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ABSTRACT

We perform low-temperature electrical transport measurements on gated, quasi-2D graphite quantum dots. In devices with low contact resistances,
we use longitudinal and Hall resistances to extract carrier densities of 9.2 −13 × 1012 cm-2 and mobilities of 200 −1900 cm2/V‚s. In devices with
high resistance contacts, we observe Coulomb blockade phenomena and infer the charging energies and capacitive couplings. These experiments
demonstrate that electrons in mesoscopic graphite pieces are delocalized over nearly the whole graphite piece down to low temperatures.

Graphite, many stacked layers of graphene sheets separated
by 0.3 nm and held together by weak van der Waals forces,
is a low carrier density, high purity semimetal.1 The
discovery of carbon nanotubes, which are rolled up graphene
sheets, has brought renewed interest in this material.2 The
remarkable electronic properties of nanotubes are a direct
consequence of the peculiar band structure of graphene, a
zero band gap semiconductor with two linearly dispersing
bands that touch at the corners of the first Brillouin zone.3

Bulk graphite has been studied for decades,1,4-7 but there
has been no work done on thin mesoscopic samples.

One exciting possibility is the creation of graphite quantum
dots: micron scale, nanometer-thick graphite layers on an
insulating substrate with patterned metallic contacts. Quan-
tum dots have previously been made from GaAs hetero-
structures8 small metal grains,9 carbon nanotubes,10-12 single
molecules,13,14 and many other materials, but graphite’s
layered structure and unusual electronic spectrum make it a
promising new material for quantum dot studies. Devices
with low resistance contacts would allow the basic transport
parameters of the material to be determined, while those with
high contact resistances (Rc g h/2e2 ) 13 kΩ) would be in
the Coulomb blockade regime, where the addition and
excitation spectrum of electrons could be measured.

Experiments described in this letter demonstrate two
methods to wire up mesoscopic graphite pieces. Devices with
low contact resistances at room temperature (“open dots”)
maintain their low resistance to low temperatures, and four-
probe measurements are made to extract the Hall and
longitudinal resistivity of the graphite. Those with high
contact resistances at room temperature (“closed dots”) show
Coulomb blockade oscillations at low temperatures.

The devices are fabricated as follows. Natural graphite
flakes (Asbury Carbons grade 3061) are sonicated in di-

chlorobenzene solution for approximately 5 min. A drop of
the solution is placed onto a degenerately doped Si wafer
with a 200 nm thermally grown oxide. The chip is then rinsed
with isopropyl alcohol and dried with nitrogen. This leaves
a dispersion of graphite pieces ranging in thickness from
several hundred nanometers to as small as a few nanometers
(see Figure 1). We use two separate methods to wire up the
graphite pieces. In the “designed electrode” method, an AFM
is employed to locate thin pieces with respect to predefined
alignment marks and then electron beam lithography is used
to define multiple (two to six) electrodes to the piece (Figure
1b). After lithography, 50 nm of Pd is evaporated followed
by liftoff. The resulting quasi-2D graphite quantum dots have
typical lateral dimensions of approximately 1µm and vary
in thickness from a few to tens of nanometers.

In the “random electrode” method, graphite is dispersed
as described above and a series of electrodes with a
separation of 1-2 µm are defined by photolithography and
evaporating 5 nm of Cr and 50 nm Au (Figure 1d and 1e).
The resistance of each pair of electrodes is measured to
determine if a graphite piece was contacted. It has the
advantage of being quick but lacks the control and flexibility
of the designed electrode method.

The devices were measured at room temperature in a field
effect geometry with a bias voltage of 10 mV applied
between source and drain electrodes. The back gate voltage
Vg was varied from 10 V to-10 V at room temperature. As
shown in Figure 2, the two-point resistance of most of the
devices was between 2 and 10 kΩ, with a few >100 kΩ.
The conductance was relatively independent ofVg, but some
samples showed a few percent decrease in the conductance
with positiveVg.

Low temperature measurements on the devices were
performed at 1.5 K in an Oxford variable temperature insert
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(VTI) cryostat or 100 mK in an Oxford dilution refrigerator.
The devices with low resistances at room temperature (open
dots) displayed only a small increase in their resistance upon

cooling, as seen in Figure 2. In such devices with multiple
contacts, we performed longitudinal and Hall resistance
measurements to extract the carrier density, sign of the
carriers, and resistivity. Figure 3 shows data from a 5 nm
tall dot, corresponding to approximately 15 stacked graphene
sheets, measured at∼100 mK using standard AC lock-in
techniques. Similar results were obtained at 4 and 1.5 K.
The Hall resistanceRxy is approximately linear, and the
longitudinal resistanceRxx shows weak fluctuations as a
function of magnetic field with little change in its average
value.

To analyze these results, we make the simplifying as-
sumption that the entire graphite piece is a uniform conductor
with a single density and in-plane mobility. From the
standard equation for the Hall resistanceRH ) B/ne, the slope
of the line in Figure 3 corresponds to a density of 9.2×
1012 cm-2. The sign of the Hall voltage indicates that the
dominant charge carriers are holes. A similar measurement
on a second device with a height of 18 nm, shown in Figure
1a and 1c, gives a hole density of 1.3× 1013 cm-2.

After accounting for the geometrical factors, we infer the
resistance per square,Rs, of the entire sample. For the 5 nm
thick device at 100 mK, we haveRs ) 3.4 kΩ. Using the
equation µ ) 1/neRs, we get a mobility of µ ) 200
cm2/V‚s. A similar analysis for the sample with a thickness
of 18 nm shown in Figure 1a and 1c at 1.5 K yieldsRs )
260 Ω andµ ) 1900 cm2/V‚s. The inferred mobilities are
significantly lower than in bulk-purified natural graphite
flakes, which range from 1.5 to 130× 104 cm2/V‚s.7

Figure 1. (a) AFM image of a graphite piece with a height of 18
nm dispersed onto a SiO2/Si wafer. (inset) Line trace showing the
height. (b) Optical image of electrodes fabricated by electron beam
lithography. When a desired graphite piece is located in AFM, its
position with respect to the predefined alignment marks visible in
the image is determined. Electron beam lithography and liftoff is
then used to define the electrodes. (c) AFM image of six electrodes
defined by electron beam lithography contacting an 18 nm thick
graphite dot (designed electrode). (d) AFM image of two electrodes
contacting a 5 nmthick graphite dot (random electrode). (e) Optical
image of a set of electrodes defined by photolithography over
randomly dispersed graphite (random electrode).

Figure 2. Scatter plot of the ratio of the low (T ∼ 100 mK) to
room temperature two-point resistance versus the room-temperature
two-point resistance for all the devices for which there is low-
temperature data. (inset) Schematic of the device layout. The
graphite is in a field effect transistor geometry with a 200 nm gate
oxide. Source and drain electrodes are patterned on top.

Figure 3. Longitudinal and Hall resistance measured as a function
of magnetic field at 100 mK for the 5 nm thick graphite dot shown
in the insets. The Hall resistance,Rxy, was determined using standard
lock-in techniques by applying a 43 nA excitation current between
electrodes 2 and 6 and measuring the voltage drop between
electrodes 1 and 4. The longitudinal resistance,Rxx, was determined
by measuring the voltage drop between electrodes 5 and 6 while
an excitation current of 10 nA was passed between electrodes 1
and 4. The slope ofRxy versusB (black line) corresponds to a total
density of 9.2× 1012 cm-2. The longitudinal resistance (red line)
shows only weak fluctuations as a function ofB. (inset a) AFM
image of a graphite piece with a height of 5 nm and its
corresponding line trace. (inset b) The graphite piece shown in inset
(a) with electrodes patterned on top using the designed electrode
method.
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We can use a gate to vary the carrier density in the graphite
quantum dot. We assume the capacitance to the gate is that
of a parallel plate capacitor,Cg ) εoεA/d, whered ) 200
nm is the thickness of the SiO2, εo is the permittivity of free
space,ε is the dielectric constant of SiO2, andA is the area
of the device. This gives a capacitance per area ofCg′ ) 1.8
× 10-8 F/cm2, implying that 10 V applied to the back gate
results in a change of density of 1× 1012 holes/cm2. This is
only a small fraction of the total density in even the thinnest
samples studied. Nevertheless, it is consistent with a small
decrease in conductance observed in many samples at room
temperature; the holes are slightly depleted by the gate. At
low temperatures, any such changes are obscured by
reproducible fluctuations in the conductance as a function
of Vg.

Devices with room-temperature two-point resistances
greater than 20 kΩ (closed dots) show Coulomb blockade
at low temperatures. Data from a device fabricated using
the random electrode method is shown in Figure 4. AtT )
100 mK, the conductance exhibits well-defined Coulomb
blockade oscillations with a period in gate voltage of∆Vg

) 1.5 mV. A plot of dI/dVsd vsVg andVsd is shown in Figure
4. The maximum voltage that could be applied and still be
in the blockade regime is∆Vsd ) 0.06 mV.

A device made by the designed electrode method is shown
in Figure 5. The thickness of the device is 6 nm, corre-
sponding to 18 sheets. The Coulomb blockade oscillations
have a period of∆Vg ) 11 mV and a maximum blockade

voltage of∆Vsd ) 0.3 mV. A third device fabricated by the
random electrode method shown in Figure 1d has a height
of 5 nm and shows Coulomb oscillations with a period in
gate voltage of∆Vg ) 1.3 mV.

To describe these results, we use the semiclassical theory
of the Coulomb blockade.15 The period of the Coulomb
oscillations in gate voltage is given by:∆Vg ) e/Cg and,
using the previous expression forCg, we can approximate
the area of the graphite quantum dot. For the device in Figure
5 with ∆Vg ) 11 mV, the expected area of dot isA ) 0.08
µm2. The measured total area of the graphite piece shown is
0.12µm2 while the area between the electrodes is 0.05µm2.
This demonstrates that nearly the entire graphite piece is
serving as a single quantum dot and it likely extends beyond
the electrodes. For the device shown in Figure 1d, the
measured gate voltage period is∆Vg ) 1.3 mV, which
corresponds to a quantum dot withA ) 0.70µm2. The area
between the electrodes is 0.45µm2 again implying that the
dot extends into the graphite piece lying under the electrodes.

The charging energy for the dot is determined by its total
capacitanceC and is equal to the maximum blockade voltage
observed:e/C ) ∆Vsd. Notably, for our graphite quantum
dots, the ratio of the charging energy to the gate voltage
period is small:R ) (e/C)/∆Vg ) Cg/(Cs + Cd +Cg) , 1,
whereCs andCd are the capacitances to the source and drain
electrodes. The devices shown in Figure 4 and Figure 5 have
R ) 1/25 and 1/40, respectively. Such small values imply

Figure 4. (a) Current as a function of gate voltage withVsd ) 10
µV at T ∼ 100 mK for a device fabricated by the random electrode
method. Coulomb oscillations are observed with a period in gate
voltage of∆Vg ) 1.5 mV. (b) The differential conductance dI/dVsd

plotted as a color scale versusVsd and Vg. Blue signifies low
conductance and red high conductance. The charging energy of
the quantum dot is equal to the maximum height of the diamonds:
∆Vsd ) 0.06 mV. The center-to-center spacing between the
diamonds is the Coulomb oscillation period∆Vg ) 1.5 mV.

Figure 5. (a) The differential conductance dI/dVsd plotted as a color
scale versusVsd and Vg for the device shown in (d) atT ∼ 100
mK. The charging energy is∆Vsd ) 0.3 mV and the gate voltage
period is∆Vg ) 11 mV. (b) Current as a function of gate voltage
with Vsd ) 10 µV at T ∼ 100 mK for the device shown in (d).
Coulomb blockade oscillations are seen with a period of∆Vg )
11 mV. (c) Current as a function of gate voltage versus magnetic
field with Vsd ) 10 µV at T ∼ 100 mK for the device shown in
(d). (d) AFM image of a device fabricated using the designed
electrode method. The white rectangular outlines show the position
and size of the electrodes that were evaporated on the device. The
total area of the graphite piece is 0.12µm2 and the area under the
source and drain electrodes is 0.013µm2 and 0.015µm2, respec-
tively. The area of the graphite piece between the source and drain
electrodes is 0.05µm2. (inset) Line trace showing the 6 nm height
of the graphite.
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that the graphite pieces have a much greater capacitive
coupling to the source and drain electrodes than to the gate.

We can estimate the source and drain capacitance per unit
areaCs,d′ using the measured charging energies and the area
of the electrodes over the graphite. For the device shown in
Figure 5, this yields a capacitance per unit area ofCs,d′ ) 2
× 10-6 F/cm2. Using the parallel plate capacitor equation,
Cs,d′ ) εoεr/d yieldsd/εr ) 0.5 nm. This is consistent with a
very thin tunnel barrier between the electrode and the
graphite. The origin and nature of this barrier is unknown.
Since it is only present in the few samples that show
Coulomb blockade oscillations (closed dots), it is likely the
result of a contamination layer between the metal and the
graphite.

We also examined the magnetic field dependence of the
Coulomb blockade oscillations (Figure 5c). The closed dot
at B ) 0 T has well-defined oscillations. As the magnetic
field is increased, the peaks evolve in a complicated fashion.
Most notably, the oscillations no longer go to zero, suggest-
ing that the dot becomes more open. The open dot shows
complex fluctuations in the peak positions as a function of
magnetic field. Other devices showed similar transitions from
closed to more open dots along with changes in the peak
positions as a function of field. The origin of these effects
is under investigation.

In conclusion, we fabricated and measured quasi 2-D
graphite quantum dots. In devices with good contacts (open
dots), we performed resistivity measurements and extracted
carrier densities of 9.2-13 × 1012 cm-2 and mobilities of
200-1900 cm2/V‚s. In the case of tunnel contacts (closed
dots), we observed Coulomb charging phenomena and
inferred the gate and source-drain capacitances. Future
studies will investigate the nature and role of interlayer
coupling between the sheets and explore the single-particle
energy level spectrum and the effects of a magnetic field.
Studies on devices with a variety of thicknesses and improved
control over the contacts will help address these issues.

Note Added: During preparation of this manuscript, we
became aware of three other groups16-18 reporting transport
measurements of thin graphite layers that are related to our
measurements of open dots (Figure 3).
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