

measure the tunneling rates as a function of energy.  To first order and at zero

temperature, these tunneling processes are described by:

)()(||
2

)( 2
2

eVEEM
h

e

dV

dI
eV FsystemFleadtun +== ρρρ , (1)

which relates the tunneling density of states ρtun at a given energy to the product of a

matrix element M and the (joint) density of states ρlead(E1)ρsystem(E2).  One usually

neglects both the energy dependence of the matrix element and the energy dependence

of the density of states in the metal lead.  For this reason, the differential conductance is
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often referred to as the “tunneling density of states” of the system being probed by the

leads, although in general the measured dI/dV depends on the tunneling matrix element

as well.  In particular, for interacting electrons the dependence of the tunneling rate on

the matrix element may be very important.  This is the case in 1-D, where the sudden

creation of an electron in the I1DEG requires the superposition of an infinite number of

plasmons.  The resulting orthogonality catastrophe leads to a vanishing of the tunneling

matrix elements near the Fermi level.

Our goal in this chapter is to calculate the tunneling density of states for carbon

nanotubes using a phenomenological model of the Luttinger Liquid.  To formulate this

model, we will first find a Lagrangian that describes the low-energy behavior of a non-

interacting 1-D wire with a single spinless mode.  From this viewpoint, adding electron-

electron interactions will then become straightforward.  Finally, we will consider the

more complicated case of electrons in nanotubes, where there are four conducting modes

at EF.

7.2 Low-energy Lagrangian for a single spinless mode

To find a Lagrangian that describes the low-energy behavior of a 1-D wire, we

will find expressions for the kinetic and the potential energy in terms of a slowly varying

change in the electron density from the ground state.  The ground state of the 1-D wire,

taken to have zero total energy, is shown in Figure 7-1A by the solid black lines.  The 1-

D momentum states are filled up to the Fermi level EF.  To find the potential energy V

per unit length when the charge density is locally increased by an amount ρ, we consider
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∆ΕF

e∆µ

Figure 7-1A: The local Fermi level of a 1D wire is increased by adding charge (shown in 
gray).

Figure 7-1B: A current is established by taking left movers in the energy range e∆µ/2 and 
changing them to right movers
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adding N electrons to a region of length L>>λF, where λF is the Fermi wavelength. This

results in an increase in the local Fermi level by ∆ΕF, as indicated schematically in

Figure 7-1A by the solid gray lines.  The increase in the energy per unit length is

δδ 2

0 4

1

2

11
N

L
dnn

L
V

N
== ∫  (2)

where δ is the level spacing for the right or left movers in a length L:

L
vk

dk

dE
F

πδ 2
h=∆= . (3)

We arrive at the result

2
24

ρFv
e

h
V = . (4)

By comparing this with the expression V = ρ2/2κ, where κ is the compressibility of the

non-interacting electron gas[1], we arrive at an expression for the compressibility: κ =

2e2/(hvF).

To find the kinetic energy per unit length T requires an expression for the energy

cost to dynamically change ρ.  This energy cost is related to the current in the 1-D wire.

To find this energy, we calculate the increase in energy when a current is established by

taking some left-movers below EF in an energy range of width e∆µ/2 and promoting

them to right-movers above EF.  This is shown schematically in Figure 7-1B.  The total

energy cost is just the number of electrons N= e∆µ/2δ times the energy added per

electron e∆µ/2.  Thus T=( e∆µ/2)2/δ. The difference between the chemical potential of

the right and left movers can be related to the current in the usual way for a 1-D wire:

I=e2/h ∆µ. This leads to the result that
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Since this term goes as the current squared, we define a kinetic inductance L such that

T=1/2 LI2.  Thus we find L=h/(2e2vF).

In terms of the kinetic inductance and the compressibility, we find the following

Lagrange density T-V:

22

2

1

2

1 ρ
κ

−= LIL . (6)

This is the Lagrange density for a transmission line, with the kinetic inductance playing

the role of the usual inductance and the compressibility playing the role of the

capacitance.

Once we have the Lagrangian, we can find the equations of motion for the charge

density.  We expect based on the analogy with the transmission line Lagrangian that the

dynamics will be determined by the wave equation.  To find these equations in detail, it

is helpful to introduce the displacement θ(x)[1]:

dxtxtx
x

),(),( ∫ ∞−
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Using the continuity equation

x

I

t ∂
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we find

t
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I

∂
∂−= ),(θ . (9)

in terms of θ(x,t) the Lagrangian is given by



93

22 )(
2

1
)(

2

1 θ
κ

θ xtL ∂−∂=L . (10)

Using the Euler-Lagrange equations
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yields the equation of motion for θ(x,t):

0
1 22 =∂−∂ θ
κ

θ xtL (12)

This is the wave equation, which describes waves propagating at the Fermi velocity:

Fv
L

v ==
κ
1

. (13)

As mentioned earlier, this is in complete analogy to a transmission line.  The velocity

vEM of the electromagnetic wave propagation is given by vEM
2=1/LC, where L is the

inductance per unit length and C is the capacitance per unit length.

At this point, this Lagrangian does not give any new information about the non-

interacting 1DEG.  It is clear that the excitations in the non-interacting 1DEG should

move at the Fermi velocity.  However, from this viewpoint we can account for electron-

electron interactions by adding a term to the Lagrangian arising from the self-

capacitance per unit length C:

2
int 2

1 ρ
C

−=L . (14)

This interaction Lagrangian makes several hidden assumptions that we will discuss later

in the context of discussing electrons in nanotubes.  For the time being, we note that the

effect of this term is to add the real capacitance in series with the quantum capacitance

due to the compressibility.  The effective capacitance of the I1DEG is then given by
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κ
111 +=

CCeff

. (15)

This leads to an increased wave velocity for the plasmons:

κLLCLC
v
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p

111 +== . (16)

The strength of the interactions is characterized by the ratio between the plasmon

velocity and the Fermi velocity and is represented by the interaction parameter g:
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Hence g = 1 characterizes a non-interacting electron gas, while g < 1 for repulsive

interactions.

Finally, we also note that
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which will be useful later.

7.3 Phenomenological Model for Nanotubes

Applying the above theory for a single spinless mode to electrons in carbon

nanotubes is straightforward.  The main complication is that a nanotube has four modes

at EF, two channels arising from the electron spin and two channels arising from the

sublattice degeneracy that was discussed in Chapter 1.  In the absence of electron-

electron interactions, the Lagrangian is the sum of the single mode Lagrangians[2-4]:
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κ
−= ∑ LIL , (19)
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Here σ is the electron spin, and χ is an index specifying which sublattice the electron

wavefunction is concentrated on.  The electrostatic energy is determined by the total

charge density, and thus the interaction Lagrangian is:

2

int 2

1
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C
L . (20)

The appearance of the total charge in the interaction Lagrangian suggests the following

basis[2, 4]:

The sum of the spin density on the two sublattices (denoted by a and b,)

)(
2

1
bbaas ↓↑↓↑+ −+−= ρρρρρ , (21)

the difference in spin density on the two sublattices,

)(
2

1
bbaas ↓↑↓↑− +−−= ρρρρρ , (22)

the total charge density,

)(
2

1
bbaac ↓↑↓↑+ +++= ρρρρρ , (23)

and the difference in the charge on the two sublattices

)(
2

1
bbaac ↓↑↓↑− −−+= ρρρρρ . (24)

Three of these modes are neutral, and one is charged.  Note that because of the

normalization factors involved in the change of basis, the charge carried by the charged

mode is ½ of the physical charge.  In this new basis the Lagrangian is given by

222222222 2
)(

2

1
)(

2

1
+−+−+−+−+ −+++−+++= cccssccss C

IIIIL ρρρρρ
κ

L . (25)
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Hence, these modes behave like four independent spinless 1-D modes.  Interactions

affect only the charged mode, which has a plasmon velocity given by

κLLC
v p

14 += . (26)

This gives the following value for gc+:

2

1

)
4

1(
−

+ +==
Cv

v
g

p

F
c

κ
, (27)

While the g = 1 for the three neutral modes.  We see that the addition of more modes

results in a lower value for gc+ compared to a single mode.  For a finite size system of

length l, Eq.  27 can be written in terms of the mean level spacing ∆ = hvF/4l, and the

charging energy U = e2/Ctot, where Ctot is the total capacitance:

 2

1

)
2

1(
−

+ ∆
+= U

gc . (28)

This expression is useful for direct comparison of theory and experiment.

As mentioned previously, the interaction Lagrangian given by Eq.  20 makes

several assumptions.  The first is that there is in fact a well-defined capacitance per unit

length.  As is known from elementary electrostatics, the capacitance per unit length C of

a wire of radius R and length l approaches zero as

)/ln(

2 0

Rl
C

πε
= . (29)

Hence, in order for a local capacitance to be defined that is independent of l, the length

of the wire must be greater than the screening length ls, which is some long distance cut-

off for the Coulomb interaction.  In this case, C is independent of the length and is given

by
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)/ln(

2 0

Rl
C

s

πε
= . (30)

Such screening arises in our experimental situation because of the nanotube’s proximity

to a metallic gate, as shown in Fig. 7-2.

Another assumption implicit in using an interaction Lagrangian given by Eq.  20

is that the density varies slowly on the scale of ls.  Therefore, this interaction Lagrangian

only captures effects due to the long-range Coulomb interaction.  From elementary

electrostatics, it can be shown that the long-range Coulomb interaction and the

capacitance per unit length are related by

)(
~

1

skV
C = , (31)

Where V(ks) is the Fourier transform of the interaction potential evaluated near ks=2π/ls.

For nanotubes, this neglect of the short-range Coulomb interaction is an excellent

approximation[4].  At distances less than the diameter d of the nanotubes, the short

range Coulomb interaction is effectively constant because the electrons’ wavefunctions

are spread out over the circumference.  This suppresses Fourier components of the

Coulomb interaction at momenta greater than 1/d.  Therefore, electron-electron

scattering processes that involve the short-range part of the Coulomb interaction such as

back scattering can be safely ignored compared to processes that involve the long-range

part of the Coulomb interaction.  Thus, we expect that the Lagrangian given above by

Eq.  25 should give a good description of interacting electrons in nanotubes.
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d

Figure 7-2: A carbon nanotube a distance d above a conducting plane. The presense of 
the conducting plane cuts off the long-range Coulomb interaction for distances greater 
than the screening length ls = 2d.
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7.4 Tunneling Density of States and the Semiclassical Approximation

With our faith in the simplified model confirmed, we can proceed to compute the

tunneling density of states.  In general, this is given by the expression

)(|0|)(||2)( 0
2 EEExnE n

n
tun −−><= ∑ + δψπρ , (32)

where |n> are the exact eigenstates of the Hamiltonian and En are the energy

eigenvalues, and Ψ(x) is the electron annihilation operator.  Using the identity

dteEEE tEEEi
n

n∫
∞ −+=−−

0

/)(
0

0
1

)( h

hπ
δ , (33)

yields the result

dtxtxeE iEt∫
∞ + ><=

0

/ 0|)0,(),(|0Re
1

)( ψψ
π

ρ h

h
. (34)

The density of states is therefore related to the Fourier transform of the electron Green’s

function,

>=< + 0|)0,()’,’(|0)’,’,( xtxtxxG ψψ , (35)

evaluated at x = x’.  This is the amplitude to introduce an electron into the system at t = 0

at x, and find it again at x at a later time t = t’.   We will avoid the difficulties associated

with quantum theory by utilizing the semiclassical approximation to compute the

electron Green’s function, which we will now briefly review (see e.g.  [5].)

In general, the amplitude for a quantum system to make a transition between any

two states can be calculated by summing the exponential of the classical action over all

paths connecting the initial and final states.  Explicitly, this reads

DxdtL
i

xtxtxxG
t

cl∫∫>==< +

0

’

paths

)exp(0|)0,(),’(|0),’,(
h

ψψ . (36)



100

Since the action of the classical path is stationary, the dominant contribution to the sum

over the paths comes from paths that are near the classical one.  The contribution to the

sum from highly non-classical paths is suppressed because of the large differences in

phase between the contribution from neighboring paths.  In the semiclassical

approximation, one neglects the non-classical paths and assumes the propagator is given

by

)exp(~),;0,( ’
clS

i
txxG

h
. (37)

Here, the propagator is known only up to an overall constant that depends on the size of

the neighborhood of the paths sufficiently near the classical one to contribute to the sum

over all paths.

A problem arises when one attempts to apply this approximation to computing

tunneling processes: tunneling involves the motion of the system through classically

forbidden configurations.  Thus, it is not possible to find a classical path that connects

the initial and final states.  The way out is to replace t by -iτ, and consider the imaginary

time propagator, which is the analytic continuation of the real-time propagator:

DxdLG E∫∫
−=

τ
ττ

0

’

paths

)
1

exp()(
h

(38)

where LE is the so-called Euclidean Lagrangian, obtained by the transforming the real

time Lagrangian by t → -iτ.   This reverses the sign of the kinetic energy and thus the

kinetic and potential energies appear in the Euclidean Lagrangian with the same sign.

Pulling the minus sign out front yields LE = T+V in Eq.  38.  This has the effect of

inverting the potential, and the classically forbidden regions become allowed (and vice-

versa.) Thus, we can now find a classical path in imaginary time that connects the initial
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and final states.  The imaginary time propagator in the semiclassical approximation

becomes

)
1

exp(~)( clSG
h

−τ . (39)

Note that the transition amplitude decays exponentially with the action, which is the

behavior one usually expects for tunneling through a classically forbidden configuration.

In contrast with the real time formalism, the principle of least action is enforced by

cutting off the non-classical paths by an exponentially small factor, rather than by

canceling the contributions of neighboring paths by virtue of their rapidly varying phase.

7.5 Tunneling into a Nanotube

To compute the tunneling density of states, we now introduce a model for

tunneling given in Fisher and Glazman[1].  In this model, the Luttinger liquid is

interrupted by a barrier, as shown in Fig. 7-3.  Tunneling proceeds through the barrier in

a fast step that results in the sudden creation of a localized electron on the right hand

side of the barrier.  (This process leads to an overall pre-factor in the tunneling rate and

we will neglect it in what follows.) However, at zero energy, the resulting configuration

is classically forbidden.  The tunneling process then proceeds by a slow phase in which

the charge density relaxes to the ground state.  Since the configuration is classically

forbidden at all times during tunneling, we will use the imaginary time propagator to

compute the Green’s function.  Also, as discussed previously, we will compute the

Green’s function using the semiclassical approximation[1].  By considering the action

due to the charge relaxation on one side of the barrier only, we will compute the



102

Figure 7-3: Luttinger liquid interrupted by a barrier, producing two tunnel-coupled 
half-infinte Luttinger liquids. The diagram depicts a tunneling process in which an 
electron is removed from the Luttinger liquid on the left, leaving a hole, and is added 
to the Luttinger liquid on the right.
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tunneling density of states for adding an electron to the end of a single half-infinite

Luttinger liquid.

To use this model for tunneling into a nanotube, we consider the creation of a

localized electron in a specific mode, say ρ↑a.  (The result is independent of the specific

chosen mode.) This initial state requires the excitation all four of the modes ρc+, ρc-, ρs+,

ρs-, and hence the initial conditions read:

)()(2
2

1
xexesscc δδρρρρ ===== −+−+ , (40)

where the ½ comes from the normalization factor and the two comes from the fact that

the density is only nonzero to the right of the barrier.  The final state is given by

0==== −+−+ sscc ρρρρ . (41)

Now we must find the classical path that connects the initial state to the final

state.  The equations of motion are the imaginary-time wave equation (ITWE.) For the

four modes, these read

0,/
22

,/,/
2 =∂+∂ ±±± scxscsct v θθ . (42)

with vc/s,+ being either the Fermi velocity or the plasmon velocity as appropriate.  Note

that this differs from the usual wave equation by a change of sign.  The general solution

of this equation is

)()( ,/,/,/ ττθ ±±± −++= scscsc ivxgivxf , (43)

where g(x) and f(x) are arbitrary functions describing right and left propagating waves.

This form, while very general, is somewhat difficult to match to the initial condition

where θ(x,0) is proportional to the unit step function.  There are many ways to proceed.
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One way is motivated by the fact that the solution must connect a delta function density

at t = 0 to zero density at t → ∞.  Thus, we try to find a solution that spreads out,






=

τ
θ

v

x
u , (44)

where u is an unknown function for which to solve.  Putting this trial function into the

ITWE yields the ordinary differential equation

02)1( 2 =++ uu &&& ηη , (45)

where η = x/vτ. This equation is readily solved by integration to yield

2
1

1 tan CCu += − η  where C1 and C2 are constants of integration.  Note that this is a

special case of Eq.  43 since

[ ]iivxivx
i

v

x πττ
τ

−+−−−=




− )ln()ln(

2
tan 1 . (46)

It is straightforward to verify that







=

±

−
± τπ

θ
,/

1
,/ tan

sc
sc v

xe
(47)

matches the initial conditions given by Eq.  40 and solves the ITWE.  The density is then

2
,/

2
,/

,/ )(
),(

τ
τ

π
ρ

±

±
± +

=
sc

sc
sc vx

ve
tx . (48)

This function is plotted in Fig. 7-4A and Fig. 7-4B.

Now that we have determined the classical path, we can determine the action of

the classical path.  This requires us to integrate the Lagrange density over space and

time.  As discussed previously, in imaginary time the Lagrange density is the sum of the

potential and kinetic energies, rather than the difference.  Therefore, the action will be

the sum of the action due to the potential energy and the action due to the kinetic energy.
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x

τ

xρ

Figure 7-4A: A fast tunneling step through the barrier  adds an electron and creates a 
local deformation in the charge density. At zero energy, this configuration is 
classically forbidden. 

Figure 7-4B: Plot of the charge desnity as a function of position and (imaginary) time. 
As time evolves, the charge distribution spreads out and eventually relaxes to the 
ground state with ρ = 0.
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The potential energy due to the deformation caused by the tunneling electron is the sum

of the potential energies from each mode and is given by

dx
vx

v
v

e
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e
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Physically, this 1/τ dependence arises because the density ρ goes as 1/τ while the width

W of the density packet goes as τ.  Hence the Vdef ~ ρ2W ~ 1/τ. Considering zero total

energy, the kinetic energy is equal to the potential energy and thus the action is

’)’(2)(
/

τττ
τ

dVS
cE def∫=

h

(50)

h

τ
π

c
c

E
g

h
ln)3(

8
1 += −
+ . (51)

 Here, Ec is a high energy cut off on the order of e2/a, where a is the typical electron

spacing, or any other short range cutoff to the Coulomb interaction, e.g.  the tube

diameter.  The imaginary time propagator is then given by

βτττ
−






=−

h
h cE

SG )/)(exp(~)( , (52)

with β = (gc+ -1+3)/4.  Hence, the exponential decay normally associated with tunneling

through a classically forbidden configuration is cancelled by the logarithmic divergence

of the action, resulting in power law behavior.
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To arrive at the tunneling density of states we analytically continue the

imaginary time propagator back to real time and compute the Fourier transform:

dt
tiE

eE ciEt
tun ∫

∞
−








0

/Re
1

~)(
β

π
ρ

hh
h (53)

The behavior with respect to energy can be determined via a change of variables u =

2πEt/h (E>0).  The integral then becomes

( ) duuiEe
E

E c
iu

tun ∫
∞ −

0
Re~)( β

α

π
ρ , (54)

where

α = αend = β−1 = (gc+ -1-1)/4. (55)

  This implies that the differential conductance dI/dV ~ Vα, and the conductance G ~ Tα.

Note that for arbitrarily weak interactions (for any gc+ < 1) the tunneling density of

states vanishes at zero energy.  This behavior is very different from that of the non-

interacting 1DEG, where for energies near the Fermi level the tunneling density of states

is constant.  This is an essential distinction between the I1DEG and the non-interacting

1DEG.

Finally, this analysis is appropriate for determining the tunneling density of

states when the electron tunnels into the end of the nanotube.  If the electron tunnels into

the middle, or bulk, the electron can spread out in two directions rather then one.  As the

electron spreads out, the charge density is half as much but spread out over twice the

length as compared to the end tunneling case.  Since the action is quadratic in the charge

density but linear in the size of the charge packet, the action for tunneling into the

middle is half the action for tunneling into the end.  Hence, we expect that the tunneling

exponent for tunneling into the middle should be approximately half of the exponent for
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tunneling into the end.  A more detailed calculation[2, 4] yields the result ρ(E) ~ Eα,

where

α = αbulk = (gc+ -1+ gc+-2)/8. (56)

For g<<1 where it is expected that semiclassical reasoning is most valid, αbulk indeed

approaches ½ the value of the αend.

7.6 Limit of Many Modes and Connection to Coulomb Blockade Model

The above model for nanotubes with four conducting modes at EF can be

extended to the general case of N conducting modes at EF[6].   The Hamiltonian for an N

mode wire is given by

2

22
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1
H 
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LI ρρ

κ
, (57)

Where ρn is the density of charge in the nth mode, and In is the corresponding current.

Here as before, the interaction term depends only on the total charge.  With a change of

variables via a rotation to basis in which one mode is the total charge and the rest are

orthogonal to this mode, this becomes

 ∑
−=

=
+++ ++++=
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, (58)

where ρc+ is the charged mode, Ic+ the corresponding current, ρc0n the nth neutral mode,

and Ic0n the nth neutral current.  Note that because the change in variables used here is an

orthonormal transformation, the physical charge is related to the ρc+ by ρphysical = N1/2

ρc+.  The sum in the Eq.  58 runs over the N-1 neutral modes.  In this basis, the N modes
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behave independently.  The interaction strength g can be computed for each mode.  The

result is that

2

1

)1(
−

+ +==
C

N

v

v
g

p

F
c

κ
(59)

for the charged mode, and gc0n = 1 for the N-1 neutral modes.

The tunneling density of states can be calculated using the same method

employed in the previous section with the result that αend = (gc+ -1-1)/N.  In the limit

where N>>1, gc+ ~ (1/N)1/2.  Thus we have α ∼ (1/N)1/2 to leading order.  Hence as the

number of modes tends to infinity, the behavior of the wire tends toward the non-

interacting result α = 0.  Physically, this occurs because in the limit N>>1, the tunneling

action is dominated by the spreading out of the neutral modes, and the contribution from

the charged mode becomes comparatively negligible.  The result is that the tunneling

density of states is thereby determined by the non-interacting neutral modes, which gives

rise to the ohmic behavior expected for tunneling into a system of non-interacting

electrons.

Finally, we note the connection between this theory and the theory of Coulomb

blockade of tunneling in a resistively isolated tunnel junction (CB theory).  (For review,

see e.g. [7]).  In the CB theory at low energies the tunneling rate goes as a power law in

the applied bias,

αV
dV

dI
~ , (60)

where the exponent α is determined by the isolating impedance Z:

Z
h

e22=α . (61)
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As we will now show, this model is equivalent to the model discussed earlier in the limit

of many modes.  In that model, α is given by:












−





+=












−





 +=





−=

+

11
1

11
1

1
11

2/1

2

2/1

Fc LCv

N

NC

N

NgN

κα (62)

In the limit that N>>1, to leading order

NC

L

h

e

NLCvNC F

2211 === κα . (63)

This agrees with Eq.  61 provided the characteristic impedance of a multi-mode wire is

given by Z = (L/NC)1/2 in the limit where N>>1.  To show this, we note that only the

charged mode couples to an external electric field[8].  Hence the impedance of the

neutral modes is infinite and the impedance of the wire is determined solely by the finite

impedance of the charged mode.  The Hamiltonian for the charged mode may be written

in terms of the physical charge ρ = Ν1/2 ρc+, and the corresponding current I.  The result

is

22
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LI
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. (64)

In an ordinary electromagnetic transmission line with capacitance per unit length C0 and

inductance per unit length L0, the characteristic impedance Z0 is given by Z0 = (L0/C0)
1/2.

By analogy, the characteristic impedance Z of the multi-mode wire is given by






 +=

κNCN

L
Z

2

11
. (65)

In the limit N>>1, to leading order in N, this approaches

NC

L
Z = , (66)
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and thus the theory given by Eq.  57 reproduces the results of the CB theory in the limit

where N>>1.
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7.7 Summary

In conclusion, we have presented a simplified phenomenological model for a

I1DEG and applied it to computing the tunneling density of states of metallic carbon

nanotubes.  This tunneling density of states shows power law behavior with an exponent

that depends on whether the electron tunnels into the end of the nanotube or into the

middle.  In particular, ρ(E) ~ Eα, where α = (gc+ -1-1)/4 in the case of tunneling into the

end, and α = αbulk = (gc+ -1+ gc+-2)/8 in the case of tunneling into the middle. This

power-law vanishing of the tunneling density of states at low energies is a striking

feature that signifies the correlated nature of the I1DEG.
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Electron transport in conductors is usually well described by Fermi-liquid theory,

which assumes that the energy states of the electrons near the Fermi level EF are not

qualitatively altered by Coulomb interactions. In one-dimensional systems, however,

even weak Coulomb interactions cause strong perturbations. The resulting system,

known as a Luttinger liquid, is predicted to be distinctly different from its two- and

three-dimensional counterparts[1]. For example, tunneling in to a Luttinger liquid at

energies near the Fermi level is predicted to be strongly suppressed, unlike in two- and

three-dimensional metals. Experiments on one-dimensional semiconductor wires[2,3]

have been interpreted using Luttinger-liquid theory, but an unequivocal verification of

the theoretical predictions has not yet been obtained. Behavior consistent with a chiral

Luttinger liquid has been observed in fractional quantum Hall conductors[4-6], although

questions remain about the connection between theory and experiment. Electrically

conducting single-walled carbon nanotubes (SWNTs) represent quantum wires[7-10]

that may exhibit Luttinger-liquid behavior[11,12]. Here we present measurements of the

conductance of bundles (‘ropes’) of SWNTs as a function of temperature and voltage

that agree with predictions for tunneling into a Luttinger liquid. In particular, we find

that the conductance and differential conductance scale as power laws with respect to

temperature and bias voltage, respectively, and that the functional forms and the

exponents are in good agreement with theoretical predictions.

Since the initial discovery of SWNTs, experiments have revealed a great deal

about their electronic properties.  STM measurements of individual tubes have verified

that they are either 1D semiconductors or conductors, depending upon their

chirality[7,8].  Electrodes have also been attached to nanotubes and ropes of nanotubes
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to probe transport.  These electrodes make tunneling contacts to the tubes and, for

conducting tubes, the resulting structure behaves as a 1D quantum dot. It was found that

for ropes transport was typically dominated by a single nanotube in the rope[9]. This is

reasonable since the majority of the tubes comprising a rope are insulating at low

temperatures[7,8] Measurements of such devices have been used to study the charging

energy, level spacing, and spin state of a nanotube[9,10,13,14].

The devices used in these previous experiments had two distinct geometries, one

which contacted the ends of a tube and one which contacted the bulk, as is discussed in

the legend to Fig. 1.  Here, we explore the transport properties of rope samples in both of

the geometries.  Fig. 1 shows the linear-response two-terminal conductance, G, versus

gate voltage, Vg, for a bulk-contacted metallic rope. At low temperatures, it exhibits a

series of Coulomb oscillations[15] that occur each time that an electron is added to a

nanotube within the rope. From the temperature dependence, we find that the charging

energy U for this sample is 1.9 meV.  For kBT > U (i.e. T > 20 K), the Coulomb

oscillations are nearly completely washed out, and the conductance is independent of

gate voltage. A plot of the conductance vs. temperature in this regime is shown in the

inset. The conductance drops steeply as the temperature is lowered, extrapolating to G =

0 at T = 0.

Results for a number of samples are shown in Fig. 2, where the G versus T is

plotted on a log-log scale (solid lines). Fig. 2(a) shows data for end-contacted ropes,

whereas Fig. 2(b) shows the data for bulk-contacted ropes. The measured data (solid

lines) shows approximate power law behavior for the four samples shown. However, the

range of temperature over which the power law behavior occurs is limited by the effects
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Figure 8-1: The two-terminal linear-response conductance G vs. gate voltage Vg for a
bulk-contacted metallic rope at a variety of temperatures. The data show significant
temperature dependence for energy scales above the charging energy that cannot be
explained by the Coulomb blockade model. Inset: Average conductance plotted as a
function of temperature T. The devices used in these experiments are made in one of
two ways. In both methods, SWNTs are deposited from a suspension in
dichloroethane onto 1-µm thick SiO2 that has been thermally grown on a
degenerately doped Si wafer. The degenerately doped silicon substrate is used as a
gate electrode. AFM imaging reveals that the diameter of the ropes vary between 1
and 10 nm.  In the first method[9], chromium-gold contacts are applied over the top
of the nanotube rope using electron beam lithography and lift-off.  From
measurements of these devices in the Coulomb blockade regime, we conclude that
the electrons are confined to the length of rope between the leads. This implies that
the leads cut the nanotubes into segments, and transport involves tunneling into the
ends of the nanotubes (“end-contacted”).  In the second method[10], electron beam
lithography is first used to define leads, and ropes are deposited on top of the leads.
Samples were selected that showed Coulomb blockade behavior at low temperatures
with a single well-defined period, indicating the presence of a single dot. The
charging energy of these samples indicates a dot with a size substantially larger than
the spacing between the leads, as found by Tans, et al.[10] Transport thus occurs by
electrons tunneling into the middle, or bulk, of the nanotubes (“bulk-contacted”).
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Figure 8-2: Conductance G plotted against temperature T for individual
nanotube ropes.  The data are plotted on a log-log scale.  Figure 2a shows data
for ropes that are deposited over pre-defined leads (bulk-contacted), whereas
Fig. 2b shows the data for ropes that are contacted by evaporating the leads on
top of the ropes (end-contacted). Sketches depicting the measurement
configuration are shown in the lower right insets. The plots show both the bare
data (solid line) and the data corrected for the temperature dependence expected
from the Coulomb blockade (CB) model (dashed line). We correct the data by
dividing the measured G(T) by the theoretically expected temperature
dependence in the CB model. This correction factor only depends upon U/kBT,
and, since U can be independently measured from the temperature dependence
of the Coulomb oscillations, the correction procedure requires no adjustable
parameters.  If the CB were the only source of the temperature dependence, the
dashed lines would be horizontal.  Instead they have a finite slope, indicating an
approximate power-law dependence on T. The upper left inset to Figure 2(a)
shows the power-law exponents inferred for a variety of samples. Open circles
denote end-contacted devices, while crosses denote bulk-contacted ones.
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of Coulomb blockade at low temperatures.  After correcting for the known temperature

dependence due to the Coulomb blockade[15], the corrected data (dashed lines) shows

power law behavior over a greater range, with slightly different exponents.  Above

T~100 K, G begins to saturate for some samples. This saturation is observed in many,

but not all, of the samples studied.

Focusing on the corrected data, the bulk-contacted samples show approximate

power law behavior from 8 – 300 K with exponents αbulk ≈ 0.33 and 0.38.  The end-

contacted samples show approximate power law behavior from 10 - 100 K with

exponents αend  ≈ 0.6 for both samples. The upper inset to Fig. 2(a) shows the exponents

determined from the temperature dependence for a variety of samples. Exponents

marked with an ‘x‘ and ‘o’ are for bulk- and end- contacted tubes, respectively. The

bulk-contacted samples show a systematically lower exponent than end-contacted

devices, with αend ~ 0.6 and αbulk ~ 0.3.

Figure 3 shows the measured differential conductance dI/dV of these devices as a

function of the applied bias V.  The upper left inset to Fig. 3(a) shows results for a bulk-

contacted device at different temperatures, plotted on a log-log scale.  At low biases,

dI/dV is proportional to a (temperature-dependent) constant – G(T) from Figure 2. At

high biases dI/dV increases with increasing V.  The curves at different temperatures fall

onto a single curve in the high bias regime.  Since this curve is roughly linear on a log-

log plot, it implies that the differential conductance is described by a power law, dI/dV ~

Vα, where α = 0.36. At the lowest temperature T=1.6 K, this power law behavior occurs

over two decades in V, from 1 mV < V < 100 mV.
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Figure 8-3: The differential conductance dI/dV measured at various
temperatures.  Figure 3a inset: dI/dV curves taken on a bulk-contacted rope at
temperatures T=1.6 K, 8 K, 20 K, and 35K.  Figure 3b inset: dI/dV curves taken
on an end-contacted rope at temperatures T=20 K, 40 K, and 67K.  In both
insets, a straight line on the log-log plot is shown as a guide to the eye to
indicate power-law behavior.  The main panels show these measurements
collapsed onto a single curve using the scaling relations described in the text.
The solid line is the theoretical result fit to the data using γ as a fitting
parameter. The values of γ  resulting in the best fit to the data are γ =  0.46 in (a)
and γ = 0.63 in (b).



121

The upper left inset to Fig. 3(b) shows dI/dV as a function of V for an end-

contacted sample at several temperatures. The conductance is again a temperature-

dependent constant at low biases eV << kBT, whereas at higher biases dI/dV increases.

The high bias data follows an approximate power law before rolling off to reduced slope

for V > 30 mV. While the range of data is too small to conclude that a power law

accurately describes the behavior at intermediate voltages, if a straight line is fit to the

range 9 mV< V < 32 mV the exponent obtained is α = 0.87.

We now discuss the possible origins this approximate power law behavior.  One

possible explanation is that the tunnel barriers are strongly energy-dependent, with

increased transparency at high energies. This would lead, e.g. to activated transport:

G~exp(-∆/kBT) over  the barrier.  However, the fact that the temperature dependence

extrapolates to G = 0 at T = 0 (Figure 1 inset) is inconsistent with this functional form.

Another potential explanation is that transport occurs through multiple dots in

series formed by disorder[16] or by barriers produced when the nanotubes bend over the

lithographically defined contacts[17]. We rule this possibility out however, as we have

chosen to study only samples where a single dominant period for the Coulomb

oscillations is observed at low temperatures. This indicates the existence of only a single

dot.

Having excluded these possibilities, let us consider whether the behavior can be

explained by the predictions of Luttinger Liquid (LL) theory.  A LL is a one-

dimensional correlated electron state characterized by a parameter g that measures the

strength of the interaction between electrons.  For any g ≠ 1, the low energy excitations
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of the system are not all weakly interacting quasiparticles, and the Fermi liquid theory

used to describe conventional metals is not appropriate.

In SWNTs, the long-range Coulomb interaction between electrons is expected to

yield an LL with g < 1[11,12] For a finite length tube or rope, the Luttinger parameter g

is given by:

              (1)

where U = e2/C is the charging energy of the tube and  ∆ = π h vF/2L is the single-

particle level spacing (the two 1D subbands of the nanotube are assumed to be non-

degenerate). From previous measurements and theoretical estimates[9,10] U/∆ ~ 6.,

yielding an expected Luttinger parameter g(theory) ~ 0.28.

Tunneling of an electron into a LL is dramatically different than tunneling into

Fermi liquid.  For a Fermi liquid, an energy-independent tunneling amplitude is

expected for energies near EF, where EF is the Fermi level.  This yields a temperature-

and bias-independent tunneling conductance.  For a clean LL on the other hand, the

tunneling amplitude is predicted to vanish as a power law in E-EF.  This leads to a

power-law variation of G with T at small biases (eV<< kBT):

G(T)  ~ ATα          (2)

  or with V at large biases (eV >>kBT) :

dI/dV ~Vα  (3).

2/1]
2

1[ −
∆

+= U
g
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The exponent of these power laws depends on the number of 1D channels[18] and

whether the electron tunnels into the bulk or the end of the LL.  For a SWNT with four

conducting modes at EF, the exponents are[11,12]:

αend = (g-1 - 1) / 4            (4a)

αbulk = (g-1 + g - 2) / 8.                                          (4b)

Using equations 1 and 4, we obtain αend(theory) = 0.65 and αbulk(theory) = 0.24.

To compare the theoretical predictions for tunneling into an isolated nanotube

through a single barrier to the experimental geometry where ropes are connected by two

contacts, we must make two assumptions.  First, we assume that transport in the rope is

dominated by a single metallic tube, as discussed previously.  Preliminary theoretical

studies of ropes composed of SWNTs with a relatively small fraction of metallic tubes

support this assumption.   These studies find that the only significant inter-tube coupling

is electrostatic.  Such an interaction will introduce extra screening of the Coulomb

interaction but, because of the weak (logarithmic) dependence of g on the screening

length, the LL predictions are essentially unchanged.  Second, we assume that the tunnel

resistances into and out of the tube are the dominant resistances in the system.  The

circuit thus consists of two tunnel junctions in series, with the current response of each

junction is described by equations 1-4.  Note that the voltage drop across the highest

impedance junction will be some fraction γ  of the total applied bias V, where 1/2 ≤ γ  ≤

1.  If the barriers are equal, the voltage will divide equally between these junctions and γ

= 1/2. Alternately, if the resistance of one junction dominates, γ  = 1.

With these assumptions, the approximate power law behavior as a function of T

or V observed in Figures 2 and 3 then follows from Eq.s 1-4.    The predicted values of
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the exponents are  also in very good agreement with the experimental values.  This

agreement may be somewhat fortuitous due to the experimental uncertainty in the value

of U/∆ and complexities associated with the screening of the Coulomb interaction by the

metallic leads[11,12] Nevertheless, the measurements are both qualitatively and

quantitatively described by LL theory. Remarkably, power-law behavior in T is

observed up to 300 K in the bulk-contacted samples, indicating that nanotubes are

Luttinger Liquids even at room temperature.

At present, we do not understand the origins of the high-energy saturation

observed in the end-contacted tubes.  One possibility is that, at high energies, electrons

can tunnel in both directions and hence the end-contacted tubes behave as bulk-

contacted tubes, with a correspondingly lower exponent.  Future experiments are

necessary to clarify this issue.

The LL theory makes an additional prediction for this system.  The differential

conductance for a single tunnel junction is given by a universal scaling curve[19,20]:

 2
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=                           (5)

where Γ(x) is the gamma function, γ is the constant introduced earlier that takes into

account the voltage division between the two tunnel junctions, and A is an arbitrary

constant. This equation assumes that the leads are at T = 0 K.  For leads at a finite

temperature,  dI/dV is given by the convolution of  Eq. 5 and the derivative of the Fermi

distribution: )2/(hsec/ 2
4

1 TkeVdEdf BTkB

γ= .

If the above scaling relation is correct, it should be possible to collapse the data

at different temperatures onto a single universal curve. To do this, the measured dI/dV at
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each temperature was divided by Tα and plotted against eV/kBT, as shown in the main

body of Figs. 3(a) and 3(b). For both geometries, the scaled conductance is constant at as

eV/kBT approaches zero, but above eV/kBT ~ 7, the scaled curve begins to increase. The

data collapses quite well onto a universal curve for the bulk-contacted device, Fig. 3(a),

over the entire bias range.  For the end-contacted device, the data deviates from power-

law behavior for biases V > 30 mV as discussed previously. This is reflected in Fig. 3(b)

in a roll-off that occurs at lower values of eV/kBT as the temperature is increased.

The solid lines in Fig. 3(a) and 3(b) are a plot of the curve obtained by fitting Eq.

5 (convolved with df/dE) to the data, with γ as a fitting parameter. The theory fits the

scaled data reasonably well, especially for the bulk-contacted tube. For the samples

studied, the inferred values of γ fall, within error bars, of the allowable range (0.5 < γ <

1) for two barriers in series.  This indicates that energy scale at which the differential

conductance makes the transition from a constant to power law behavior is well

described by the theory.

Taken as a whole, the data shown in Fig. 2 and Fig.  3 provide strong evidence

that the electrons in metallic carbon nanotubes constitute a Luttinger liquid.  Future

work will test other predictions of the LL theory, such as tunneling between LLs in end-

to-end[1] and in crossed geometries[21]
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Chapter 9

Summary

Recent advances have made the bulk production of  ~1 nm diameter single-

walled carbon nanotubes (SWNTs) possible. These SWNTs may be considered as made

from a rolled-up single sheet of graphite. They are interesting for a variety of reasons,

and since their discovery, much effort has been made toward studying their mechanical,

chemical, and electrical properties. This thesis work has been focused on the electrical

properties of these SWNTs, which have been predicted to be either 1D metals or 1D

semiconductors depending on the precise way in which the tube is rolled from the

graphite sheet.

To study the electrical properties of SWNTs experimentally we have attached

leads to ~1 µm long nanotubes using electron beam lithography. These leads are

patterned on an oxidized degenerately doped Si wafer, which is used as a gate to

modulate the charge density on the nanotubes, similar in operation to a MOSFET.

How these devices operate depends on whether the SWNTs are metallic or

semiconducting. In metallic tubes, we have found that at low temperatures and biases a

nanotube behaves like a 1D quantum dot. The number of electrons on the nanotube is

discrete, and sharp peaks in the conductance are observed as the gate voltage is varied,

corresponding to the addition of a single electron to the nanotube. We have also

performed transport spectroscopy on the metallic tubes and have observed resonant



129

tunneling through the individual quantum levels of the electrons in the nanotubes. From

these measurements, we have determined the charging energy and mean level spacing

for many nanotube dots. We have found that the ratio of the charging energy to level

spacing is ~6 independent of the length of the dot, giving direct experimental evidence

for carbon nanotubes’ 1D nature. The size of the dots as estimated from the charging

energy can be quite large; the largest we have studied is ~10 µm in length. Because in

1D the elastic mean free path is on the order of the localization length, this indicates that

the mean free path lm in metallic tubes can be on the micron length scale. Finally, we

have used transport spectroscopy techniques to study the electron spin states in an

applied magnetic field.

These quantum-dot effects arise from the finite size of the nanotube. However, in

an infinite 1D system electron-electron (e-e) interactions are predicted to strongly

modify the 1D electron gas away from that of a conventional Fermi liquid. This strongly

correlated state is known as a Luttinger liquid (LL). In order to observe effects arising

from the e-e interactions, we therefore probed the nanotubes at energy scales well above

the charging energy and level spacing. In our transport measurements, when the

temperature T and/or bias V was well above the charging energy and level spacing,

power law behavior of the conductance as a function of temperature or bias voltage was

observed: G~ Tα and dI/dV ~ Vα.  Both the power-law functional forms and the inferred

exponents are in good agreement with theoretical predictions for tunneling into a LL.

This is significant because it has shows that SWNTs constitute a very clean 1D system

in which LL effects may be observed, thus opening new possibilities for the study of a

1D interacting electron gas.
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We now turn to semiconducting nanotubes. These nanotubes have been found by

others to show p-type transistor behavior, turning on at negative gate voltages and

turning off at positive gate voltages. We have extended this work by showing that n-type

transistors can be made from nanotubes that are doped with potassium.

Low temperature measurements of semiconducting nanotubes reveal behavior

consistent with transport through multiple quantum dots. The charging energy of these

dots is ~100 meV, which corresponds to a dot size of ~100 nm. This indicates that the

mean free path ls in semiconducting tubes is also typically on the order of ~100 nm.

Thus we find that for most of the devices we have studied ls<<lm. We believe that this

results from details of the band structure of metallic and semiconducting tubes that

prohibits backscattering from long range disorder in metallic tubes.

In conclusion, we have shown that carbon nanotubes constitute a nearly perfect

system in which to study the physics of electrons in 1D. This relatively new field (~3

years old) has already seen tremendous progress. Despite this, the prospects for exciting

developments remains undiminished. The extremely high aspect ratio of SWNTs makes

them an ideal bridge between the micron scale world and the nanometer scale world.

People have just begun to explore the uses of nanotubes as nanomechanical oscillators or

scanned probe tips[1, 2]. In addition, future work will no doubt continue to explore their

fascinating transport properties. SWNTs are truly a material for the new millenium.
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