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We simulated the behavior of suspended carbon nanotube reso-
nators over a broad range of temperatures to explore the physics of
semiflexible polymers in underdamped environments. We find that
thermal fluctuations induce strong coupling between resonance
modes. This effect leads to spectral fluctuations that readily account
for the experimentally observed quality factors Q ∼ 100 at 300 K.
Using a mean-field approach to describe fluctuations, we analyti-
cally calculate Q and frequency shifts in tensioned and buckled car-
bon nanotubes and find excellent agreement with simulations.
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The effects of thermal fluctuations can completely alter the
mechanical properties of reduced dimensional systems. For

example, the shape and elasticity of a DNA molecule are entirely
dominated by thermal fluctuations of transverse degrees of
freedom, completely altering both physical behavior and bi-
ological function. In overdamped environments such as liquids,
these entropic effects have been studied for decades (1), but the
behavior of reduced elastic objects in underdamped environ-
ments is largely unexplored. For example, consider a resonator
made from an atomically thin membrane or polymer. How will
thermal fluctuations affect the vibrational spectrum, and how will
thermally driven nonlinear effects influence the decay widths of
the resonance modes?
Carbon nanotube (CNT) resonators, with their nanometer-

scale cross-section (2) and very small bending rigidity for flexural
modes (3) present a unique opportunity to probe these questions.
Experimental work has shown CNT resonators to be highly tun-
able (4) as well as functional as rf transceivers (5) and atomic mass
detectors (6, 7), but these resonators have consistently exhibited
much broader than expected decay widths (4, 8). Specifically, the
quality factorQ, the key parameter measuring the degree to which
an oscillating mode is decoupled from its environment, which is
inferred from the decay width, is typically less than Q ∼ 100 at
room temperature. These low Qs are not consistent with known
dissipation mechanisms seen in other nanomechanical resonator
systems (9). Analytical phonon-phonon scattering studies estab-
lish a theoretical upper bound on Q in CNTs that is well above
experimental values, withQ( 50,000 at 300K (10, 11).Molecular-
dynamics simulations of short CNTs (L ∼ 50 nm) show interesting
behaviors in cantilevered and free CNT segments (12–15) due to
anharmonic atomic potentials, and those that make an explicit
determination of quality factor in thermal equilibrium (13, 14) give
Q ∼ 1,000 at room temperature. Typically, however, experiments
are performed onCNTs withLT 1 μm, and the anharmonic elastic
effects that dominate in short-length CNTs do not contribute as
significantly at this longer length scale.
An alternative explanation for these altered properties comes

from the field of polymer physics, where the effects of fluctua-
tions on the physics of 1D elastic objects have a long and storied
history. A key length-scale that characterizes these 1D objects’
properties is the persistence length ℓp =  κ

kBT
, where κ is the

bending rigidity. Subject to thermal forces, the 1D elastic object
will fluctuate and lose correlations in shape for lengths longer
than ℓp. Thus, short 1D structures (L� ℓp) such as microfabricated
nanobeam resonators behave like rigid rods, with thermal

amplitudes small compared with the size of the structure.
However, long 1D structures (L � ℓp) such as organic polymers
are forced into fluctuating, coiled, high-entropy configurations.
Micron-scale CNTs are between these regimes, in the semiflexible
polymer limit (L ( ℓp) (1), where the bending energy and config-
urational entropy contribute comparably to the total free energy.
In overdamped environments, the behavior of semiflexible poly-
mers is now well understood (16), but the behavior of a nanoscale
resonator in the semiflexible polymer limit has not been explored.
In this article, we report simulations and analytical predictions

of the thermally driven dynamics of CNT resonators over tem-
peratures from 3 to 300 K and in the limits of both compressive
and tensile strain. By simulating purely continuum elastic be-
havior, we isolate the specific influence of entropic forces on
measured quantities, including both quality factor and thermally
induced frequency shifts. Quantum mechanical effects are ne-
glected, because the thermal occupation of all modes considered
are in the classical limit. We find that the fluctuations of many
resonance modes strongly influence the quality factor of CNT
resonators, an effect called fluctuation broadening, which was
previously invoked in the context of molecular spectra (17). We
find that this fluctuation broadening is in good agreement with
observed quality factors in experiment.
CNTs were modeled as 1D linear-elastic objects, with bending

rigidity κ= πCd
3

8 and extensional rigidity K = πCd, where C ∼345
J/m2 (18) is the 2D elastic modulus of graphene and d is the tube
diameter. Each CNT was discretized into 100 or more masses
joined by axial and torsional linear springs. For a given set of
tube dimensions, boundary conditions, and externally applied
forces, the equilibrium geometry was computed via a relaxation
method, and zero-temperature eigenmodes were computed by
diagonalizing the force constant matrix (19) (details in SI Text).

Results
To study dynamics at nonzero temperature, a finite time-differ-
ence calculation was used. Thermal equilibrium was reached by
coupling the nanotube to an external heat-bath via a generalized
Langevin equation, applying a stochastic white-noise force with
external damping. Dynamics at equilibrium were then simulated
with this Langevin equation using the fourth-order Runge–Kutta
method. Adiabatic conditions were also studied using Stoermer’s
rule (20). The model’s validity was confirmed by its ability to
properly exhibit equipartition of energies for each eigenmode.
Additionally, we performed externally driven simulations and
found similar Q at low amplitude drive compared with the
thermally driven simulation data we present.
Throughout this article, data are shown from simulations of

a typical experimental case of a CNT with L = 3 μm and d = 2
nm. We investigate resonance properties of this CNT at different
zero-temperature strains e0, temperatures T, and externally
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applied forces Fz by quasi-statically sweeping at most one pa-
rameter and measuring the power spectral density of the mean
z-displacement (defined in Fig. 1A) of the nanotube: Szðf Þ=
limtm→∞   E 

h
jF ðztm ðtÞÞj2

tm

i
, where tm is the finite time over which the

Fourier transform is taken, and E denotes an ensemble average.
The mean z-displacement was the chosen parameter to analyze
because it is typically measured in experiments (21). From Sz(f),
we measure thermal frequency shifts Δf ≡ f − f(T = 0 K) and
quality factor Q ≡ f

δ f . This definition of Q is used because the
linewidth δ f is directly measured in experiments.
We first study the qualitative behavior of this CNT as a func-

tion of strain at 100 K. In the tensioned limit (Fig. 1B, Left), the
eigenmodes, labeled by their modeshape, tune like a tensioned

string, giving a frequency fn ≈ n
2L

ffiffiffi
N
μ

q
, where μ is the linear mass

density and n = Ke is the axial tension. Modes without mean
z-displacements, including the even in-plane (z-direction) eigen-
modes and all out-of-plane (x-direction) eigenmodes, are not
visible. Thus, only modes with n = 1, 3, 5. . . are seen.
With negative strain, the nanotube undergoes a Euler buckling

transition, as illustrated in Fig. 1B Upper Right. With the resulting
built-in slack, the CNT can bend without stretching, leading the
spectral lines to no longer tune significantly with strain. The
linewidths, however, do tune with strain (Fig. S1). Also, there are
emergent spectral lines corresponding to the motion of out-of-
plane modes (Fig. 1B, Right). We analyze these temperature-
dependent linewidths in the tensioned case and buckled case
separately and discuss the different nonlinear coupling mecha-
nisms (22–24) that apply to each.

Tensioned Nanotube. We begin with the tensioned case. We select
a fixed tensile zero-temperature clamping condition e0 = 2 × 10−4,
and simulate the nanotube motion at six temperatures, incre-
menting by 50 K from 50 to 300 K and plot in Fig. 2A the power
spectral density over a frequency range spanning up to the n = 5

mode. The frequencies of the modes shift linearly with T and, as
shown in Fig. 2C, the peaks also broaden with Q−1 ∼ T. At 300 K,
Q ∼ 40. The quality factor and frequency shifts can be understood
to arise from the change in length of the CNT caused by thermal
fluctuation in each eigenmode. The nth eigenmode is given by
unaðy; tÞ= anðtÞξna

�
y
L

�
, where ξna is the dimensionless modeshape

with unit rms displacement, an is a time-varying amplitude func-
tion, and both the amplitude a and index a refer to either the x
or y direction. The tube elongates by the length βna

a2n
2L, where

βna ≡
R 1
0 ξna′ ðxÞ2dx for each independent eigenmode; this leads to

the strain being modified as hei≈ e0 +
P

n;a   βna
ha2ni
2L2 , where brackets

denote a time average over the period of oscillation (25). As-
suming that〈an〉obey Boltzmann statistics in thermal equilibrium
and that an fluctuate incoherently, we are able to solve for the
mean strain shift Δe and strain variance σ2e (details in SI Text).
In the high-tension limit, a large number of the resonance modes

contribute significantly to lengthfluctuations.Accounting for the con-
tribution of all resonance modes gives for the mean-field strain shift

Δe =
L

2nf ℓp
;    nf =

ffiffiffiffiffiffiffiffiffi
NL2

κ

s
; [1]

where the value of Δe is solved self-consistently, and nf can be
interpreted as the number of independent degrees of freedom
causing significant length fluctuations. Here, high-frequency
modes do not appreciably modify the strain, because most of
their elastic energy is stored in bending rather than in stretching.
Δe is a length-dependent thermal expansion parameter that is
distinct from the intrinsic thermal expansion simulated for CNTs
(12). From Eq. 1, Δe leads to Δf ∼ T.
Next, we calculate the strain variance σ2e =

L2

8n3f ℓ
2
p
, which leads to

the prediction that δ f ∼ T. Furthermore, the predicted δ f con-
stitutes fluctuation broadening and gives a unique prediction for
Q (derivation in SI Text):

Q−1 =

ffiffiffiffiffiffiffi
ln2

p

2
L

n
3
2
f eℓp

: [2]

A

B

Fig. 1. (A) Schematic of CNT resonator geometry. CNT is suspended be-
tween two electrodes (in yellow) and has a controllable downward force Fz
electrostatically applied by a voltage to the underlying substrate. A small Fz
is applied in B to keep the buckled tube oriented vertically. (B) Simulated
power spectral density of the z-motion of the nanotube as a function of
strain e0 at T = 100 K with logarithmic color scale. The tube is taken from
tensile strain (Left) to compressive strain (Right) as illustrated (Insets). Ei-
genmode shapes are inset, as are labels for the eigenfrequencies.
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Fig. 2. (A) Power spectral density of a tensioned nanotube with e0 = 2 × 10−4.
Six temperatures are plotted from 50 to 300 K spaced evenly in T. (B) Linear
plot of Sz (f) for f1z showing that the frequency shift Δf and line width δf
both scale linearly with T. (C) Inverse quality factor of f1z vs. temperature. (D)
Dimensionless fixed ratio of Δf to δf that corresponds to nf, the number of
independent fluctuating modes contributing to spectral broadening and
frequency shifts. In C and D, data are circles, and theory is a line. The line in C
corresponds to Eq. 2, and in D nf in Eq. 1.
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Eq. 2 is our first key result. The dominant T-dependence comes
from ℓ−1p ∼T, but both nf and e have weak T-dependence as a
result of entropic stretching. The quantity n2f ℓp is the persistence
length for a tensioned beam and parameterizes how far fluctua-

tions drive the CNT out of equilibrium. The n
3
2
f dependence then

can be understood to arise from an additional linewidth broad-

ening ∼ n
1
2
f due to averaging over nf uncorrelated degrees of

freedom. Eq. 2 accurately describes the numerical results, shown
in Fig. 2C, and shows that fluctuation broadening can account for
the experimentally observed Q ∼ 100 at room temperature (8, 21).

Buckled Nanotube. Next, we study a nanotube under compressive
strain, picking e0 = −4 × 10−3. Applying a small downward force
Fz = 0.6 pN that mimics the force applied by the gate in
experiments, simulations were performed at logarithmically
spaced temperatures from 3.1 to 300 K, as shown in Fig. 3. In
contrast to the tensioned regime, there is complex structure in
the spectra, with many spectral features growing nonlinearly with
T. Linear theory predicts that f3z and f5z would be the only visible
spectral lines in Fig. 3. The other emergent modes can be
identified as either oscillations of out-of-plane modes producing
z-displacement at twice their natural frequency (2f1x, 2f2x, and
2f3x) or mixes of in-plane modes (f5z − f3z and f5z + f3z). Focusing
on the lowest observed in-plane mode (f3z), we observe Q−1 ∼ T
(Fig. 3, Inset) and a decrease in frequency with increasing tem-
perature. From this we extract Q ∼ 5 for this mode at 300 K.
Further insight is gained by smoothly tuning frequencies by

quasi-statically varying the magnitude of the electrostatic force
Fz = 1

2C′V
2
g , as shown in Fig. 4 A and B, where Vg corresponds to

the electrostatic voltage applied to the gate illustrated in Fig. 1A,
and C′= dC

dz is the derivative of the tube-gate capacitance as-
suming a 400-nm gap. The spectral lines tune with force and the
frequency-doubled out-of-plane spectral lines cut across the in-
plane spectral lines. At 0 K, linear theory predicts there to be no
coupling. However, at the intersections, there are observable
avoided crossings, even at 10 K, as seen in Fig. 4A. This behavior
is consistent with experiments (21). To study this, we fix Fz at
a crossing indicated by the dotted line in Fig. 4A, quasi-statically
sweep the temperature, and measure Sz(f) (Fig. 4A, Inset). Here,
we observe a sublinear T-dependence of the splitting at the
avoided crossing. At 300 K, the frequency splitting is nearly one-

fifth of the resonance frequency, indicating a strong coupling
strength induced entirely by thermal fluctuations.
We build an analytical model for this behavior by first mod-

eling the CNT as an inextensible object. In this framework,
when an out-of-plane mode has finite amplitude, the CNT must
move up in the z-direction to preserve length. To quantify the
amount that the tube moves in z, we enforce the constraint that
the differential length dL=

ffiffiffiffiffiffiffiffiffiffiffi
β1zjej

p
dz1 − 2

P
n
β1xxn
L dxn is zero,

where the equilibrium deflection of the tube is z1ξ1z
� y
L

�
. ξ1z is

a linear combination of in-plane modes, requiring to second
order that znNL = zn+

ηn
L

P
m   βmxx

2
m, where ηn ≡

hξ1zjξnzi
hξnz jξnzi

2ffiffiffiffiffiffiffiffi
β1zjej

p , in

which the brackets are an inner product defined by
haðxÞjbðxÞi= R 1

0 aðxÞbðxÞdx (25).
Focusing on the interaction of one in-plane and one out-of-

plane mode, we change the out-of-plane variable to zop=
η
L βopx

2
op

and apply time-dependent perturbation theory (26) (details in SI
Text) to generate a coupled set of linearized equations:

"
−kip αðTÞkip

αðTÞkip −4kop − 3
2α

2ðTÞkip

#"
zip
zop

#
= m

"
z€ip
z€op

#
; [3]

where αðTÞ≡ 4ηβop
ffiffiffiffiffiffiffi
hx2opi

p
L and hx2opi is time-averaged over the period

of oscillation.
Using hx2opi= kBT

kop
gives αðTÞ∼ ffiffiffiffi

T
p

, which when substituted into
Eq. 3 predicts average frequency shifts. At an avoided crossing,
kip ∼ 4kop gives the prediction that Δf ≈ 1

2αðTÞfip; this matches
the simulated T-dependence, as shown by the theoretical pre-
diction that is overlaid on top of the data in Fig. 4A Inset.
By extending Eq. 3 to the full interaction matrix, populating

each mode according to Boltzmann statistics, and weighting the
resulting frequency probability distribution by the squared-am-
plitude distribution, we are able to generate a theoretical Sz (f)
map, which is shown in Fig. 4C; it compares well with the
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Fig. 3. Power spectral density of buckled nanotube with e0 = −4 × 10−3 with
Fz = 0.6 pN at logarithmically spaced temperatures. The built-in intrinsic
damping dominates the apparent line width at the lowest temperature.
(Inset) Plot of Q−1 of the f3z mode. Simulation data are shown as red dots,
and theoretical predictions from Eq. 3 are plotted as a blue line. Labels
beneath each spectral line correspond to their expected origin.

A B C

Fig. 4. (A) Color map of power spectral density at 10 K of the mean z-dis-
placement of a buckled nanotube resonator as a function of gate voltage,
assuming tube is 400 nm above the gate. Modes are labeled as defined in
Fig. 3, and color scale is identical to that in Fig. 1B. T-dependence from 0 to
300 K of the apparent avoided-crossing at 150 MHz is shown (Inset) at a fixed
Vg indicated by the red dotted line. (B) 300 K data of same force sweep in A.
(C) Plot of the theoretical power spectral density, based on the generalized
version of Eq. 3 described in the text, for the same conditions as in B. The
dashed lines in B and C correspond to the theoretical central frequencies
from the generalized version of Eq. 3.
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simulated results at 300 K shown in Fig. 4B. In addition, the
linewidths in the theoretical Sz (f) give an accurate prediction
of the simulated Qs, as shown in Fig. 3 Inset. The specific de-
gree of coupling is geometry-dependent, and thus not fully an-
alytically generalizable, but Eq. 3 predicts for the lowest in-plane
mode f3z that

Q−1 ≈ 0:04
L
jejℓp: [4]

Eq. 4 (derivation shown in SI Text) explains the strain depen-
dence of the spectral fluctuations seen in Fig. 1A Right: Q
improves with increased buckling as the geometric coupling be-
tween modes decreases. Furthermore, due to its coupling with
higher-frequency modes, the lowest in-plane mode is predicted
to decrease frequency with increasing temperature at low Vg,
which is frequently observed in experiment (7, 21).

Discussion
These results show that fluctuation broadening dominates the
behavior of CNT resonators over a broad range of temperatures,
and appears to be the main cause of temperature-dependent
quality factors measured in both tensioned and untensioned
resonators. Understanding the mechanism behind fluctuation

broadening in CNT resonators draws on the ideas of polymer
physics and underscores how thermal fluctuations can strongly
modify the vibrational spectrum and decay widths in reduced
dimensional nanoscale objects. To date there is limited experi-
mental data characterizing Q over a broad temperature range in
CNT resonators, but thus far, data remain at or below our the-
oretical upper bound (8, 21, 27). We predict a specific de-
pendence of Q on e0 and T that can be tested by experiments that
vary these parameters independently on individual CNT reso-
nators. Specifically, varying e0 at a fixed T will be the most in-
formative for this work, because the interpretation will be less
obscured by systematic strain shifts that occur due to thermal
expansion of the system.
This work implies a fundamental limit on Q in high aspect-

ratio resonators at finite temperatures. Tailoring the geometry of
these systems is necessary to mitigate thermally induced mode-
coupling and thus improve Q.
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