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In the last few years, scientists and engineers have begun to borrow design 

principles from the paper arts of origami and kirigami (ori=fold, kiru=cut). This 

multidisciplinary approach is already proving its potential in everything from 

medicine to satellite engineering. Graphene, an extraordinarily strong atom-thick 

sheet, is the ideal starting material for bringing these design ideas down to the 

nanoscale. We have developed a technique to lift graphene and manipulate it like a 

sheet of paper in aqueous solution. This allows us to measure the out-of-plane bending 

stiffness of graphene, a fundamental mechanical property that has never been 

conclusively measured at the micron scale. We see a stiffness orders of magnitude 

higher than the atomic-scale value, and show that this surprising result can be 

explained by theories of thermally induced fluctuations. We then apply designs from 

the paper art of kirigami to create three-dimensional structures and moving parts. We 

demonstrate robust stretchable electrodes and extraordinarily resilient hinges, and 

show that we can control graphene devices directly with micromanipulators or 

remotely with magnetic fields and lasers. Graphene kirigami’s extraordinary 

mechanical and electrical properties make it promising for a variety of applications, 

from force sensors to biocompatible electrical readouts. This simple but powerful 

approach to creating graphene metamaterials promises diverse, resilient moving parts 

at the nanoscale. 
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 There is no substitute for feeling the stone, the metal, the plaster, or the wood 

in the hand; to feel its weight; to feel its texture; to struggle with it in the 
world rather than in the mind alone. 

 
 

—William M. Dupree 
 



 

1 

CHAPTER 1 

GRAPHENE AS THE ULTIMATE ATOMIC PAPER 

 

1.1 Introduction  

 Over fifty years ago, Richard Feynman gave a talk titled There’s Plenty of 

Room at the Bottom that became a landmark in the history of nanotechnology. In his 

talk, Feynman challenged the scientific community to achieve the miniaturization of 

information, of electronics, and of machines.1,2 

In the years since, the miniaturizations of electronics and information have 

changed the world, and there has also been significant progress towards the 

miniaturization of machines (Fig. 1.1). Researchers have drawn on the tools of the 

semiconductor industry to build microscale cantilevers,3 gears and rachets,4 hinges,5 

actuators,6 grippers,7 and swimmers,8 and have developed novel ways of actuating 

micron-scale structures.9,10 However, there are still significant challenges to overcome, 

particularly as we start to scale down to smaller devices. Moving parts can be difficult 

to actuate, and in many cases they can only be used once. Material limitations become 

critical as we scale down, and mechanical properties change dramatically at the 

nanoscale.  

As we struggle with these fabrication and actuation challenges, we can look to 

nature for inspiration. Biology is a master of nanomachines (Fig. 1.2). From hinges11 

to molecular walkers,12 it provides a model for the kinds of resilience, versatility, and 

autonomy that we hope to one day achieve in nanotechnology. In many cases, nature  
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Fig. 1.1: The miniaturization of machines: Gears, grippers, hinges, and ratchets 
at the microscale. Images from Sandia National Labs; (c) is from Kladitis et al., 
MEMs 2001. 
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builds complex moving parts from simpler building blocks, which are folded into 

more complex shapes with different functionalities. In the case of a protein, a one-

dimensional chain of amino acids folds itself into a structure whose three-dimensional 

shape is critically important.13 Two-dimensional membranes build up the three-

dimensional folded membrane of the Golgi body. This simple but powerful idea is 

found at many size scales in nature,14,15 and we can draw on it to create new kinds of 

3D structures and moving parts. The challenge becomes designing the folds, cuts, and 

order of assembly, and for that, scientists have begun to draw on the expertise of the 

paper arts. 

 

1.2 Origami & kirigami in art and science 

Origami and kirigami are two different forms of paper art that build complex 

structures from a flat sheet of paper (ori=fold, kiru=cut, and kami=paper). In origami, 

the paper is sequentially folded to sculpt a three-dimensional shape (Fig. 1.3). In 

kirigami, we add cuts to the paper to create additional freedom. While these 

techniques have been studied in the arts community for many years, they are now 

beginning to have a significant impact on the sciences. Mathematicians are fascinated 

by the topology of the paper arts, and there has increasingly been discussion and 

collaboration between scientists and origami artists.16 
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Fig. 1.2: Biology is a master of nanoscale moving parts. (a) Kinesin motor 
protein is a nanoscale walker. From Vale and Milligan, Science (2000) (b) 
Proteins form hinges that open and close in response to external stimuli. From  
Caron et al., PNAS (2013) (c) Proteins are one-dimensional chains of amino 
acids that fold into three-dimensional structures. From Bowman et al., JACS 
(2011). 
 

a b

c
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Fig. 1.3: Building similar three-dimensional structures from paper using the 
techniques of origami (top), which folds the paper, and kirigami (bottom), 
which cuts the paper. Origami by Chris Palmer and kirigami by Prof. YM. 
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Ideas from origami and kirigami have been applied to the sciences at all size 

scales (Fig. 1.4). DNA origami is a fabrication method that uses the one-dimensional 

nucleic acid chains as a mechanical building block to build two- and three-

dimensional nanostructures.17 Cutting up and reconfiguring these self-assembled 

structures can result in complex topologies such as Mobius strips18 and moving parts 

that actuate in response to certain proteins.19 At the other end of the size scale, 

expanding origami patterns have been used in engineering to build structures like heart 

stents20 and solar panels for satellites.21  

Paper arts techniques provide a powerful and well-developed toolbox for 

building different kinds of two- and three-dimensional structures10 and a variety of 

moving parts. We can imagine bringing these design principles down to the nanoscale, 

but to do that, we first need a good “paper.” A nanoscale paper should be strong and 

flexible, and its ultimate realization would be just one atom thick: a true two-

dimensional material. In fact, this material already exists. 

 

1.3 Key properties of graphene as an atomic paper 

Graphene is a one-atom-thick sheet of carbon, with atoms bonded together into 

a hexagonal lattice (Fig. 1.5). There has been a great renewed interest in graphene 

since 2004, when K. S. Novoselov and A. K. Geim used Scotch tape to mechanically 

exfoliate it from a flake of high-quality graphite.22 In the years since, researchers from 

around the world have extensively studied the physics of graphene and have refined 

techniques for working with it. Graphene is now commonly grown by chemical vapor  
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Fig. 1.4: Origami and kirigami in science at all size scales. (a) DNA origami 
folds a one-dimensional strand of DNA into a two-dimensional structure. 
Cutting the two-dimensional DNA origami sheets leads to new topologies such 
as Mobius strips, and folding them gives us hinges and actuatable capsules. 
From Rothemund, Nature (2006); Han et al., Nat. Nanotech. (2010); and 
Douglas et al., Science (2012). (b) Origami principles applied to a heart stent, 
and (c) to the solar panels of a satellite. Images from LA Weekly and Wired 
UK. 
 

a

b c
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deposition (CVD), resulting in large, continuous sheets of primarily monolayer 

graphene.23 We can transfer it across substrates, suspend it over holes, and pattern it 

using standard photolithographic techniques. Graphene has extraordinary mechanical, 

optical, and electrical properties, and is beginning to find applications that range from 

transparent electronics24 to sample mounts for X-ray diffraction25 and electron 

microscopy,26 and it is still revealing new physics in its role as a model system. 

Graphene is a semimetal, with an unusual band structure where the dispersion 

relation is a linear cone at low energies (Fig. 1.5(c), insets). The electrons interact with 

the hexagonal lattice to create massless quasiparticles that have direct parallels to 

relativistic particles, and have led to great interest in graphene as a solid-state model 

system. This unusual band structure also creates a remarkable optical response: despite 

being only one atom thick, graphene absorbs !" =!2.3% of incident light, where α = 

1/137 is the fine structure constant.27 This high opacity means that under the right 

conditions, even a single layer of graphene is visible to the naked eye.  

 In addition to its remarkable electronic and optical properties, graphene is also 

a mechanical marvel. Carbon-carbon bonds are some of the strongest in chemistry, 

and graphene is the strongest material in the world. Graphene’s two-dimensional 

Young’s modulus (in-plane elastic constant) has been directly measured by AFM 

studies on suspended graphene membranes, giving Y2D=340 N/m.28 The breaking 

stress s2D and strain ε of a material are related through its Young’s modulus, where  
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Fig. 1.5: Properties of graphene. (a) Graphite is a stack of two-dimensional 
atomic layers of carbon atoms; graphene is a single layer. (b) Atomic-resolution 
transmission electron microscope image of the graphene lattice. From P. Huang 
et al. (2011). (c) Graphene is a semimetal, with a linear dispersion relation at 
low energies. As we tune the gate voltage Vg, the Fermi level changes. At the 
Dirac peak (Vg=0 on this graph) the charge carriers switch from electrons to 
holes. From Geim and Novoselov, Nat. Materials (2007). (d) (Exfoliated 
graphene on an oxide substrate. We can clearly see monolayer and bilayer 
regions. The contrast has been increased for clarity, but it can be seen by eye in 
a white light microscope under the right conditions. From 
grapheneindustries.com. 
 

5 
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a b
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!!! = !!!!. For suspended graphene membranes, the breaking stress is ~42 N/m, 

corresponding to a strain of ~12%.28 CVD graphene membranes typically fail earlier, 

at strains of ~6-8%.29,30 

Large sheets of material are often described as thin three-dimensional plates 

with a thickness t, where we bend the plate by extending the top half and compressing 

the bottom half. This approach makes it easy to describe materials using familiar bulk 

elastic properties and the language of mechanical engineering, such as the three-

dimensional Young’s modulus Y3D, where !!! = !!!!. The out-of-plane bending 

stiffness κ of such a plate is given by ! = !!!!!/12(1− !!) and has units of energy, 

where σ is the Poisson ratio that describes how much the material contracts or expands 

in the orthogonal direction. For graphene, σ = 0.17.  

 However, at just one atom thick graphene is a truly two-dimensional material, 

so the out-of-plane stiffness is due to the interactions of the in-plane atomic bonds and 

not to bulk material properties. As a result, the bending stiffness cannot be reliably 

extracted from classical elastic theory.31 Instead, a value of κ~1.2 eV was found 

through simulations32 and measurements of the phonon modes in graphite.33,34  

Although this very low value of the bending stiffness is certainly true at the 

atomic scale, it has never been conclusively measured at the micron scale. In fact, 

theory suggests that the effects of thermal fluctuations should dramatically stiffen 

larger membranes.35 In Chapters 4 and 5, we will directly measure the bending  
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2D Young’s modulus Y2D 340 N/m 

Poisson ratio σ 0.17 

Breaking stress s 42 N/m 

Breaking strain ε 6-12% 

Intrinsic bending stiffness  κ 1.2 eV 

Table 1.1: Relevant mechanical properties of monolayer graphene. 
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stiffness of micron-scale graphene membranes and compare the results to thermal 

fluctuation theory for the first time. 

Next, we will take a look at how scientists have manipulated graphene in 

vacuum, air, and aqueous solutions in the past. 

 

1.4 A short history of manipulating graphene 

The traditional way to work with graphene is flat on an oxide surface, where it 

makes conformal contact and strongly sticks down to its substrate by van der Waals 

attraction (Fig. 1.6).36 This is the most common geometry for optical and electronic 

experiments on graphene. In the past the graphene was exfoliated directly onto the 

final substrate, though today many researchers transfer both exfoliated and CVD-

grown graphene using a wet process (Chapter 2). Graphene has also been exfoliated or 

transferred over holes or trenches in a substrate, where it forms beams or tensioned 

drumheads (Fig. 1.6(c-d)).37,38 These suspended devices have taught us a great deal 

about the in-plane mechanical properties of graphene and are also useful for 

applications such as resonators39 and balloons40 or as ultra-thin substrates for 

transmission electron microscopy.41  

Graphene is extraordinarily sticky,42 so it is usually handled on a substrate or a 

tensioning frame. However, some tricks have been developed to crumple graphene on 

an elastic surface,43 to control the tension in suspended devices,44,45 and in one lucky  
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Fig. 1.6: Working with graphene. (a) The mechanical exfoliation process. (b) A 
graphene transistor on an Si/SiO2 wafer. (c) An array of suspended graphene 
membranes on a TEM grid. The graphene looks gray, while uncovered holes in 
the grid look black. (d) An array of graphene beams suspended over a trench 
and clamped on both ends to the SiO2 substrate. (e) Chemically-modified 
graphene flakes suspended in solution. 
 

1 
µm 

a
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Fig. 1.7: Crumpled and folded graphene. (a) Solution-processed reduced 
graphene oxide membranes crumple like paper. (b) Graphene strips transferred 
to a prestrained polymer substrate creates ripples when the strain is removed. 
(c) Creating folds in graphene by transferring it over sacrificial structures. 
 

a b

c
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accident, to create a free-standing singly-clamped flake.46 Work has also been done on 

putting graphene flakes into liquid suspensions by sonicating graphite with 

surfactants47,48 and using bulk materials processing techniques.49 

In a few cases, researchers have used innovative methods to fold graphene into 

permanent structures50,51 (Fig. 1.7). Graphene, graphene oxide, and other kinds of 

nanoscale membranes have also been found in crumpled and folded states.52,53,54  

However, manipulating graphene in 3D is generally extremely difficult, and has 

always relied on either random chance or a supporting structure. This significantly 

limits the structures and moving parts that we can build, and keeps us from using 

graphene as an atomic paper. 

Though crumpled structures such as the one in Fig. 1.7(a) are uncontrollable 

and permanent, images of folded graphene give us an intuitive sense that graphene 

acts like a kind of strong (but sticky) sheet of paper. In this thesis, we will develop a 

way to controllably manipulate graphene free from a surface and control its adhesion, 

so that we can directly translate ideas from the paper art of kirigami down to the 

nanoscale. Many people have proposed ways that graphene could be cut and folded at 

the atomic scale using techniques from the paper arts,55,56,57,58,59 and we will 

experimentally apply these design principles for the first time. 

 

1.5 Outline of this thesis 

        This thesis is based on a new technique for manipulating graphene on and off of a 

surface in an aqueous environment. In Chapter 2, we will begin by describing the 
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fabrication and manipulation methods, and in Chapter 3 we will demonstrate that we 

can directly and controllably pick up graphene and manipulate it like a sheet of paper.  

We will spend Chapter 4 discussing the theory of thermally induced 

fluctuations in a crystalline membrane, which predicts that the bending stiffness at 

micron scales should be dramatically increased above this atomic-scale value. In 

Chapter 5, we will use graphene cantilevers to directly measure the bending stiffness 

for the first time, and show that the measured value matches the predictions of thermal 

fluctuation theory.  

           Next, in Chapter 6 we will import ideas from the paper art of kirigami to create 

remarkably stretchable in-plane and out-of-plane graphene springs. We will actuate 

them both directly and remotely, measure their mechanical properties, and predict the 

wide range of possible spring constants that can be made using this technique. We will 

electrically contact and gate these devices and show that their electrical properties do 

not change significantly when the spring is stretched—a highly desirable property for 

stretchable transistors. 

           Finally, in Chapter 7 we will discuss ongoing research in our group that aims to 

develop new actuation techniques and applications for graphene kirigami devices. We 

will close with proposals for other experiments that might lead to increasingly 

controllable nanoscale moving parts. We hope that graphene kirigami devices and 

techniques will inspire many kinds of nanoscale machines in the years to come.  

             This project has been a truly collaborative effort, and I’d like to take a 

moment to acknowledge particular contributions that others have made to the work in 

this thesis—especially significant efforts from Arthur on all chapters, from Arthur, 
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Samantha, Peter, and Kathryn on the material in Chapter 5, and from Peter, Kathryn, 

and Pinshane on the material in Chapter 6. This project was made possible buy many 

years of financial support from the National Science Foundation through the Cornell 

Center for Materials Research, from the Office of Naval Research, and from the Kavli 

Institute at Cornell for Nanoscale Science.   
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CHAPTER 2 

FABRICATION AND CHARACTERIZATION OF GRAPHENE KIRIGAMI 

DEVICES 

  
2.1 Introduction 

The broad scope of the graphene experiments described in Chapter 1 

demonstrates just how widespread graphene growth and fabrication have become. 

Despite some quirks, this atom-thick material has been quickly integrated into 

traditional nanofabrication processing, and the fabrication method described in this 

chapter draws heavily on well-established techniques.23,29,24,60 The key difference is 

the addition of a sacrificial release layer between the graphene and the substrate, 

which allows us to lift the graphene up off of the surface in an aqueous environment. 

This chapter begins with the graphene growth process, and explains how to 

characterize graphene. We describe the fabrication process for kirigami devices in 

detail, and explain the release technique. Fabrication is notoriously sensitive to minor 

changes, and details of the graphene growth and transfer process often vary between 

labs. With this in mind, this chapter aims to lay out the fabrication and 

characterization process in detail, so that a new researcher in the field could work from 

this material alone. 

 

2.2 Growing graphene by chemical vapor deposition 

 The recent development of chemical vapor deposition (CVD) growth methods 

mean that graphene fabrication has gone from a serial exfoliation process to a parallel 



 

19 

process. CVD graphene is grown on metal (most commonly copper foil), and can be 

transferred to arbitrary substrates.23,29,24 Researchers can create hundreds or even 

thousands of devices on a single chip, and graphene is now being grown and 

transferred at the meter scale in industry.61 Here we will describe the basic idea behind 

CVD growth, then provide specific instructions and a recipe for growing graphene.  

 CVD growth consists of heating a catalytic substrate in a low-pressure 

environment and flowing carbon-containing gases such as methane over the surface. 

The gas disassociates, and the carbon self-assembles on the surface (Fig. 2.1(c)). 

When the pressure, temperature, and gas flow are optimized, monolayer graphene 

grows outwards from local impurities and these sheets of graphene stitch together 

where they meet.62 Additional layers of graphene can also grow outward from the 

nucleation sites, creating islands of bilayer and multilayer graphene on top.23 By 

adjusting the growth parameters, we can tune the proportion of monolayer to bilayer 

graphene. For the purpose of this thesis, we will define “good” graphene as primarily 

monolayer graphene that is well stitched at the boundaries. All the graphene used in 

these experiments was predominantly single-layer, with small bilayer patches. 

 Graphene growth takes place in a commercially available furnace (Fig. 2.1(a)) 

with computer-controlled gas flow and temperature management. A turbo pump keeps 

the growth chamber at low pressures (when no gases are flowing, the pump should 

achieve pressures of ~10-5 mBar or lower). The growth substrate is copper foil 

purchased from Alpha Aesar, stock #13382.  
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Fig. 2.1: CVD growth of graphene. (a) Commercially-available furnace built 
into a custom graphene growth system with gas flow controllers and a vacuum 
pump. The furnace is kept in a hood because the white high-T ceramic is an 
inhalation hazard. (b) Schematic of the furnace during growth. (c) A cartoon of 
the growth process. Methane disassociates; the hydrogen becomes H2, and the 
carbon atoms diffuse  across the surface and self-assemble into a graphene 
lattice on the copper surface. (d) Copper foil after growth, with a penny for 
scale. The entire surface of the foil is covered with graphene. 
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The growth process is based on Li et al. (2009).23 We begin by cutting a piece 

of copper foil to approximately 0.75”×4”, where the shorter dimension is limited by 

the 1” inner diameter of the quartz growth tube. We are particularly careful to keep the 

foil as flat as possible to avoid cracking the graphene. We place the copper in the 

growth area of the furnace (the center ~5” of the quartz tube shown in Fig. 2.1(a-b)) 

and pump until the pressure has reached <10-5 mBar. We then anneal the copper for 36 

minutes at 980 °C with a H2 flow of 60 standard cubic centimeters per minute 

(s.c.c.m.) to drive oxygen off of the surface. We raise the temperature to 980 °C, and 

flow hydrogen gas at 60 s.c.c.m. and CH4 at 36 s.c.c.m for 20 minutes. This is when 

the graphene grows, so the time can be adjusted to tune the monolayer and bilayer 

coverage. Finally, we cool the copper in a matching environment as quickly as 

possible. We then bring the growth chamber up to ambient pressure, remove the foil 

from the furnace, and cut it into ~0.75×0.75” pieces for transfer (Fig. 2.1(d)). 

Despite its apparent simplicity, CVD growth is a finicky process, and the 

growth quality is inconsistent and can depend on the history of a furnace or the brand 

of copper film. We have found that graphene quality can even change from one day to 

the next, so growth-by-growth characterization has become a standard part of the 

process.  
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Fig. 2.2: SEMs of CVD graphene. (a) Results of growth recipe described in the 
text. The large-scale gray patches are copper grains, while the smaller star 
shapes are graphene bilayer and multilayer patches growing outward from 
nucleation sites (usually contaminants). (b) The results of a growth from a 
similar recipe and different furnace. The bilayer patches are much smaller and 
closer together. Scale bars 10 µm. 
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2.3 Characterizing graphene grown by CVD 

We use a combination of three characterization techniques to determine the 

quality of a graphene growth: SEM, Raman spectroscopy, and TEM. Each technique 

provides different information about the graphene, and combining all three techniques 

builds up a picture of the graphene’s coverage, quality, and grain structure. 

The simplest and most instructive method for the preliminary characterization 

of graphene is scanning electron microscopy (SEM). SEM is particularly good at 

providing large-scale information about bilayer coverage. We show SEMs of a growth 

from the recipe described above (Fig. 2.2(a)) and a similar recipe in a different furnace 

(Fig. 2.2(b)). The large-scale flat gray areas show the underlying copper grain 

structure. The graphene ignores the copper grain boundaries and grows across them. 

Monolayer graphene covers the entire surface of the copper in these images, which is 

impossible to tell from the SEMs alone but can be conclusively determined with 

Raman spectroscopy. The small dots are particles of contaminants, and they can act as 

nucleation sites for graphene growth. The characteristic star shapes are graphene 

bilayer patches, and at their centers we often see additional layers of multilayer 

graphene. SEMs give us a simple visual indication of the cleanliness and multilayer 

coverage, and the small multilayer stars give us an indication of the nucleation density 

(it should be noted that a nucleation site usually does not represent a single grain, 

however, as described in the TEM section below).  

Unlike SEMs, Raman spectroscopy can give us a direct measurement of the 

layer thickness (Fig. 2.3). Raman spectroscopy measures the change in frequency of  
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Fig. 2.3: The Raman spectrum of graphene. (a) Raman spectrum of CVD 
graphene on copper. The overall tilt is due to the copper foil. (b) Raman 
spectrum of a similar growth after transfer to an Si/SiO2 substrate. In both 
cases, the spectrum shows graphene’s characteristic G peak at 1580 cm-1 and 
2D peak at 2700 cm-1; the ratio between the two indicates that the graphene is 
primarily monolayer. A small D peak at 1350 cm-1 indicates low disorder.  (c) 
How the 2D peak changes with additional layers, and (d) a comparison of the 
specrtum of monolayer graphene and graphite. Graphs (c) and (d) are from A. 
C. Ferrari et al., Phys. Rev. Lett. (2006). 
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monochromatic light when it inelastically scatters from phonons in the graphene’s 

crystal lattice. Because this technique provides information about the characteristic 

phonon modes, it can be used to reliably identify monolayer and multilayer graphene, 

and to provide some limited information about disorder in the lattice.63 The spectra of 

monolayer and bilayer graphene are well established. Fig. 2.3(a) shows a spectrum 

from a graphene growth on copper, and Fig. 2.3(b) shows a spectrum from a similar 

growth after it has been transferred to an Si/SiO2 wafer. The spectrum shows 

graphene’s characteristic G peaks at 1580 cm-1 and 2D peak at 2700 cm-1. The shape 

of the 2D peak (Fig. 2.3(c)) and the high ratio between the heights of the 2D to G peak 

(Fig. 2.3(d)) indicate that the graphene is primarily monolayer.63 A small D peak at 

1350 cm-1 indicates some low disorder. The D peak is absent in perfect graphene, and 

it usually increases after the transfer process. 

Dark-field transmission electron microscopy (DF-TEM) is the most involved 

characterization technique, but it is a powerful tool that gives detailed information 

about the grain structure of the graphene (see Huang, Ruiz-Vargas, van der Zande62). 

To image graphene in a TEM, we must transfer small pieces of graphene to 10-nm-

thick Si3N4 TEM grids using the process described later in this chapter. In Fig. 2.4(a), 

high-contrast bright-field TEM shows that the graphene is monolayer in the 

transferred region and reasonably clean (we see very little particulate residue from the 

transfer process). If the TEM grid was covered by a single crystal of graphene, the 

dark-field diffraction pattern should show a sixfold-symmetric pattern, as in the  
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Fig. 2.4: TEM of CVD graphene. (a) TEM diffraction pattern for a single 
crystal of graphene. Note the characteristic six-fold symmetry. (b) TEM 
diffraction pattern for region shown in c and d. The many spots show that this 
region consists of many grains with varying orientations. (c) High-contrast 
bright-field TEM image of graphene transferred over 10-nm-thick Si3N4 
windows shows continuous monolayer graphene with low particulate 
contamination. The grain structure is not visible. (d) False-color composite 
image of dark-field TEM images showing grain size and shape for the region in 
c. The graphene is polycrystalline, with grain sizes on the order of microns. 
Scale bars 1 µm. 
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sample shown Fig. 2.4(a). However, for this growth we see a large collection of spots, 

(Fig. 2.4(b)), indicating that the graphene is polycrystalline. Using an aperture to 

select for a single spot, regions of the graphene lattice with matching angular 

orientation are highlighted. By false-coloring each of these sets of diffraction spots, 

we can build a composite image that shows the sizes and shapes of the graphene grains 

(Fig. 2.4(d)).62 This graphene is polycrystalline, with grain sizes on the order of 

microns. The experiments in this thesis use graphene with grain sizes on the order of 

hundreds of nanometers to tens of microns. We have recently grown graphene with 

grains larger than 100 µm, but preliminary attempts to build kirigami devices from this 

graphene have failed because it has not adhered to the substrates after transfer. It is not 

yet clear whether these limited attempts were due to the grain structure or to other 

unknown problems with the fabrication run. 

Once graphene is characterized, we are ready to use it in our fabrication 

process, which we will describe next. 

 

2.4 Device fabrication, graphene transfer, and the release process 

 The fabrication of graphene kirigami devices is straightforward and requires 

only standard nanofabrication equipment. Starting with characterized graphene on 

copper, the whole fabrication process takes approximately three days (Fig. 2.5). 

Substrate fabrication: The experiments will take place on an inverted white-

light microscope, so we fabricate devices on 170-µm-thick, 500-mm, double-side-

polished fused silica wafers (Mark Optics) that approximate glass cover slips. We 
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begin by rinsing a fused silica wafer with acetone and IPA, then spinning photoresist 

(prime with P-20 for 10 seconds and spin off; add SPR700 1.2 and spin for 45s at 

1000/4000 RPM; bake on a 95°C hotplate for 60s). We expose alignment marks on the 

stepper (5x i-line Autostep, 0.25 seconds), then develop the wafer in water-based 726 

MIF developer, rinse with DI water, and dry with nitrogen. The lithography details are 

the same for every step of the fabrication process, and will not be described in detail 

again.  

To create the sacrificial layer, we evaporate 30-40 nm of aluminum in an e-

beam evaporator. We spin photoresist again to create a protective layer, then cut the 

wafer into 1”-square chips on a dicing saw. Finally, we soak the chips in acetone for at 

least one hour, sonicate for 10 minutes to lift off the aluminum in the alignment marks, 

then rinse with IPA. The chips are now coated in an aluminum sacrificial layer with 

alignment marks, and are ready for graphene transfer.  

Note that water developer slightly etches the aluminum, so the substrate will 

start to look “mottled” as the fabrication runs through the following two developer 

steps; this does not seem to significantly affect the release process, though it does 

make the chip difficult to characterize until the aluminum is removed in the final etch. 

Graphene transfer: Transfer of CVD graphene from copper to other 

substrates is a well-established process, and many variations have been developed for 

specialized applications.29,24,60,64,10 We add a layer of Poly(methyl methacrylate) 

(PMMA) to the top of the graphene to give it additional mechanical stability. To create 

a uniform film of PMMA, we place the copper foil on a spinner, add three drops of  
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Fig. 2.5: Fabrication and transfer process. (a) We transfer graphene to a fused 
silica chip covered in a sacrificial aluminum layer. We then add gold pads, and 
pattern the graphene to create cantilevers and kirigami patterns. (b) Rinsing the 
graphene during transfer. After five DI water baths, we scoop the 
graphene/PMMA film onto the final, aluminum-coated substrate. 
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PMMA (2% or 4% in anisole solvent), and spin at 3000 RPM for 30 seconds. (If the 

foil is particularly crumpled, it can be taped to a glass slide that is mounted on the 

spinner.) We then bake the foil on a hotplate at 90°C for one minute to drive off 

remaining solvents. Finally, we gently scratch the back of the copper foil with steel 

wool to remove the graphene from the back side, since it can slow down the etch 

process or accumulate on the edges of the PMMA/graphene film.  

We etch away the copper by floating it PMMA-side-up in ferric chloride 

(Transene, CE-200) until the copper has dissolved away, approximately one hour. 

Using a silicon wafer or glass slide, we scoop the graphene/PMMA film into a series 

of five water baths (Fig. 2.5(b)), soaking for five to ten minutes in each bath. We then 

transfer it onto the final substrate, where it dries. The graphene is directly adhered to 

the substrate, with PMMA on top. Finally, we remove the PMMA by soaking the chip 

overnight in acetone, sonicating for 10 seconds, then rinsing with isopropanol (IPA) 

and drying with nitrogen. (For the transfer to TEM grids mentioned above, we instead 

bake the PMMA off in a furnace at 300°C for three hours in air.) 

 Once the graphene is transferred to the aluminum-coated chip and the PMMA 

has been removed, we are ready to pattern the devices. The first step is patterning gold 

pads in a variety of sizes and shapes; these will act as handles to manipulate the 

graphene. We will see below that we can directly push on the graphene with a probe 

tip, but gold pads offer more control. Gold sticks to graphene, and is soft enough that 

we can drive a probe tip into the pads to “grab” a graphene device. We pattern these 

pads using the photolithographic process described earlier, then evaporate 50 nm of 

gold on the e-beam evaporator. We perform the lift-off in acetone and briefly sonicate 
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for 10 seconds. Note that the evaporation rate should be high (>5 angstroms/sec), and 

that the rate must be kept constant to avoid building strain into the evaporated film.  

 Patterning devices: Next, we repeat the lithography process to pattern the 

graphene into shapes. We again spin photoresist and pattern it to create areas where 

the graphene is protected by photoresist. We etch away the rest of the graphene in a 

short oxygen plasma (Oxford 81: 50 s.c.c.m. of O2 at 60 mTorr, 150 W for 25 s). 

Finally, we drop the chip in acetone that is already sonicating, and let it sonicate for 

10-20 seconds. The plasma etch process can “bake” the top layer of photoresist into a 

hard shell, and dropping the chips into sonicating acetone helps remove this shell 

before it can stick down. Finally, we let the chips soak overnight in acetone, and rinse 

and dry them. 

 Release layer etch: The last step in the fabrication process is the aluminum 

etch. We simply soak the chip in a ~10/1 DI water/HCl solution until the aluminum is 

completely gone. The acidic solution dissolves it away, leaving the graphene devices 

loosely adhered to the surface. The etch rate of the aluminum depends on the acidity 

of the solution and the amount of aluminum oxide on the chips; in most cases a few 

hours is enough, but the chips can be left overnight in etchant. After etching, we move 

the chip to a DI water bath, and from this point on the chip be never dried. We keep 

the chip in a refrigerator when not in use to prevent bacteria growth; when stored for 

long periods (months or more), the chips are stored refrigerated in 70%/30% 

ethanol/DI water to further reduce bacterial growth. 

 The graphene devices are now loosely adhered to the substrate, and are ready 

for experiments. A good fabrication run should result in four to six chips covered in 
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hundreds or thousands of graphene devices. By placing the wet, etched chip on a 

transmission white-light optical microscope and turning up the contrast (Fig. 2.6), we 

can clearly see the gold pads (black in the transmission image) and the patterned 

graphene (gray). In a successful fabrication the graphene should be well patterned and 

continuous, and most of the devices should remain on the surface.  

The aluminum sacrificial layer makes these chips particularly hard to 

characterize during the fabrication process, and it can be difficult to tell by eye 

whether the resulting devices are clean of residues. Graphene is a particularly “sticky” 

material, and organic residues from the lithography and transfer process cannot be 

etched away in an oxygen plasma without destroying the graphene. In many cases the 

cleanliness of the graphene may not be critical, but a thick layer of organic residue 

could affect the mechanical behavior of the graphene and we will need to know how 

much residue remains when we measure the graphene’s bending stiffness in Chapter 5. 

 

2.5 Determining the amount of residue on completed devices 

Atomic force microscopy (AFM) gives a quantitative measurement of the step 

height from the substrate to the graphene, and we can use it to determine how much 

residue is left at the end of the fabrication process. However, the pockmarked 

aluminum release layer becomes a problem when we try to image the pre-etch chips. 

To avoid this issue, we created a second, inverted aluminum-layer mask where the 

alignment marks are aluminum, and the rest of the chip is a bare fused silica substrate. 

By running this characterization chip entirely in parallel with the working devices— 
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Fig. 2.6: Finished devices. (a) A variety of different patterned graphene 
cantilevers. (b) Other cantilever shapes and kirigami devices. The gold pads 
look black, and the graphene is gray. The contrast has been increased linearly 
so that the graphene is visible. Scale bars are 10 µm.  
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transferring graphene from the same growth with the same transfer process, placing it 

in the oxygen plasma at the same time, etc.—we can be reasonably confident that this 

characterization chip should give us information about the cleanliness of the working 

devices. Fig. 2.7 shows AFM data for representative characterization chips, as well as 

for a sample piece of exfoliated graphene on Si/SiO2 that has never been exposed to 

polymers. All data is taken on the same AFM with the same scan parameters. 

Pristine exfoliated graphene commonly gives a step height of ~1 nm. (This 

may seem counterintuitive, given that the interlayer spacing of graphite is 0.34 nm, but 

larger step heights can be the result of changing tip-substrate interactions as the scan 

moves onto the graphene, and can also depend on the scan parameters.65) 

These finished (post-fabrication) CVD graphene chips typically have step 

heights of 2-3 nm. In general, polymer-based transfer is known to leave ~1-3 nm of 

residue on the surface of graphene.66 While it is impossible to completely avoid 

residue, this amount of of residue should not be significant enough to significantly 

affect the graphene’s mechanical properties (see Chapter 5).  

A shorter transfer time seems to help in reducing the residue. This means 

minimizing the time the PMMA is in contact with the graphene, ideally to ~3 hours. 

The plasma etch step is another point where significant residue can appear, so care 

should be taken to  pre-clean the empty chamber with an O2 plasma for ten minutes 

before the etch. As mentioned earlier, dropping the chips directly into sonicating 

acetone also helps kick off any photoresist “shell” baked on by the etch process. 

In some cases, problems with the fabrication process have resulted in thick  
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Fig. 2.7: Determining the residue on characterization chips. (a) Exfoliated, 
unprocessed monolayer graphene. Step height along the line shown on the 
height map measures 1.0 ± 0.3 nm. (b) and (c) Representative data from 
aluminum-free chips run in parallel with the devices used in bending stiffness 
measurements. Step heights are 2.5 ± 0.4 nm and 2.4 ± 0.5 nm. Chips that look 
clean under the optical microscope typically measure 2-3 nm total step heights. 
We occasionally see higher residue lines at the edges of the graphene, as in c. 
Scale bars are 1 µm. 
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layers of residue, up to tens or even hundreds of nanometers. This much residue is 

usually visible by eye on the optical microscope as we change the focus, and such a 

significant, continuous layer of polymer can of course have dramatic effects on the 

mechanical behavior of the graphene devices. In some cases, we have seen thick layers 

of residue with built-in strain, so that released devices curl up when released (see 

Chapter 7), and in one dramatic case we created a film so robust that it held together 

even when the graphene was torn, and visibly stretched like a sheet of plastic. This 

behavior is rare, and a well-optimized fabrication process should be reasonably 

reliable, but parallel-processed characterization chips should still be treated as a 

standard part of the fabrication process. 

 

2.6 Controlling the adhesion to the substrate 

The manipulation technique described in Ch. 3 will rely on the controllable 

“stickiness” of the graphene/fused silica interface. The graphene devices must stick to 

the surface well enough to survive the etch process, but not so strongly that the 

graphene tears when we pick them up. Luckily, this adhesion can be controlled by a 

number of different variables. A longer etch will generally release the devices more 

completely. Different etchants can also have a dramatic effect on the adhesion of the 

devices. KOH slowly etches the fused silica itself, so that the devices are entirely 

removed from the surface after even a short etch. We have also found that a multi-

layer Al/Al2O3 stack (made by evaporating half of the aluminum, letting the wafer sit 

overnight in air, and evaporating the rest) is much more effective at releasing the 
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devices. Depending on the experimental goal, these parameters can be tuned to 

achieve a particular relative stickiness. 

 

2.7 Conclusions 

The straightforward fabrication techniques described in this chapter will allow us to 

pick graphene up off of a surface and manipulate it directly, treating it like a sheet of 

paper. This represents an entirely new way of interacting with graphene, and provides 

us with a remarkable intuitive understanding of this nanoscale material, but it relies on 

well-understood fabrication techniques and standard tools. In the next chapter, we will 

describe the experimental apparatus, and show that the release of graphene from a 

surface lets us crumple, fold, and pick it up. 
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CHAPTER 3 

DIRECTLY MANIPULATING GRAPHENE ON AND OFF OF A SURFACE 

 

3.1 Introduction 

At the end of Chapter 2, we etched away a sacrificial layer to release graphene 

from the substrate. In this chapter we will examine how the released graphene behaves 

when we push and pull on it, and lift it up into the water. We begin by describing the 

experimental apparatus. We then use a micromanipulator to push on large sheets of 

graphene that have been released from the surface, and find that they crumple and 

uncrumple like sheets of paper. We also strike these large sheets with a laser, which 

causes permanent and uncontrolled crumpling. 

 We next describe moving and lifting simple rectangular cantilever devices, 

then pick up spirals of graphene to create a three-dimensional shape. Finally, we use 

graphene’s freedom from the surface to create a remarkably resilient monolayer 

graphene hinge. These techniques represent an entirely new way of working with 

graphene, and provide us with a vivid physical intuition for this atom-thick material.  

 

3.2 Experimental apparatus 

These experiments take place on a transmission white-light microscope (Fig. 

3.1). A z-piezo on the objective gives us control over the height of the focal plane 

(Piezosystem Jena, controller #NV 40/1 CL E; objective mount #83565). For most of 

the images shown in this thesis, the objective is a 40x, 0.9 NA air objective, though we  
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Fig. 3.1: Experimental setup. (a) The optical microscope, with the PatchStar 
mounted on the stage. (b) Schematic of a graphene kirigami chip sitting on an 
invited microscope and covered in a droplet of water (figure courtesy of 
Samatha Roberts). (c) Computer-controlled PatchStar micromanipulator and 
control cube.  
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also occasionally use a 20x, 0.45 NA objective for imaging larger areas. Video is 

imaged on a CCD, and fed into a custom LabVIEW program (SonyCamera6.vi) that 

records video with customizable contrast and frame rates, and can record additional 

information about the location of the PatchStar and the height of the z-piezo. The 

apparatus includes a number of lasers as well as custom-built magnetic manipulators 

(see Chapters 6 and 7 for details).  

The setup includes three computer-controlled micromanipulators that we can 

use to controllably push a probe tip against the graphene or into the attached gold 

pads. We primarily use a PatchStar from Scientifica, which is designed for patch-

clamp and can be controlled by hand using a control cube. Software is available for 

making repeated motions. The PatchStar is based on a stepper motor and offers up to 

20 nm resolution. We also occasionally use a set of two piezo-controlled manipulators 

from Sensapex, especially for electrical measurements where we need more than one 

probe at a time. For mechanical manipulation, we use tungsten probes from Signatone 

(#SM-35, 0.7-µm tip diameter).   

To load a finished chip onto the microscope after the aluminum etch, we pull it 

out of its water bath, dry the back by setting it on a paper wipe, and place it on the 

microscope stage. We pipette a few drops of DI water or surfactants onto the top of the 

chip, and add more water every 15-30 minutes as it evaporates. Surfactant further 

reduces the graphene’s adhesion to the surface and prevents the graphene from 

permanently sticking to itself. We used sodium dodecylbenzenesulfonate (SDBS) 

from Sigma-Aldrich (product #289957), dissolved in DI water to a concentration of ~3 
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mM. This is a common surfactant used in solution studies of graphene flakes and 

carbon nanotubes.67,47 Surfactant was used in all of our experiments except for a 

bending stiffness control experiment in Chapter 5, where we confirm that is has no 

measurable effect on the bending stiffness. 

 

3.3 Pushing on large sheets of graphene 

Monolayer graphene is very soft out of plane and conforms closely to the 

surface, so the van der Waals attraction is particularly strong for graphene on a flat 

surface.36 When graphene is stuck down to its substrate after the traditional fabrication 

procedure, we cannot peel it up without tearing it. If we drive a probe against the 

surface, we simply scratch off the graphene, as in Fig. 3.2. 

After a sacrificial layer etch, however, the graphene is adhered much less 

strongly to the surface. This can be dramatically illustrated by pushing the probe tip 

against the edge of a large sheet of graphene (Fig. 3.3). Rather than scratching and 

tearing, the graphene sheet holds together and releases from the surface. By continuing 

to push, we can crumple it dramatically. If the sample is in water the graphene remains 

mostly crumpled, but with surfactant the graphene does not permanently stick to itself, 

and we can uncrumple it by pulling back with the probe. The sheet returns almost 

exactly to its original shape, demonstrating graphene’s remarkable resilience (Fig. 

3.3(c)). By pushing and pulling at large sheets of graphene, we can begin to build up 

an intuition for the mechanics of this truly nanoscale material. 
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Fig. 3.2: Pushing a probe tip against a large sheet of unreleased graphene. (a) 
Graphene transferred  directly to fused silica without a release layer. Note the 
visible bilayer patches. (b) We push the probe against the surface, (c) then 
retract the probe. The graphene is stuck to the surface and scratches under the 
probe tip (the faint line left behind in the bottom image). As in the rest of the 
experiments, this chip is in water and surfactant. Scale bar is ~10 µm. 
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Fig. 3.3: Manipulating large sheets of graphene after the sacrificial layer etch. 
(a) A chip where the graphene was transferred on top of a layer of aluminum, 
which was then etched away to release the graphene from the surface. (b) The 
graphene sheet crumples like a large sheet of paper. (c) When released, it 
returns almost entirely to its original structure. Scale bar ~10 µm. Note that 
videos corresponding to many of the figures in this thesis can be found on the 
McEuen group website.  
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3.4 Crumpling graphene with a laser 

We now take a brief detour from micromanipulator-based techniques to 

mention that it is possible to manipulate large sheets of graphene with a laser (Fig. 

3.4). This method is much less controlled and not fully understood, but it suggests 

interesting physics for future study, and may be useful for other experiments. 

We used a 1064-nm laser at a power of ~300 mW. As we will see Chapter 6, 

not all of this light (~20%) reaches the sample, but with the laser turned all the way up 

we still achieve significant power at the graphene surface. We use the LabVIEW 

program mentioned earlier to control the location of the laser spot. We can filter the 

light out of the image and simply “draw” with the cursor to move the laser spot across 

the field of view. 

When we work with large, released graphene membranes and turn the laser up 

to the limits of its power, striking the graphene sometimes causes it to crumple and 

stick irreversibly to itself. As we might expect, this happens more easily near bilayer 

patches and contaminants, where the laser is more strongly absorbed. Once the 

graphene begins to crumple, the crumpled areas also become darker and the process 

accelerates. 

It is not clear why this heating causes the graphene to crumple, but we can 

suggest some plausible mechanisms. As we heat the graphene—and by extension, the 

water—near the surface, we create areas of updraft in the water, or can even nucleate 

bubbles that tug upwards on the graphene. The laser might also be driving off or  
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Fig. 3.4: Crumpling a large sheet of graphene with a laser. The red dot shows 
the location of the laser spot. Note the large bilayer regions on this graphene, 
and the small bubble that nucleates in frame 4. 
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burning off the surfactants, so that the graphene is free to stick to itself. 

This laser technique provides another way to probe the system, and suggests 

that interesting surface physics may be happening between the graphene, the water, 

and the surfactants. By correctly patterning the starting membranes and adding a 

supporting framework, we may be able to use the laser to build and seal graphene 

envelopes. Such fluid-filled graphene capsules could be extremely useful for protein 

crystallography, where the envelope needs to be thin to be transparent to X-rays but 

still impermeable to water.25 

 

3.5 Moving and picking up graphene cantilevers 

Besides pushing on the graphene directly with a probe or remotely with a laser, 

we can also manipulate it by holding on to attached gold handles. In this section we 

will pick up graphene cantilevers with gold pads on either end, and in Chapter 5 we 

will use them to measure the bending stiffness of graphene.  

In Fig. 3.5 we drive the probe tip into the gold pad of a rectangular graphene 

cantilever device, mechanically deforming the gold and sticking the pad to the probe 

tip. Pushing forward crumples the graphene device; pulling back uncrumples the 

device and releases the right-hand gold pad from the surface. We can even lift the 

device entirely up off of the surface and out of focus. We have picked up devices up to 

65 µm×65 µm in size using long gold handles, and even larger devices should be 

possible. 

To release the device from the probe, we simply drive it up through the  
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Fig. 3.5: Manipulating devices by using the gold pads as handles. From top: 
crumpling, uncrumpling, and lifting the device. Scale bar is 10 µm. 
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water/air interface, where the water meniscus pulls the device off of the probe tip.  

We have found that once a device has been released from the surface, it never 

completely sticks down again. It seems to “float” on a thin layer of water, so that 

slightly bumping the optical table causes it to slosh back and forth. Adhesion effects 

are beyond the scope of this thesis, but suggest that interesting interfacial physics may 

be waiting to be explored in this environment. 

 

3.6 Spirals from graphene 

A spiral can be thought of as a very long cantilever patterned to fit into a small 

area. In Fig. 3.6(b) we show a graphene spiral sitting on the substrate; the ends are 

capped with small and large gold pads.  

By driving the probe tip into the central gold pad, we can peel this long 

cantilever up off of the surface. Figs. 3.6(b-c) shows stills of the peeling process, 

where the probe tip and most of the graphene is out of focus and we can watch the 

surface as the graphene peels up. Note that we are looking down the length of the 

graphene here, a very unusual geometry for graphene in an optical microscope.  

If we pull the spiral up until it has almost completely detached from the 

surface, it creates a helix-like shape limited by the length of the shorter inner edge of 

the spiral. This shape is reminiscent of jellyfish arms, as in Fig. 3.7(a).  

Note that the graphene goes out of focus when we lift it up out of plane. This 

objective has a short focal depth, and we can use that fact to create an image stack by  
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Fig. 3.6: A graphene spiral. (a) A paper model cut from the same CAD file. (b) 
Picking up the central pad with the probe tip. (c) We pull up to peel up the 
spiral. It disappears from view as it goes out of focus. Scale bar is ~10 µm. 
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scanning through different focus heights with the z-piezo on the objective.68  

The depth of focus of a microscope depends on the magnification and the 

numerical aperture (NA), where a higher NA means the light is focused in at a sharper 

angle. The depth of field is given by:69 

!"#$ℎ!!!!!"#$% ≈ ! !"!"! 

for a wavelength λ and index of refraction n. The objective we use for nearly all of the 

experiments in this thesis is a 40x air objective with a numerical aperture of 0.9. The 

index of refraction of water is n=1.3, so for visible light we should get a depth of field 

of between 300 nm and 1 µm. In practice, we find that we can resolve height 

differences of slightly less than 1 µm by eye. 

We can use this shallow depth of field to create an image stack and get an idea 

of the three-dimensional structure of the spiral. Fig. 3.7(b) shows stills from this scan 

process, demonstrating how the shallow focal plane gives us three-dimensional 

information in the z-direction. The eye is remarkably good at translating an image 

stack into a three-dimensional structure, but as we will see in Chapter 5, there is also 

valuable quantitative information embedded in these z-scans. We can also add 

additional visual markers to the surface to improve our resolution — Fig. 3.7(c) shows 

a large sheet of graphene with SU-8 dots that provide detailed information about the 

3D structure.  
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Fig. 3.7: Extended graphene spirals. (a) A paper model of a spiral that is held 
under tension creates a rippled structure, similar to  the arms of some jellyfish 
(photo from baltimoresun.com). (b) By scanning the focus plane up through the 
spiral, we can extract information about its three-dimensional shape. (c) Three-
dimensional information can be improved by adding visual tracking cues. For 
this large sheet of graphene, regularly-spaced SU-8 dots provide detailed 3D 
information about the structure of the sheet. Scale bars are ~10 µm. 
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3.7 Hinges from graphene 

 Once graphene is free from the surface, we can begin to use it to build  

functional structures. In Figs. 3.8 and 3.9 we show a simple sheet hinge made from a 

small 1 µm×10 µm piece of graphene. We can open and close the hinge by pushing 

and pulling on it using another, longer strip of graphene that extends to another gold 

pad “handle” (a gold pad like those described in Chapter 2).  We loop this graphene 

arm (out of focus in the image) over the hinge and set it down again, so that moving 

the probe along the surface opens and closes the hinge. Note that this is an example of 

linked graphene elements moving one another, and that different types of motions, 

such as the opening and closing motion of the hinge, can be easily created from a flat 

sheet. 

Despite being only one atom thick, this hinge is remarkably resilient. These 

hinges can survive more than 10,000 open-and-close cycles, at which point the gold 

pads start to warp (Fig. 3.9 (b-c)) This is a vivid illustration of graphene’s robustness, 

but it should not be surprising; to the graphene, which is just one atom thick, bending 

to a radius of 0.5 µm is insignificant. Carbon nanotubes can be thought of as bent 

graphene sheets, and they have been found with radii down to 2 Å.70 A monolayer 

graphene hinge is ideal for microscale moving parts: it is extremely robust and could 

be scaled down to just tens of nanometers in size. 
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Fig. 3.8: A monolayer graphene hinge actuated with a long graphene arm. The 
stills, from left to right, show the hinge closing. These stills were taken after 
opening and closing the hinge 1,000 times. Scale bar is 10 µm. 
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Fig. 3.9: (a) Zoomed-out image of a hinge, showing the probe and gold pad 
handle. The graphene strip looped over the top is out of focus. (b-c) Closing a 
hinge after 10,000 cycles. Note the gold pads have begun to warp, and that the 
long graphene handle is partially crumpled. Scale bars are 10 µm. 
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3.8 Conclusions 

 The development of the aluminum release method has allowed us to directly  

interact with free graphene membranes. We have demonstrated large-sheet crumpling 

and uncrumpling, and discussed a more controlled manipulation technique where 

patterned gold pads act as rigid handles. We used these techniques to build a simple 

three-dimensional spiral structure from this two-dimensional material, and to 

demonstrate amazingly robust sheet hinges from monolayer graphene. These hinges 

represent a simple way of turning a two-dimensional material and a linear motion into 

a different kind of motion—opening and closing—and suggest that creative patterning 

and design choices might lead to different kinds of moving parts. 

 These hinges are interesting from an engineering perspective, but they also 

raise an intriguing question about the fundamental mechanics of the graphene: how 

much energy does it take to open and close these hinges? Just how stiff is the graphene 

out of plane? The cantilevers described above conveniently provide an environment 

for measuring this fundamental mechanical property, one that has never been 

conclusively measured at the micron scale. This is the question we will set out to 

answer in the next two chapters.  
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CHAPTER 4 

THE MECHANICS OF TWO-DIMENSIONAL CRYSTALLINE MEMBRANES 
 

4.1 Introduction 

 We have now developed a technique for manipulating graphene in three 

dimensions, lifting it free from a surface. One of the advantages of this technique is 

that it will allow us to measure the out-of-plane bending stiffness of graphene, a 

fundamental mechanical property that has not been conclusively measured at the 

micron scale. However, before tackling this experimentally in Chapter 5, we should 

first understand the mechanics of free two-dimensional crystalline membranes. In this 

chapter, we will particularly focus on the effects of thermal fluctuations, which are 

predicted to dramatically affect the mechanical properties of free membranes.  

In this chapter we will outline the formal theory of thermally induced 

fluctuations, discuss modern refinements to the theory, and develop an experimentally 

practical form. We will attempt to develop a qualitative understanding of the effects of 

thermal fluctuations, and discuss specific predictions for graphene at the scale of our 

experimental devices. 

  

4.2 Liquid and crystalline membranes 

There are two broad classes of membranes: liquid membranes, where the 

constituent atoms or molecules are free to move laterally within the membrane, and  
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Fig. 4.1: Flat graphene at T = 0 and thermal fluctuations at T > 0. Figure from 
Meyer et al. 
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crystalline membranes such as graphene, where the atoms are held in place relative to 

their neighbors.  

The elastic free energy of a two-dimensional membrane35 is a sum of bending 

and stretching energies: Ftot=Fb+Fs: 

!!"! = !! + !! ≈
1
2 ! !!! ∇!! ! + 12 !!!(2!"!"! + !!!!! ) 

where f is a function that gives the out-of-plane height, ! = ! !!, !! , and x1 and x2 are 

orthogonal directions on a reference plane (this is called the Monge form). The 

stretching energy term is a function of the strain matrix, which is gives the energy cost 

of shearing and compressing the membrane in plane.71 The strain tensor !!" =

!
! !!!! + !!!! + !!!!!! , and in the stretching energy expression above, uij represents 

uniaxial deformations while ukk represents isotropic deformations.72 The 

corresponding elastic constants are µ (the shear modulus) and λ (the first Lamé 

coefficient), and together they are called the Lamé coefficients, and are the equivalents 

of the spring constant in the 1D version of Hooke’s law. Note that there is a coupling 

term hidden in the strain tensor: the last term (in f) couples the bending and stretching 

energies together in membranes with nonzero shear moduli.73 

Macroscale membranes should be flat, but in nanoscale materials we can 

expect significant effects from thermal fluctuations. At room temperature, thermal 

fluctuations will cause a nanoscale membrane to fluctuate out of plane, bending and 

stretching to create three-dimensional structure (Fig. 4.1). The simplest way to model 

a membrane is using the harmonic approximation, which ignores any coupling 

between the bending and stretching energies.73 
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Liquid membranes have no shear modulus, and bending energy is the dominant 

element. Thermal fluctuations make these membranes fluctuate out of plane 

dramatically, so at room temperature they have no long-range order.74,75 

Crystalline membranes like graphene, however, have both bending and 

stretching energy. As we will see below, at larger size scales the two energies are 

coupled, and the harmonic approximation fails. This coupling stabilizes crystalline 

membranes, increasing their effective bending stiffness and giving them long-range 

order.35 For the rest of this chapter we will focus on these crystalline membranes. 

A simple way to characterize the mechanical behavior of crystalline 

membranes, and to compare the bending and stretching elements, is using the Foppl-

von Karman (vK) number.76,77 It is given by the ratio of the two-dimensional Young’s 

modulus Y2D and the out-of-plane bending stiffness κ, scaled by the area of the 

membrane L2:  

!" = !!!!!
!  

A high vK number means the membrane more easily bends and crumples than 

stretches or shears. 

For a three-dimensional material such as paper, the Foppl-von Karman number 

can be easily rewritten as a function of the aspect ratio of the sheet using !!! = !!!! 

and ! = !!!!!/12(1− !!): 

!" = !!!!!!!
!!!!!/12(1− !!)

= 12(1− !!)!!
!!  

A sheet of typical 8.5×11-inch printer paper, for example, has a Poisson ratio78 of 1/3 

and a thickness of ~0.1 mm, so its vK number is 107. For paper we can assume the 
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sheet is flat, but for nanoscale membranes like graphene, we must account for thermal 

fluctuations. As we will see below, these fluctuations have a significant effect on both 

the bending stiffness and the Young’s modulus, strongly affecting the vK number. 

 

4.3 The formal theory of thermally induced fluctuations in crystalline membranes 

The foundational paper on fluctuations in crystalline membranes was written in 

1987 by Nelson and Peliti.35 Nelson and Peliti rewrite the free energy expression 

above to describe the stretching in terms of the out-of-plane height function f rather 

than the strain tensor elements. So the total free energy looks like: 

!! + !! ≈ !
! ! !!! ∇!! ! + !

!!! !!! !
!!!"

! !!!!!!!!
!
   

for !!"! = !!" − !!!!/∇!, where !!" is the Kroneker delta. The Lamé coefficient was 

used here to simplify things by defining !! ≡ !! !!!
!!!! , an effective in-plane spring 

constant. For simplicity, we will convert it to the familiar 2D Young’s modulus using 

the relationships79 between the elastic moduli (! = !(!!!!)
(!!!!)  and ! = !

(!(!!!))), so that 

!! = !!!
!!!!. 

Nelson and Peliti studied how thermal fluctuations affect the bending stiffness. 

They focused on the renormalized, wavenumber-dependent bending stiffness κR(q), 

where ! ! ≡ !!!/!! !(!) !  and !(!) is the fourier transform of !(!). The first 

two terms in the perturbation series in the Young’s modulus are: 

!! ! = !! + !!!!
!!!

1− !!
!!!
(2!)!

[!! !!!" ! !!!]!!
!!!|!+ !|!

 

where !!" ! = !!" − !!!!/!! and !! is a unit vector. Note that the terms are additive, 
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so the bending stiffness will always be stiffer than κ0. Compare this to the correction 

for a liquid membrane, where !! ! = !! − !!!!
!! ln !

!"  and the membrane 

correspondingly softens.74 

For long-wavelength fluctuations, and assuming no renormalization of the 

elastic constants, Nelson and Peliti make an educated guess at the form of the 

renormalized bending stiffness: 

!! ! ~ !!!!!!!!!!!! !!!!  

They are clear that they did not renormalize Y2D here—they assumed that none of the 

in-plane elastic constants change. Later papers in this field set out to avoid this 

assumption using a variety of computational and mathematical methods, as we now 

discuss. 

Intuitively, we might expect that stretching a rippled membrane will be easier 

because we can easily pull out the fluctuations. A lowered value of the Young’s 

modulus should partially counteract the stiffening effects of thermally induced 

fluctuations, lowering Nelson and Peliti’s estimate for the effective bending stiffness. 

Many researchers have tackled this problem since the late 1980s. Aronovitz and 

Lubensky,80 Le Doussal and Radzihovsky,81 Knownacki and Mouhanna,82 and 

Braghin and Hassleman83 all use different approaches to calculate the effective 

bending stiffness, !! ! , without holding Y2D constant. They end up with elastic 

moduli that depend on the wavenumber of the fluctuation with a scaling favor η on the 

wavevector dependence: 

!! ! ∝ !!!! 
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where for Nelson and Peliti, ! = 1. The value of η in the later papers varies depending 

on their approach, but seems to be narrowing in on about η =0.85.84,46,83,72 

 

4.4 Deviations from the harmonic model: the crossover length 

Fig. 4.2 shows the correlation function for the out-of-plane displacements of 

the membrane as a function of the wavenumber, adapted from Roldan et al.85 The 

vertical axis is the correlation function for the out-of-plane displacements, equal to the 

mean square amplitude of the out-of-plane displacement, ! ! ≡ ℎ(!) ! ; a higher 

value of G(q) corresponds to larger out-of-plane fluctuations. If the correlation 

function stays finite, the system has long-range order and it does not crumple up.35,80 

On the graph, the dashed blue line shows the harmonic approximation (i.e. the 

stretching and bending energies are uncoupled), where ℎ(!) ! = !!! !!!.  

The solid red line shows the complete thermal fluctuation theory described 

above, where bending and stretching are coupled. At large wavenumbers the two 

models match, but as we move towards smaller wavenumbers the curves diverge. So 

at very small scales (large q) the coupling between the bending and stretching energy 

has an insignificant effect, but at larger scales it significantly stiffens the membrane 

and reduces the amplitude of the out-of-plane fluctuations. 

We can see that there is some critical size scale above which the effects of 

thermal fluctuations become significant. In the language of wavenumbers this is the 

Ginzburg criterion, given by85 

!! = !!!!!!!
!!!!!
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which is shown on the plot as a dashed vertical line. Converted to wavelengths, this  

expression gives a crossover length:  

!! = !"!!!!!
!!!!!!!

  

that depends only on the intrinsic properties of the material. This is the size scale 

above which the effects of thermal fluctuations begin to dominate. 

           We can write a simple, experimentally practical form for the fluctuation-

dependent renormalized bending stiffness. We can combine Nelson and Peliti’s 

expression for the renormalized bending stiffness with the crossover length to get a 

prediction for the bending stiffness due to thermal fluctuations. Converting to 

wavelengths l and bringing in the corrected scaling exponent η, we have: 

!!"" = !!!!
!
!!

!
 

where A is a numerical prefactor. Note that the stiffness is size-dependent—larger 

membranes can hold longer-wavelength fluctuations, so they will be stiffer. We will 

focus on the longest-wavelength fluctuations in a finite-sized membrane, since it 

should create the dominant out-of-plane fluctuations. (In comparing this theory to 

experimental results in the next chapter, the relevant size will be the width W of the 

cantilevers, since ripples along W will be what stiffens the cantilevers.)  

As mentioned earlier, the in-plane elastic properties also change under the 

effects of thermal fluctuations, so we must adjust Y2D as well. Aronovitz and 

Lubensky80 first addressed the renormalization of the in-plane elastic constants, 

finding a scaling factor for the elastic constants in a 2D membrane of !! = 2− 2!.  
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Fig. 4.2: Plot from Roldan et al., Phys. Rev. B (2011), showing the correlation 
function versus wavenumber for the harmonic approximation (dashed blue 
curve) and for the thermal fluctuation theory which takes into account the 
coupling between bending and stretching (solid red curve). The vertical dashed 
line shows the Ginzberg scale, where the two models begin to diverge.  
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We can write the renormalized Young’s modulus in the same form as the 

renomalized bending stiffness, though it should scale inversely with l (larger 

fluctuations lower the Young’s modulus).86 So for another numerical prefactor B, we 

have: 

!!"" = !"!
!!
!

!!
 

 

4.5 An intuitive understanding of the stiffening effects of thermal fluctuation  

We will now take a moment to develop a physical intuition for the effects of 

fluctuations. We can see the effects of coupling between bending and stretching 

energies by playing with a sheet of paper. Paper has a high aspect ratio and is much  

easier to bend than to stretch, so it provides a good macroscale analog to crystalline 

membranes.  

A flat sheet of paper is easy to bend out of plane, but adding crumples or 

corrugations make it much stiffer (Fig. 4.3). This is the principle behind corrugated 

cardboard. The simplest way to think of this is as a classical beam, where we have 

increased the thickness t and thus increased the bending stiffness. On a qualitative 

level, we can think of thermal fluctuations in a crystalline membrane the same way—

they create a thicker “effective membrane.” 

More precisely, consider the fact that some distortions of a two-dimensional 

membrane require you to fold the membrane while others require you to fold and 

stretch it. Fig. 4.4 shows different ways of distorting a membrane. We can characterize 

different kinds of distortions by their Gaussian curvature. The saddle shape has a  
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Fig. 4.3: Effective thickening of a membrane. (a) A flat sheet of paper is 
significantly easier to bend than a sheet with creases. (b) Corrugated cardboard. 
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Fig. 4.4: Types of Gaussian curvature. (a) Saddle shape, S < 0, (b) bubble 
shape, S > 0, and (c) simple fold, S = 0.  
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Gaussian curvature S<0, the bubble has S>0, and the simple fold has S=0. The first 

two cases require significant stretching of the membrane, but the simple fold does not. 

As you can immediately see by playing with a sheet of paper, bending in one direction 

is easy (it costs bending energy only), but bending in two simultaneous directions cost 

both bending and stretching energy, and is much more difficult. In both paper and 

crystalline membranes, stretching energy is orders of magnitude higher than the 

intrinsic bending energy, so this is a dramatic effect. If we have a membrane with 

ripples along x1 (a zero Gaussian curvature distortion), then bending it along x2 

requires us to create an energetically expensive saddle or bubble shape (a nonzero 

Gaussian curvature distortion). The ripples in x1 have effectively stiffened the 

membrane in the x2 direction.  

Going back to the formal theory, the Gaussian curvature is implicitly included 

in the free energy expression as:75 

! ! = −∇! 1
2!!"

! !!!!!!!!  

The areas in the membrane with non-zero Gaussian curvature contribute to the 

stretching energy.35 

 

4.6 Applications to Graphene 

At the atomic scale, graphene has a low atomic-scale bending stiffness, 

!! = 1.2 eV,34,32 and an extraordinarily high Young’s modulus of Y2D=340!N/m.28 

These values give a crossover length of !! ≈ 3 nm at room temperature.85 At smaller 

scales than that the intrinsic bending stiffness should be fairly accurate, but at larger 
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scales the effect of thermally induced fluctuations will dominate. Thermal fluctuations 

should have a significant effect at all of the size scales we probe in this thesis, and at 

all size scales where experimentalists typically work. In fact, graphene’s combination 

of low intrinsic stiffness and high in-plane strength makes it an ideal model material 

for the experimental study of thermal fluctuation theory.  

We can see the dramatic effect of the renormalized bending stiffness by how it 

affects the vK number of graphene. If we naively used graphene’s bending stiffness at 

the atomic scale, κ =1.2 eV, we might predict a vK number for a 10 µm×10 µm sheet 

of graphene of vK ~ 1011, dramatically softer than a sheet of standard paper. But 

qualitatively, this is not what we saw when we manipulated large sheets of graphene in 

Chapter 3. Rather, graphene at the 10-µm scale seems to behave a lot like paper.  

We can calculate the corrected vK number using the renormalized stiffness and 

in-plane elastic constants, so that 

!"!"" =
!!!!!""!!
!!""

 

We simply write the renormalized vK in terms of the expressions for the 

renormalized values (dropping the numerical prefactors): 

!"!"" =
!!! !!

!
!!

!!!! !
!!

! !! 

= !!!!
!!

!!
!

!!!!
 

!"!"" = !"!
!!
!

!!!!
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which for a 10-µm×10-µm sheet of graphene gives: 

!"!"" = (10!!) !!!"
!"!!!

!.!"!!.!
= 107 

matching the vK number of a sheet of paper. 

 The vK number gives a quantitative comparison between an atomic membrane 

and a macroscale sheet of paper. It is a useful measure of the size-dependent behavior 

of a membrane, and it captures the key factor that will affect kirigami. 

 

4.7 Conclusions  

Theorists have extensively studied thermal fluctuation theory over the last four 

decades, but experimental confirmation has mostly been out of reach.87 Graphene 

provides an ideal laboratory for  these membrane mechanics studies, because its high 

stretching energy and low intrinsic bending energy mean that the effects of thermally 

induced fluctuations are particularly dramatic. In the next chapter, we will perform a 

direct measurement of the bending stiffness of graphene for the first time, providing 

the first evidence for the effects of thermal fluctuations on bending stiffness. 
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CHAPTER 5 

MEASURING THE BENDING STIFFNESS OF GRAPHENE 

 

5.1 Introduction 

As we described in Chapter 4, the stiffness of unstrained membranes should be 

dramatically affected by thermal fluctuations. However, attempts to measure this basic 

mechanical quantity have given widely varying results,45,88 and so far it has not been 

conclusively measured at the micron scale. Due to experimental constraints, most of 

the experimental work on graphene’s mechanical properties in the last decade has 

focused on suspended graphene under strain.89,38,28 As we saw in Chapter 1, 

researchers have build a variety of fully-clamped and doubly-clamped beams. These 

suspended devices have allowed researchers to measure the in-plane mechanical 

properties of graphene, but the effects of the out-of-plane bending stiffness are usually 

washed out when strain dominates.  

The manipulation methods we have developed so far in this thesis allow us to 

lift graphene cantilevers off of a substrate in a novel unstrained geometry. This 

chapter describes how we use this technique to perform a direct measurement of the 

spring constants of monolayer graphene cantilevers. We use two methods, one based 

on the force of gravity and the other on thermal motion. In this chapter we describe 

these measurement techniques, show representative data, and perform the simple 

analysis of the spring constant data to extract a value for the bending stiffness of 

graphene. Finally, we compare the results to the predictions of thermal fluctuation 

theory from the last chapter. 
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5.2 Using gravity to measure spring constants 

To measure the spring constant of a graphene cantilever, we can simply apply 

a known force to end and treat it like a simple spring. We use the gold pad on the end 

of the graphene cantilever from Chapters 3 as weights, and watch the devices bend 

under the force of gravity. The spring constant is given by ! = !∆!, where the force 

of gravity F creates a deflection Δz in a device with spring constant k. (Note the 

notation: k is the spring constant of a device and κ is the bending stiffness of a 

material.) 

 We fabricated graphene devices of different sizes using the techniques 

described in Chapter 2. A finished device, lifted up off the surface and deflected under 

gravity, is shown in Fig. 5.1(a).  

 Fig. 5.1(b) shows a cartoon of the graphene cantilever device. We can measure 

the height difference between the two pads because they sit in different focal planes. 

We use the z-piezo stage on the microscope objective, as in Chapter 3. We define the 

height difference between the inner edges of the two pads as Δz, and determine when 

the inner edges of the pads are in focus by eye. For each device, we take three 

measurements of the height difference, and average to reduce the error. Representative 

raw data for the device in Fig. 5.1 are shown in Table 5.1. We read these numbers 

straight off of the z-piezo controller and wrote them down by hand, and also used 

LabVIEW to record the z-piezo height along with the video data. Arthur Barnard later 

applied an edge-finding algorithm to this data and used a planar fit to create a three- 
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Fig. 5.1: Picking up a 50-µm-long device. (a) Optical image. The pads are in 
different focal planes. We use the z-piezo on the objective to measure the height 
difference between the inner edges of the two pads, Δz. (b) A cartoon of the 
geometry. The image is taken from below. (c) 3D reconstruction of the location 
of the pads, courtesy of Arthur Barnard. 
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dimensional reconstruction of the pads (Fig. 5.1(c)). We find that the resulting value 

of Δz closely matches the data we took by eye. One advantage of this reconstruction is 

that it lets us check the orientation of the pads. If the probe tip grabs the gold pad at an 

angle the whole device could be tilted, and it would give us an incorrect value for the 

height difference. Luckily, the reconstruction shows that the pad stays parallel to the 

surface in this case, and in cases where the pad was significantly tilted, we found that 

we could tell by eye.  

We took data for devices from a variety of chips and different fabrication runs. 

We discarded devices that were obviously torn, dirty, or visibly crumpled once we 

picked them up off the substrate. Any data sets with visibly tilted pads were also 

discarded. All devices have a width W=10 µm, but the lengths vary from L=20 µm to 

L=75 µm.  

 

5.3 Analysis of the gravity data 

Our 40x, 0.9 NA microscope objective is designed for working in air. 

However, the light must travel through air, the fused silica substrate, and into the 

water, refracting at each boundary and distorting our height measurements. It turns out 

that the fused silica substrate only causes an overall offset in the absolute measured 

vertical position of a target object, but that the index of refraction of the water distorts 

the vertical height difference between two points. Since we are looking at a difference 

in pad heights, we can ignore the overall offset, but we must still account for the size  
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# Left pad Right pad Difference 

1 41.32 µm 59.95 µm 18.63 µm 

2 41.32 60.20 18.88 

3 40.83 62.16 21.33 

Average difference: 19.6 µm 

Corrected for n (ave*1.3): 25 µm 

Spring constant k: 7x10-8 N/m 

Table 5.1: Rows 1-3: Raw data from the device in Fig.1, size 10 µm × 50 µm; 
the gold pads are 10 µm × 20 µm × 50 nm. The values come directly from the 
display on the z-piezo controller. The bottom two rows give the average height 
difference and the corrected value after adjusting for the index of refraction of 
water. 
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distortion. The correction is given by:90 

!!
!!
×!"#$!"#$!ℎ!"#ℎ!!!"##$%$&'$ = !"#$!%!ℎ!"#ℎ!!!"##$%$&'$ 

for the index of refraction of the device’s environment n2 and index of refraction of the 

objective’s environment n1. Water’s index of refraction90 n2=1.3, and our lens is a 

standard air objective, so n1=1. So we simply multiply the measured height difference 

by a factor of 1.3, as shown in the last row of Table 5.1.  

To confirm the piezo calibration, we checked it against the focus dial on the 

microscope. The focus dial was in turn confirmed by measuring the focus difference 

between the top and bottom of a number of cover slips and checking that the value 

matched specs when corrected for the index of refraction of fused silica,91 n=1.5. 

To extract the spring constant from the height difference, we need to know the 

force of gravity on the gold pads. This is given by!!! = !!"#$! for the mass mgold of 

the pads, and we must also correct for the buoyancy due to the displaced water, 

!!"#$%&' = !!"#$%&'(!!!"#$%!. So:!

! = !! − !!"#$%&'
!!

= !!"#$! −!!"#$%!
!!

= !!"#$ − !!"#$% !"#$
!!

 

for gold pads of thickness t and size L×W. The density of gold !!"#$ = 19.3!!/!"! 

and !!"#$% = 1.0!!/!"!. For our sample data in Table 1, we get:  

! =
19.3! !!"! − 1 !

!"! 10!" 20!" (50!")(9.8!!!)
25!!"  

= 7×10!!!!/! 
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Data for all gravitational measurements are shown on the plot in Fig. 5.4 as 

blue dots, where the spring constant k is plotted against the device length L. The spring 

constants decrease dramatically with increasing length; unsurprisingly, longer 

cantilevers are softer. 

 

5.4 Thermal measurements of spring constants 

 A second way to measure the spring constant of a graphene cantilever is to 

watch the pad’s thermal motion. To extract a spring constant from the thermal 

fluctuation data, we treat the device like an overdamped oscillator exploring a 

harmonic potential of energy ! = !
! !!

!. The cantilever moves randomly as the water 

molecules bump into it; over time, it will random-walk through its harmonic potential. 

By the equipartition theorem, each degree of freedom of the pad should have an 

average kinetic energy ! = !
! !!!. For the time-averaged square (the variance) of the 

fluctuation amplitude !!!! , the spring constant becomes92,93 ! = !!!
!!!!

. This is a 

common technique for measuring spring constants of AFM tips, and the Brownian 

motion of microbeads is often used to calibrate optical traps.94,95 

We attached a stepper motor to the arm of the micromanipulator to rotate the 

devices, allowing us to image the pad edge-on and watch its motion in the higher-

resolution x-y plane. See Fig. 5.2(a) for a schematic. We note that the rotation can be 

rough on the devices. The device is dragged through the water during the rotation, and  
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Fig. 5.2: Tracking the thermal motion. (a) A cartoon of the device after 
rotation. Data is collected by looking up through the substrate. (b) Optical 
image of the rotated device. (c) Time trace showing the location of the 
PatchStar probe tip (blue) and the far pad (red). The image has been thresholded 
to find the center of both objects. The frame rate is 23 fps, size scale is 182 
nm/pixel. The long-timescale motion is dominated by the probe drift, but the 
difference in width of the lines shows the faster thermal motion of the device. 
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sometimes folds up on itself and has to be discarded. In many cases, the device rotates 

slightly around the point where it contacts the probe, so that the device is still visible 

edge-on but the far pad hangs significantly lower. 

 Once the device is rotated edge-on, we turn off the power to the stepper motor 

and the PatchStar to prevent motor vibration. We record video for 5-10 minutes for 

each device, at a frame rate of ~23 frames per second. 

 We repeated these measurements for many devices. All devices have a width 

W=10 µm, but the lengths vary from L=8 µm to L=30 µm. 

 

5.5 Thermal data analysis 

To extract an accurate value of the variance, !!!! , Samantha Roberts and 

Arthur Barnard in our group have developed MATLAB code to accurately analyze the 

video data, and to deal with the challenges of manipulator drift.96,97 They used a 

centroid-finding algorithm and tracked the motion of the pad over time, as well as the 

motion of the probe tip (Fig. 5.2(c)). We see identical slow, large-amplitude motion 

from the PatchStar for both the right-hand pad (red) and the probe tip (blue); this is 

device moving across the field of view as the PatchStar drifts. However, the right-hand 

pad also oscillates on a short timescale. This short-timescale oscillation is the thermal 

motion of the pad. 

 We can estimate the expected time scale of the thermal motion.98 We treat the 

pad like a sphere in water, and estimate how long it will take to diffuse over 50 nm. 
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The diffusion constant D of a sphere of radius r moving through a medium with 

viscosity η is given by 

! = !!!
6!"# 

However, the gold pad is not a sphere. Instead, we treat the pad like a spherical bead 

with an effective radius that is calculated by !!"!!"! = (3/2!)!/!!!"#$, where rdisk is 

the radius of a flat circular disk and ρ is the aspect ratio of its length and width.99 For a 

square pad with sides of size L×L, the disk with equivalent area has !!"#$ = !/ !. The 

resulting rsphere for a 10 µm×10 µm pad is ~6.5 µm. For water, η = 10-3 Pa·s, so we get 

! = 0.03 µm2/s. For microbeads diffusing through a solution, we would expect 

!!!! = 2!"# for diffusion in n dimensions after a time t.98 We are interested only in 

the one-dimensional (y-direction) motion of these cantilevers, so ! = !!!! 2!, giving 

a timescale for the cantilever’s motion through a potential well of ~50 nm on the order 

of 0.04 s. 

Fig. 5.3(a) shows a representative section of the data once the probe tip’s 

motion has been subtracted. Using the full data set, we can extract the position of the 

pad over time, and create a histogram of the centroid locations. The full width at half 

max of the histogram is related to the standard deviation as100 !"#$ = 2 2ln2! ≈

2.4!. From the histogram we get ! = !!!! !/! = 46 nm, so ! = 2×10!! N/m.  

To get more information about the pad’s thermal motion, and to ensure that our 

data is not being biased by time-averaging or aliasing artifacts,101 we can apply power 

spectral density (PSD) analysis. The PSD provides key additional information, such as  
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Fig. 5.3: Analyzing the thermal fluctuations. (a) A subset of the same data as in 
Fig. 5.2 after subtracting the probe tip motion, and a histogram of the size of the 
pad’s fluctuation (extracted from the entire data set). A Gaussian fit to the 
fluctuation amplitude distribution gives <xth

2>1/2 = 46 nm. (b) Theoretical PSD 
curves. The red line is for a softer spring constant than the green curve; 
integrating over the area gives a larger variance <xth

2>. (c) A power spectral 
density plot of the data set. Frame rate is 23 fps. Plots courtesy of Samantha 
Roberts; (b) is adapted from her thesis. 
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an experimental value of the diffusion constant, and gives a more accurate value of the 

variance that filters out low-frequency external noise sources. (See thesis by Samantha 

P. Roberts, Cornell University (2014) for more details.) 

This technique involves analyzing the frequency spectrum of the fluctuations. 

It tells us how the power (or more generally, the squared value of a signal) is 

distributed over its component frequencies. To plot the experimental data, we track the 

position of the pad in time, as in Fig. 5.3(a). The PSD is the normalized square of the 

fast Fourier transform of the pad’s position in time, divided by the frequency and the 

number of samples n (to normalize it so that the integral gives the variance): 

!"#!"# !, ! = 2 !!" !(!) !

!"  

for positive frequencies f. The data is shown in Fig. 5.3(c). The vertical axis on the 

plot is the square of the fluctuation size per unit frequency (µm2/Hz), and the 

horizontal axis is the fluctuation frequency.  

A key feature is the corner frequency (Fig. 5.3(b)). Below this corner 

frequency the line is flat, representing the white noise of the cantilever confined to a 

harmonic potential. At higher frequencies above this corner, the 1/f2 dependence of the 

PSD curve is characteristic of free particles diffusing through the water. Over these 

short timescales the cantilever does not reach the limits of its harmonic trap.102 

We can fit this curve using the theoretical expression for the PSD. Written in 

terms of the diffusion constant D, the one-sided theoretical power spectral density is 

defined as96  
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!"# !, ! = !
!!(!! + !!!)

 

for a corner frequency !! = !"/2!!!!, where k is the spring constant of the 

harmonic potential. The resulting curve provides a fit to the data and lets us directly 

determine the diffusion constant. In this case, D = 0.034 µm2/s, very close to the value 

of 0.03 µm2/s that we predicted earlier. The data roughly matches the shape of a 

theoretical PSD curve, confirming that we are correctly sampling the fluctuations. We 

can also extract the variance directly from the PSD plot using 

!(!)! = !"# !,! !"
!

!
 

i.e. by integrating to find the area under the PSD curve.  

While the device in Fig. 5.3 shows a corner frequency, but some data sets 

could not provide a clear PSD curve and were discarded. To get a good curve that 

shows the full form of a PSD, we need to track the pad for long enough to capture the 

full range of its motion. Good video data will give us the corner frequency, which in 

turn lets us integrate under the PSD to extract an accurate value of the variance. 

For the device in Figs. 5.2 and 5.3, PSD analysis gives !!!! !/! = 38!nm. This 

is somewhat smaller than the value we read from the histogram above ( !!!! !/! =46 

nm), but the PSD analysis is the more accurate measurement because it eliminates 

some other external sources of noise, particularly very low-frequency noise. 

 On the plot in Fig. 5.4, we show PSD-extracted data as black dots. For the 

sample device shown in Figs. 5.2 and 5.3, we get ! = 3×10!! N/m. 

 



 

84 

5.6 From spring constants to bending stiffness  

So far, we have measured the spring constants of monolayer graphene 

cantilevers. To connect these spring constants k to the bending stiffness, we have to 

consider the size and shape of the graphene device. Ignoring the graphene’s tiny mass, 

we can treat it as a massless cantilever weighted down at the end by the gold pad. 

Classical beam mechanics gives the spring constant k of a massless beam of length L, 

thickness t, moment of inertia I, and Young’s modulus Y with its mass fixed at the 

end:103 

! = 3!"
!!  

If we substitute the moment of inertia of a rectangular cantilever of width W and 

thickness t, ! = !
!"!!!, we get104 

! = !!!!
4!!  

Finally, we use the expression that relates the bending stiffness of a membrane to its 

3D Young’s modulus, ! = !!!
!"(!!!!) (in this case, we’ll drop the Poisson ratio in the 

denominator, since in graphene’s Poisson ratio is so small: σ =0.17). We now have a 

simple relationship between the bending stiffness and the spring constant: 

! = 3!"
!!  

This means that our measured spring constants give us an experimental value 

for the bending stiffness of graphene, and we can compare it to theory.  
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5.7 An experimental value for the bending stiffness of graphene 

Figure 5.4 shows the spring constants for all the cantilevers versus their length. 

There is some scatter in the data, due to variability between devices. Let’s begin by 

comparing the spring constants of our devices to the spring constants predicted by the 

accepted value of graphene’s intrinsic bending stiffness, κ0=1.2 eV. This value—

which is accurate at the atomic scale—yields expected spring constants given by the 

dotted orange line in the lower left corner of Fig. 5.4. The experimentally determined 

spring constants are orders of magnitude higher than this prediction.  

When we include the effects of thermal fluctuations, however, we see a much 

better match. In Chapter 4 we showed that the renormalized bending stiffness can be 

written as !!"" = !!!(!/!!)!. We use A=1, l=W=10 µm, and the crossover length 

lc=3 nm  that we calculated earlier from the material properties of graphene. We plot 

the predicted spring constants in Fig. 5.4 using both Nelson and Peliti’s original 

prediction where η=1 (shown as a dotted gray line) and the more recent predictions 

where η=0.85 (dashed gray line). The agreement is very good.  

This work represents the first experimental evidence for the effects of thermal 

fluctuations on the bending stiffness of a membrane. While we cannot rule out the 

effects of static distortions—permanent crumpling in the graphene, for example—we 

have shown that the effects of thermal fluctuations are sufficient to explain the 

dramatically increased bending stiffness of graphene. 
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Fig. 5.4: Plot of spring constant versus length for both the thermal fluctuation 
(black) and gravitational deflection measurements (light blue). The spring 
constant relates to the bending stiffness as k=3κW/L3. The dotted orange line in 
the lower left corner is the prediction from the microscopic bending stiffness, 
1.2eV. The dotted gray line on the right is the prediction of Nelson and Peliti’s 
original theory (η=1), while the dashed line is for more recent predictions that 
give η=0.85 and κeff=1.2 keV. 
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 5.8 The influence of surfactants and residues on the measured spring constants  

Although the effects of thermal fluctuations are enough to explain the dramatic 

increase in the bending stiffness of graphene, we should take a moment before we 

leave this subject to double-check that the dramatic increase in bending stiffness could 

not caused by other factors: by the inevitable residue on the graphene that we 

mentioned in Chapter 2, or by the addition of surfactants to the water. 

As we saw at the end of Chapter 2, a good fabrication run usually results in ~2 

nm of additional residue on top of the graphene. We can estimate how much such 

residue would affect the stiffness using simple classical elastic theory, where 

κ=Y3Dt3/12(1-σ). A 2-nm-thick layer of the stiffest PMMA, with a Young’s modulus105 

of Y3D=3.3 GPa and a Poisson ratio of σ=0.4, would still add only ~20 eV to the out-

of-plane bending stiffness—far too small an effect to explain the thousandfold 

increase in stiffness that we measured. 

To check the effects of surfactant on the bending stiffness, we performed 

gravitational measurements on devices that had never been exposed to surfactant. As 

shown in Fig. 5.5, the presence of surfactant does not measurably affect the bending 

stiffness. 

 

5.9 Conclusions 

We have discussed two separate methods of measuring the out-of-plane 

bending stiffness of monolayer graphene: using the force of gravity, and using thermal  
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Fig. 5.5: The effect of surfactants. This is the same plot from Fig. 5.4, but the 
black diamonds are data from gravity measurements on devices that were never 
exposed to surfactant. The presence of surfactant has no measureable effect on 
the measured spring constants.  
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motion. We laid out our measurement methods and showed sample data for both 

cases. Finally, we used classical elastic theory to extract a bending stiffness from our 

data. For 10-µm-wide cantilevers, we measured a bending stiffness three orders of 

magnitude higher than the microscopic value, and showed that this extraordinary 

stiffness can be explained by the effects of thermal fluctuations in the graphene. This 

work represents the first experimental evidence for the effects of thermal fluctuations 

on the bending stiffness of a membrane, and provides a direct measurement of a key 

mechanical property of graphene. 
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CHAPTER 6 

KIRIGAMI PATTERNS FOR STRETCHABLE GRAPHENE 

 
6.1 Introduction 

So far we have mostly focused on developing new manipulation techniques 

and using them to study the physics of graphene membranes. Here we will begin to 

use these techniques to build active elements from graphene. We have already 

discussed the current challenges in building micro- and nanoscale moving parts, and 

how graphene-based devices might address the need for robust, scalable active 

elements. In this chapter, we will apply the powerful ideas from the paper art of 

kirigami to graphene for the first time, and show that it produces resilient moving parts 

with tunable mechanical properties: a mechanical metamaterial. 

In its simplest form, kirigami just requires a material to bend more easily than 

it stretches, and graphene and paper share this behavior. In fact, we have seen that 

graphene membranes at the tens-of-microns scale have a vK number comparable to an 

8.5”×11” sheet of printer paper. This makes it possible to directly translate designs 

from the paper arts down to the nanoscale. In Fig. 6.1 we show simple paper kirigami 

designs based on patterns from a children’s craft website, including single- and 

double-lobed in-plane springs and pyramidal out-of-plane springs.106 The paper 

models stretch easily without creasing the paper, and return to their original shape 

when released. 

In this chapter we use the same patterns to build in-plane springs out of  
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Fig. 6.1: Paper kirigami models. (a) Single-lobed in-plane springs, unstretched 
and stretched. (b) A similar double-lobed pattern. (c) Out-of-plane pyramidal 
spring. To create these structures the paper bends, but it does not have to hold a 
crease. 
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graphene. We will repeatedly stretch and release them, and image the structure that 

allows them to stretch. We also pattern pyramidal out-of-plane springs, and actuate 

them remotely with a laser to measure their force-distance curves. We discuss ways to 

adjust the patterns to dramatically tune the spring constants. We then move onto the 

electronic properties of these devices, passing a current through the in-plane springs to 

turn them into solution-gated stretchable transistors. 

 

6.2 Stretching in-plane graphene kirigami springs 

 We can directly cut kirigami patterns out of graphene by using the patterning 

techniques described in Chapter 2. The paper models in Fig. 6.1 were cut using a laser 

cutter, and the graphene patterning mask was made from the same CAD file (Fig. 

6.2(a)). We cut both single- and double-lobed in-plane springs, as well as out-of-plane 

pyramidal springs. As described in Chapter 2, the last step in the fabrication is to etch 

away the aluminum sacrificial layer. At this point, the devices look like Fig. 6.2(b), 

and should be loosely adhered to the surface.  

Using a probe tip on a computer-controlled micromanipulator, we can push 

into the left-hand gold pad and “grab” the end of a single-lobed in-plane spring, just as 

we did with the cantilevers in Chapter 3. If we pull back on the pad, we begin to peel 

the graphene off the surface and extend the spring (Fig. 6.3). It releases from the 

surface one link at a time, until the spring is fully extended and only the right-hand 

pad is stuck down. 
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Fig. 6.2: (a) Patterns used for both the paper and graphene kirigami springs. 
The graphene devices are 80 µm wide with 1-µm-wide cut-outs. (b) Photos of 
completed devices before they have been peeled up. Scale bars are 10 µm. 
 

a b
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Fig. 6.3: Top to bottom: single-lobed graphene kirigami in-plane spring in the 
as-fabricated state, and slowly peeling the spring off of the surface one link at a 
time. Scale bar is 10 µm. 
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Fig. 6.4: (a) A double-lobed spring before it has been stretched. (b) The same 
spring fully extended. (c) A partially stretched state from a later cycle. Note that 
the once the spring has been released from the surface, all of the links stretch 
and relax together. (c) Bringing the left-hand gold pad back to its original 
location. Even after many stretching cycles, the spring can return almost 
entirely to its original state. Scale bar is 10 µm. 
 

b

a

c

d



 

96 

 

The single-lobed spring in Fig. 6.3 can be stretched by over 240%—an even 

more remarkable mechanical deformation when we consider that graphene normally 

tears at 6-12%.29 By imposing the kirigami cuts, we have altered the mechanical 

properties of the graphene device, turning a rigid material into a stretchable one. Once 

these devices have been peeled up once, they never fully stick down again, and the 

whole spring is free to stretch in unison. We show a device in Fig. 6.4 that has been 

released from the surface, and we can see that the entire spring stretches and relaxes as 

we actuate it. Graphene devices covered with significant residue can be plastically 

deformed by the stretching process, but good, clean graphene springs should return to 

their original state, as in Fig. 6.4. 

If we pull beyond a kirigami spring’s maximum extension point, either the 

right-hand gold pad can release from the surface (the spring jumps to the left to relax), 

or the spring can tear. However, as long as we stay within their extension range, these 

kirigami springs are remarkably robust, and we have stretched and relaxed similar 

springs hundreds of times. In the next section we will study the mechanism that allows 

these graphene kirigami springs to stretch so dramatically. 

 

6.3 How the springs stretch / 3D reconstructions 

 We can study the macroscale paper springs to learn how kirigami springs 

stretch. We will examine the structure of the simple single-lobed spring in Fig. 6.1(a).  
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Fig. 6.5: (a) A paper kirigami spring from the side. The links rotate out of 
plane, and are then free to bend like cantilevers. (b) Each small strip of 
graphene in this pattern can be thought of as two cantilevers in series (labeled 
orange), which together form an s shape. (c) A finite difference method model 
of a single spring cell, with two cantilevers labeled in orange. Image courtesy of 
Bryce Cobrin. 
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This spring is made up of identical “links” connected at the middle of the device. 

 As we begin to stretch the spring, the spring bends up at its ends so that the 

individual links can rotate up out of plane (Fig. 6.4(a)). Once the links have rotated, 

they are free to act as rectangular cantilevers in series and parallel (labeled orange in 

Fig. 6.4(b)). As these cantilevers bend, the spring extends. Because the paper bends 

out of plane, the spring constants of the kirigami spring will depend on the bending 

stiffness of the paper, not its Young’s modulus.  

A graphene spring should stretch by the same mechanism. To confirm that the 

3D structure is in fact the same, our collaborators in the Muller group reconstructed 

the three-dimensional shape from a focal series of a partially released spring (Fig. 

6.6(a)). We scanned 100 µm in z at a constant rate using the z-piezo on the microscope 

objective, creating an image stack in 10-nm steps (which, we should note, is 

significantly oversampled, since the depth of focus is ~0.5 µm).  

For each x-y pixel, our collaborators used a Gaussian fit to determine the z 

plane with the highest contrast (i.e. the most focused plane) using a refined minimum 

intensity algorithm. Simply selecting a maximum-intensity height at each pixel already 

gives information about the 3D structure, but the fit can be improved by adding in a 

number of refinements. Background subtraction eliminates constant features, such as 

particles on the lens and the camera. They treated the graphene as a point object in z. 

They masked the z-data to the projection of the object, and adjusted the fit near the 

pads, since opaque objects cast a shadow as they go out of focus. And finally, they  
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Fig. 6.6: (a) Two stills from the background-subtracted z-scan. (b) The 3D 
reconstruction using TomVis, and matching paper models. The color map is 
based on the intensity of the original video. The image of the upper lefthand 
paper model has been compressed vertically. 
 

b

a
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Gaussian-blurred in three dimensions by 400 nm to reduce noise. 

To render the 3D model, they used an open-source program by Paraview called 

TomVis, which is designed for tomography.107 The result is shown in Fig. 6.6(b), 

where we compare the reconstruction to paper models. The only significant difference 

is that the upper photo of the paper model has been vertically compressed; the 

reconstruction’s compression in z is a function of the fact that we treat the graphene 

like a point object in z. 

Recently, researchers have modeled this structure using molecular dynamics 

simulations.108 The 3D structure of their nanometer-sized graphene kirigami springs 

agrees with this reconstruction, in spite of the fact that they were modeling patterns at 

much smaller scales. In fact, this simple kirigami design should work at any size scale 

as long as the material prefers to bend rather than stretch. 

 

6.4 Tuning the spring constant by changing cut patterns: a mechanical 

metamaterial 

 We have described the kirigami springs as collections of small cantilevers in 

series and parallel. In this section we will show that this simple model does a good job 

of predicting the measured spring constants. We then use this model to predict the 

range of spring constants that we should be able to achieve by changing the kirigami 

pattern. 

 Fig. 6.7(a) shows the graphene pyramidal spring, which stretches like in-plane  
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Fig. 6.7: (a) A COMSOL finite-element-analysis model of an out-of-plane 
pyramidal kirigami spring showing the three-dimensional structure. The color 
scale represents height. Courtesy of Bryce Kobrin. (b) A simple model of the 
out-of-plane spring treats it like cantilevers in series and parallel. Each blue and 
red cantilever: 2 µm x 9.75 µm. Each orange cantilever: 2 µm x 9.5 µm. 
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spring but without the initial step of rotating the links. A schematic of the spring is 

shown in Fig. 6.7(b). We will build up the simplest possible model here, focusing on 

one quadrant of the spring and treating the four quadrants like independent springs in 

parallel. 

By playing with paper models we know that the outermost strip of graphene 

(A) is tensioned by the gold at its ends, so it cannot significantly bend out of plane (see 

Fig. 6.1(c)). We will begin by counting at the second strips of graphene, labeled blue. 

We begin by focusing on the light blue strips. 

This long, narrow piece of graphene will bend out of plane in an S shape, as we 

saw earlier, so we again treat it like two simple cantilevers in series. These cantilevers 

are 2 µm×10 µm, and their bending stiffness and spring constants will depend on their 

size as in Chapter 4 and 5. The bending stiffness should be !!"" = !!!!(!/!!)!, which 

gives κeff=300 eV for l=W=2 µm. So each of these little cantilevers will have a spring 

constant of !! = 3!!""!/!! =! 3×10-7 N/m. 

 Spring constants add as follows: 

In series:         !
!!"!

= !
!!
+ !

!!
 

In parallel:      !!"! = !! + !! 

So we add up the spring constants of the two light-blue cantilevers in series; 

add the spring constants of the dark blue cantilevers in series; and add the two totals in 

parallel. Continuing on, we add the total for the orange cantilevers in series with the 

blue ones. We continue this process until we reach the gold pad at the center. Finally, 
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we add the four quadrants in parallel. This gives a total spring constant for the 

complete pyramid of ktheory=5×10-7 N/m. 

 If we ask what range of spring constants are possible, we find that the upper 

and lower limits are hard to define—we can always make the component cantilevers 

longer and thinner or add more in series to soften the spring, or we can make them 

shorter and wider and add more in parallel to stiffen the spring. To make a rough 

estimate, however, we can place some very conservative limits on our patterns. We 

will use the minimum feature size of our current optical lithography system (~0.5 µm) 

and a maximum device size of the largest devices we have picked up (~100 µm×100 

µm). We stress that these are not hard limits, and smaller feature sizes or larger 

graphene devices could easily be made. Within these limits we find that we can 

already achieve spring constants from 1 N/m to 10-9 N/m—a striking nine orders of 

magnitude that cover the force range from AFM tips to optical traps. 

 These kirigami springs are mechanical metamaterials: their properties depend 

on their pattern, not on the intrinsic properties of the material. We could tune their 

spring constants to match the needs of a particular experiment or application, where 

these springs could be used as in-plane or out-of-plane force measurement devices. 

They are easy to fabricate, biocompatible, and allow us to visually read out forces 

down to the femotonewton scale (assuming Δ! = !Δ! for k=10-9 N/m and a very 

reasonable Δx=1 µm). 
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6.5 Laser actuation and a force-distance curve 

As we study these springs, it seems obvious to ask for their spring constant—

or better yet, for a force-distance curve. The pyramidal geometry allows us to actuate 

this spring with a laser to get a full force-distance curve.  

If we pick an entire pyramid up off of the substrate by the gold frame, the 

central pad hangs down under the force of gravity. Using the laser, we can push the 

pad upwards, and even extract a force-distance curve. We push on the central gold pad 

with an infrared laser (λ=1064 nm). The experimental setup is built on an inverted 

microscope, so the laser passes through the objective and pushes up, against the force 

of gravity (Fig. 6.8).  

Using an acousto-optic modulator, we were able to controllably adjust the laser 

power.  The force due to photon pressure is: 

! = ! !"!  

where P is the power of the incident light, n is the index of refraction, and c is the 

speed of light, and β is a numerical prefactor that depends on how much of the light is 

lost along the optical path. We can directly calibrate this force against the force of 

gravity using simple graphene cantilevers by measuring the position of the pad (a 

known weight) at different values of the laser power. To check that this calibration 

was not being influenced by possible static deflections of the cantilever, we performed 

this measurement using a 2-µm-wide cantilever, where the cantilever stiffness is 

negligible and the graphene simply acts as a tether for the gold pad.  
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Fig. 6.8: Actuating pyramidal springs with a laser. (a) Out-of-plane spring with 
the laser off and (b) striking the central pad. (c) Force-distance curve for a 
pyramid (inset: cartoon of experimental geometry). 
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This lets us calibrate the force axis in Fig. 6.8(c). Tracking the z-position of the central 

pad of the pyramid as we vary the laser power, we can extract the full force-vs.-

distance curve. A fit to the linear section of the pyramidal spring gives a spring 

constant of k=2×10-6 N/m — reasonably close to what the simple model above 

predicts. 

As we would expect for an ideal spring, there is a fairly linear region in the 

middle, with a roll-off as the spring reaches its maximum extension. The linear region 

also confirms that the force is in fact due to photon pressure, rather than to heating the 

fluid or other nonlinear effects.  

 The force-distance curve gives us quantitative information about how graphene 

kirigami springs stretch, and the measurement of the spring constant suggests that the 

simple cantilever model will be useful for designing springs with custom spring 

constants. So far we have focused on the mechanical properties of graphene kirigami 

springs, but these remarkable mechanical metamaterials can also act as stretchable 

transistors. We will explore their electrical properties in the next section. 

 

6.6 Electrical properties of graphene kirigami springs 

There has been great interest over the years in using graphene for transparent 

or flexible electrodes, and researchers have worked on stretching graphene up to or 

past its normal ~12% limit.29,109,59,110,111 These projects usually aim for maximum 

strains of 5-30%.110,43 Other kinds of stretchable electrodes such as gold nanomeshes 

can survive strains of over 100%, but that is usually at the cost of a significant change 

in the electrical properties when the electrodes are stretched.112 Ideal stretchable 
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electronics should be resilient enough to survive many stretching cycles without 

deteriorating, and their electrical properties should not change significantly when the 

device is stretched. The graphene kirigami springs we have shown so far in this 

chapter are certainly mechanically resilient, and their maximum extensions are set 

only by the choice of patterns. In this section we will study their electrical stability. 

Electrolyte gating is a well-established technique.113,114,115,116 A transistor with source 

and drain hookups is immersed in an ionic solution, and the voltage of the solution is 

set by a third wire, the electrolyte gate wire. Ions build up on the gate wire and on the 

device, creating a liquid top gate for the transistor (Fig. 6.9(a)). To a first 

approximation, a conductor/electrolyte interface can be thought of as a layer of ions at 

the conductor’s surface that forms a capacitor, as a shown in Fig. 6.9(b). By changing 

the voltage of the gate wire, we can pull charge onto and off of the graphene from the 

contacts, just as in traditional back-gated transistors. (For more details, see Lisa 

Larrimore’s thesis, Cornell University (2008).) 

To measure the electronic properties of the kirigami springs, we will gate them 

using an electrolyte solution of ~10 mM KCl, plus a few drops of the standard 

surfactant solution (with water added periodically to keep the concentration stable). 

We added a gold gate wire to the solution to set its potential, and use a current 

preamplifier (Ithaco 1211) to measure the current through the device in response to an 

applied source-drain voltage. 

We use the usual tungsten tip to contact the source electrode (the left-hand 

gold pad), but contact the drain electrode (the right-hand gold pad) with a parylene-C- 
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Fig. 6.9: Cartoons of electrolyte gating. (a) The experimental setup, showing a 
gate wire that attracts charge and sets the potential of the solution, thereby 
gating the graphene. (b) Positive ions in the solution draw electrons onto the 
graphene device. 
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coated tungsten probe to minimize leakage current between the gate and drain through 

the solution. With these probes, the system had a negligible gate-drain leakage current 

of ~10 nA. 

We begin by measuring the electrical response of a kirigami spring before we have 

first released from the surface. We hold the device at a 100 mV source-drain bias and 

sweep the electrolyte gate from positive to negative voltages. The blue curve in Fig. 

6.10 shows the resulting plot of conductance vs. gate voltage. We see the 

characteristic Dirac point structure of a graphene transistor, as in Chapter 1. This 

single-lobed spring geometry is equivalent to ~40 squares in series, so we can 

calculate the resistance per square from the total measured resistance. The device in 

Fig. 6.8 gives R=12 kΩ/square at the Dirac point. We also extract the 

transconductance, which is a common metric for the effectiveness of the gating in 

field-effect transistors. It tells us how much the output current changes for a given 

change in the gate voltage, and can be extracted from the slope of the line on the two 

sides of the Dirac point in Fig. 6.10. For this device, the normalized transconductance 

per square gives 0.7 mS/V, comparable to the values reported in the literature for 

electrolyte-gated graphene transistors. As we might expect, the device behaves like a 

standard electrolyte-gated graphene transistor. 

Next, we peel the spring off of the surface and stretch it to its full extension, a strain of 

over 240%. We again sweep the electrolyte gate, which is shown as an orange curve in 

Fig. 6.10. Remarkably, the transistor curve does not change significantly when the 

device is stretched.  
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Fig. 6.10: Graph of gate voltage versus conductance for a spring before it has 
been stretched (blue) and when it is stretched by 240% (orange). Scale bars are 
10 µm. 
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This unusual electrical stability is due to the fact that we are not significantly 

straining the graphene lattice, only the kirigami superstructure. As we discussed 

earlier, the graphene is simply bending out of plane at a large radius, and we would 

expect such gentle out-of-plane deformations to have no significant effects on the 

electrical properties of the graphene. In fact, we stretched a similar spring over 1,000 

times without significantly degrading its electrical properties. 

 

6.7 Conclusions 

We have shown that applying simple kirigami patterns to graphene results in 

extraordinarily robust springs. We built in-plane and out-of-plane springs, studied 

their stretching mechanism, and extracted a force-distance curve. We predicted the 

range of possible spring constants for graphene kirigami devices, and found that these 

springs are mechanical metamaterials, with remarkably tunable spring constants across 

a wide and experimentally valuable range. Finally, we studied the electrical properties 

of graphene kirigami springs, which proved to be excellent stretchable transistors.  

In the next chapter, we will continue to explore possible applications for 

kirigami, and suggest future experiments that will take advantage of the remarkable 

mechanical and electrical properties of kirigami devices. 
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CHAPTER 7 

APPLICATIONS OF GRAPHENE KIRIGAMI AND FUTURE DIRECTIONS 

 

7.1 Introduction 

 In this thesis, we have controllably peeled graphene free from a surface in 

solution and manipulated it in real time like a sheet of paper. We measured the 

bending stiffness of graphene, and showed that the stiffness in 10-µm-wide cantilevers 

is three orders of magnitude higher than the atomic-scale value, a dramatic effect that 

can be explained by thermal fluctuation theory. Finally, we drew on known techniques 

in the paper arts to create moving parts that can be repeatedly actuated. We built 

robust hinges, three-dimensional structures, and springs that can act as force sensors or 

stretchable transistors. We hope that this work will open up a world of new 

applications for graphene, and provide a new framework for thinking about nanoscale 

actuation. 

 At just one atom thick, graphene represents the ultimate two-dimensional 

membrane. Although we have focused entirely on graphene in this thesis, many of the 

principles and techniques we have discussed could be applied to the expanding world 

of two-dimensional materials (Fig. 7.1). From transition-metal dicalcogenides117 to 

boron nitride118 to 2D glass,119 there has been a wave of research on 2D materials in 

the last few years. These materials add a wide variety of electronic, structural, 

mechanical, and optical properties to the world of two-dimensional membranes,120 and 

may create new possibilities when we lift them off of a substrate and begin to cut, 

bend, and stretch them. As we have shown, kirigami patterns do not undergo 

significant strains when they stretch, so these techniques should work even for 2D 

materials that do not share graphene’s extraordinary strength. 
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Fig. 7.1: Other two-dimensional materials that might be used for kirigami 
applications. (a) An atomic-resolution image of silicon oxide glass on a 
graphene support. (b) Crumpled molybdenum disulfide (MoS2) sheets look 
qualitatively similar to crumpled graphene. (c) Bright- and dark-field TEM 
images of CVD-grown MoS2 crystals. 
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In this final chapter, we will focus on future experiments and applications for 

graphene kirigami, including building electrostatics and adhesion sensors and creating 

graphene cantilevers and springs in vacuum. We will discuss the magnetic control of 

graphene devices, and discuss possible applications to optics. Finally, we will discuss 

possibilities for the controlled creasing of graphene, with an eye to true origami.  

 

7.2 Studying adhesion and electrostatics in solution with graphene kirigami sensors 

 We have shown that graphene kirigami devices are mechanically and 

electrically stable, and may serve as moveable, flexible electrical and force sensors. A 

simple first step towards using the existing graphene kirigami devices as sensors 

would be to apply a gate voltage to a large gold pad (Fig. 7.2(a)). As we move the 

electrically contacted graphene device close to the large gold pad, we should see a 

change in its resistance as it enters the electrical field. This effect should be strongly 

distance-dependent, as we should only begin to see an increased gating effect once the 

graphene is within the solution’s Debye screening length of the large gold pad. For a 

1:1 ionic solution such as KCl, the Debye length at room temperature should be 

~0.304/ !, where I is the molar ionic concentration.121 For the 10 mM solution we 

used in Chapter 6, this gives ~3 nm. This can be a short-range effect, but can be tuned 

by changing the ionic concentration. We may be able to use this sensitivity to extract 

interesting information about what exactly is happening at the interface between the 

graphene, the water, and the gold. 

 In Chapter 6, we mentioned using the kirigami springs as sensitive force 

sensors, and these devices would be ideal for studying interfacial effects (Fig. 7.2(b)). 

The pyramidal out-of-plane springs can be picked up by the frame, as we showed in  
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Fig. 7.2: Electrostatic and adhesion experiments. (a) Electrical sensors, (b) 
force sensors for electrostatics or substrate adhesion studies, and (c) mobile and 
stretchable electrical sensors for making intimate contact to neurons. 
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Chapter 6. When the spring is first peeled up off of the surface, the central pad (gold 

with graphene underneath) sticks down until the spring is relatively extended, and then 

pops up off of the surface. The extension of the spring (and the known spring 

constant) gives you a direct measurement of the adhesion force. We can also set the 

central pad back down and pick it up again, to see whether the device ever sticks back 

down to the surface at all (re-adheres), or if it floats on a layer of water. As we 

mentioned in Chapter 3, there seem to be interesting questions of adhesion at the 

graphene/water/substrate interface, and such effects could be probed using these 

devices. We could also use this geometry to study the kind of solution electrostatics 

described above. 

We can imagine using these electrically contacted kirigami springs as electrical 

sensors in a variety of applications, including in cellular studies. For example, they 

could be easily integrated with biological studies of neural networks (Fig. 7.2(c)) by 

simply moving the spring to wherever a neuron sits. When we press the spring up 

against the neuron, it should make intimate contact, stretching to conform to the 

Gaussian curvature of the surface. By patterning soft kirigami springs, we can also 

ensure that they will not damage the cells. Our group is already making early attempts 

at moving electrically contacted graphene devices to live neurons to act as sensors. 

 

7.3 Cantilevers and kirigami in vacuum 

While the aqueous environment has many significant advantages, there may be 

cases where we prefer to work in vacuum or air. With cantilevers in vacuum, we could 

sweep the temperature over the wide range needed to explore the temperature  
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Fig. 7.3: Patterning suspended graphene in vacuum using a focused ion beam. 
(a) A graphene cantilever with silicon nitride pads. These devices can be 
welded to a micromanipulator probe tip and removed from the vacuum chamber 
entirely. (b) Graphene kirigami springs cut out of suspended graphene 
membranes. Scale bars are 1 µm. 
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dependence of the bending stiffness. Furthermore, not all experiments are liquid-

friendly, and devices in vacuum might be more easily integrated with other research 

projects. 

We can cut simple cantilevers and kirigami springs in vacuum by suspending 

graphene under tension, as described in Chapter 1, and using a dual-beam focused ion 

beam (FIB) to cut through the graphene and the nitride TEM grid (Fig. 7.3).88 We 

have cut cantilevers with silicon nitride pads that are robust enough to be removed 

from the vacuum chamber. This approach may lead to devices that can be integrated 

into existing experimental setups in vacuum or air that would open up new 

possibilities for probing the physics of kirigami devices. 

 

7.4 Magnetic tweezer control of graphene devices 

 We have already demonstrated both direct actuation techniques using 

micromanipulators and remote actuation using lasers. As we begin to think about 

building more complex structures or parallel arrays of moving parts, magnetic fields 

become a promising remote actuation mechanism (Fig. 7.4). Instead of using gold 

pads to directly control the graphene device, we can use iron pads and pull on them 

with a magnetic field.  

Magnetic tweezers can be based on permanent magnets or electromagnets, and 

are already a well-established tool for single-molecule studies.122,123 A ferromagnetic 

pad has a permanent magnetic moment µ that will try to align with the field. It will 

experience a force based on the gradient of the field,124 as ! = ! ∙ ∇!.  Magnetic 

tweezers can exert strong forces of up to tens of nanonewtons.  
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Fig. 7.4: Magnetic control of graphene devices. (a) Twisting a long graphene 
cantilever with a rotating magnetic field. The gold pad has been replaced by a 
ferromagnetic iron pad. (b) A simple model structure that will pop up when a 
magnetic field is applied. (c) A more complex model.  
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Fig. 7.5: Magnet orientations and starting patterns for building spheres from 
planar sheets. (a) A flat pattern with small ferromagnets pops into a sphere. (b) 
Macroscale models. (c) Other possible starting geometries. All figures from 
Magnetic self-assembly of three-dimensional surfaces from planar sheets, 
Boncheva et al. (2005) 
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 For her PhD work in our group, Samantha Roberts developed novel techniques  

for manipulating carbon nanotubes with magnetic fields,96 and has also begun to apply 

these techniques to simple graphene devices. She opened and closed arrays of 

graphene hinges with an electromagnet, and twisted and untwisted a long cantilever 

using a rotating magnetic field that exerts a torque124 ! = !×! (Fig. 7.4(a)). We can 

imagine using this technique to apply local upwards forces while using surface 

tethering or weights to keep the device in place. It would also allow us to build 

temporary three-dimensional structures (Fig. 7.4 (b-c). 

We can imaging using this method to build permanent 3D structures such as a 

spherical envelope (Fig. 7.5). The problem of how to pattern a flat sheet with small 

local magnets so that it can pop into a sphere has been solved at the macroscale,125 and 

could be directly applied to graphene by patterning in the correct magnetic pads. 

In addition to using magnetic fields to build and actuate graphene devices, we 

should also be able to use graphene devices to measure magnetic fields. The 

maximum force resolution of this system can be found by setting its energy equal to 

the thermal energy: ! = ! ∙ !!"# = !!!. A 10 µm × 10 µm × 150 nm iron pad should 

have a magnetic moment of ~2!! !" /!!"#$!!"#$ = 10!!!!J/T,126 so we have an 

approximate Bmin of 10-10 T. For comparison, the Earth’s field is of order 10-4 T, so 

this is a remarkably sensitive magnetic field sensor. 

 

7.5 Superparamagnetic control of graphene devices 

 If we make pads out of a superparamagnetic material instead of iron, we 

should be able to perform more complex actuation, and build structures such as 

envelopes that we can open and close. Superparamagnetic microbeads made from 
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ferromagnetic nanoparticles embedded in latex are commonly used in magnetic 

tweezer applications.127 Superparamagnetic materials have no net magnetization of 

their own, but when exposed to an external magnetic field they become magnetized 

and are attracted in the direction of highest field gradient.128 They are made up of 

collections of ferromagnetic nanoparticles, which are small enough that they consist of 

a single magnetic domain that flips orientation under thermal fluctuations. The total 

collection of nanoparticles thus has a random orientation in zero field, and the 

superparamagnet has a net zero magnetic moment; but when exposed to an external 

field, these tiny magnets align and create a non-zero net magnetization (Fig. 7.6(a)). 

The practical result is that we can effectively turn the magnetic moment of the pads on 

and off by applying an external magnetic field.  

 Paramagnetic and superparamagnetic colloidal particles are known to 

aggregate into long chains in a magnetic field, and disperse again when the field is 

turned off.127 A simple geometry based on this idea is shown in Fig. 7.6(b). When the 

field is off, two paramagnetic pads sit some distance apart, connected by graphene; 

and when we turn on the external magnetic field the two pads become magnetized and 

snap together. Turning off the field again, they return to their original orientation. The 

simple geometry shown in Fig. 7.6(b) provides a new kind of remote actuation, where 

we can create temporary attractive forces between different points on the graphene 

device. We can imagine using it to build and manipulate increasingly complex 

graphene devices, including envelopes and grippers that we can open and close by 

turning the magnetic field on and off (Fig. 7.6(c)). 
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Fig. 7.6: Actuating graphene with superparamagnetic pads. (a) 
Superparamagnetic materials are made from a nonmagnetic matrix with 
imbedded ferromagnetic nanoparticles. At zero field the magnetic moments of 
these nanoparticles are randomly aligned, but when we apply an external 
magnetic field the magnetic moments align, giving the pad a net magnetization. 
(b) A simple pinned shape lies flat in zero magnetic field, but its two 
superparamagnetic pads (blue) become magnetized and snap together in an 
external magnetic field. (c) The same idea in three dimensions forms a 
temporary envelope structure that can be opened and closed.  
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7.6 Applications of graphene kirigami to optics 

 We have already demonstrated that we can actuate graphene kirigami devices 

using light. We showed laser-induced crumpling of large sheets of graphene in 

Chapter 3, and used photon pressure forces to actuate out-of-plane springs and 

cantilevers in Chapter 6. In this section we will discuss the possibility of going in the 

other direction: using graphene kirigami devices to control light.  

 Fig. 7.7(a) shows a building in Switzerland by the architecture film Herzog & 

De Meuron.129 The kirigami-style cuts in the aluminum façade are designed to let 

variable amounts of light into different parts of the building. Areas that are locally 

more stretched out let more light through, while relaxed areas are mostly opaque.  

 Graphene is mostly transparent, of course, so only 2.3% of light will be 

absorbed even when the spring is fully relaxed. However, we can imagine adding gold 

pads to part of each cantilever in the spring, as in Fig. 7.7(b). The spring constant of 

the device will be higher, since its component cantilevers are effectively shorter, but it 

should still be able to stretch. In that case, the most light will be blocked when the 

spring is relaxed, but as we stretch the spring, these pads pull apart and rotate out of 

plane, allowing significantly more of the light through. They could be used as robust, 

adjustable light filters at the microscale. 

 Also consider the light reflected from the gold pads. As the spring stretches 

and the links rotate, light will reflect off of the pads at a different angle (Fig. 7.7(c)). 

We could bounce a laser off of these pads to determine their angle to high precision, 

just as an AFM determines nanometer-scale deflections of its cantilever by tracking 

reflected laser light on an array of photodiodes. This technique should let us measure 

even smaller changes in the spring’s extension than direct optical tracking can offer. 
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Fig. 7.7: Optics applications. (a) A building in Basel, Switzerland by Herzog & 
De Meuron. The kirigami pattern is cut out of aluminum, and locally stretched 
to allow more or less light into different areas of the building. Photo by 
Hufton+Crow. (b) Gold pads on the springs make the spring partially opaque. 
(c) Individual gold pads could also be used to reflect a laser, with the reflection 
angle giving sensitive information about how much the spring is stretched. 
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7.7 Bimorphs and graphene origami 

 This thesis has focused on graphene kirigami, where graphene does not need to 

hold a crease. However, we can also consider using some of these fabrication and 

manipulation techniques to move towards graphene origami.  

 As we have seen throughout this thesis, graphene can easily be deformed, but 

unless we somehow pin it in place it will return to its flat state. One simple way of 

creating permanent or semi-permanent folds in graphene is to add a second layer to the 

top of the membrane. We have already unintentionally created permanently folding 

devices—a failed fabrication led to a thick layer of polymer residue with built-in strain 

on top of the graphene.  When we released these devices from the surface, they began 

to curl up (Fig. 7.8(a)). 

 A bimorph is a structure that consists of two layers of material that expand or 

contract at different rates in response to changes in temperature, ionic concentration, 

or other environmental cues (Fig. 7.8(b)). Graphene bimorphs have been created 

before by putting graphene on a thicker supporting material,130,131 and integrating this 

idea with the cantilevers in Chapter 5 should be straightforward. 

We can imagine adding a layer of polymer to the top of the existing graphene 

cantilevers during the fabrication process, and actuating them by changing their 

environment. These devices could act as sensors, or we could use them as joints to 

create more complex three-dimensional devices that fold and unfold. These bimorph 

regions could be actuated collectively by changing the environment or individually by 

laser heating. They would add another type of actuation to our growing toolbox of 

nanoscale moving parts, and might someday lead to true graphene origami. 
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Fig. 7.8: Bimorphs and graphene origami. (a) Unintentional folding of 
graphene: a fabrication resulted in a thick layer of polymer with built-in strain 
on the surface of the graphene. When released from the surface, these devices 
curled up dramatically. (b) Example of bimorph actuated using heat from a 
resistive circuit. Graphene provides the conductive path. Figure from S-E. Zhu 
et al., Nano Letters (2011). (c) A long-term goal: true origami from graphene. 
 

a b

c
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7.8 Conclusions 

As we look at the possible future applications for graphene kirigami, we see 

two paths emerging: one where graphene is itself a nanoscale active element, and 

another where graphene kirigami serves as a robust, flexible, stretchable substrate for 

other elements. We believe that these techniques will prove to be widely applicable, 

and that many of the design and fabrication principles will directly translate to other 

two-dimensional materials.  

Graphene kirigami opens a door to self-actuated 2D functional devices that 

respond to light or magnetic fields, changes in temperature, or even chemical signals. 

The future promises a diverse toolbox of atomic membrane devices for sensing, 

manipulation, complex origami, and even nanoscale robotics. 
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CHAPTER 8 

ADDENDUM 
 

After this thesis was written, we received referee comments on the related 

paper. The referees asked us to explain the offset between the average values of the 

gravity and thermal data in Chapter 5. They also asked us to address the issue of static 

structure in the graphene, which we had considered but had not found a way to 

measure at the time. In the months since, graduate students in the group have taken 

additional bending stiffness data and have found a way to measure the static shape of 

the graphene. In this addendum we will very briefly discuss these new results so that 

the reader is made aware of them; for details, we direct you to the paper. 

Peter Rose and Kathryn McGill continued taking bending stiffness data, 

improving on the thermal data by using much longer video files and better eliminating 

the probe drift. They also used laser pressure to push on the cantilevers, as described 

in Chapter 6; this gives a third, independent means of measuring the spring constant of 

cantilevers. The resulting data is a good match to the thermal results, suggesting that 

the gravity technique was giving an artificially low value of the bending stiffness. 

They tried rotating a number of long cantilevers and found that the devices sometimes 

had a static deflection. In every case of offset it gave a downward deflection, perhaps 

due to crumpling induced during the lifting process. The gravity technique therefore 

gives an artificially low value of the spring constant, as the data from the other  
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Fig. 8.1: Histogram of all data, including additional thermal measurements and 
laser force measurements. Note that the gravitational data is biased towards 
softer values, while the laser and thermal data agree on a somewhat higher 
value. Inset: Length-v.-spring-constants plot showing all data.  
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measurement techniques would suggest. The gravitational data is shifted down, though 

it is still within the spread of the data. A histogram showing data from all devices is 

given in Fig. 8.1, along with a length-dependence plot showing all of the data 

collected to date. These additional measurements finally explain the different values of 

the spring constants obtained by the two methods in Chapter 5, and they also provide a 

third, independent way of measuring the bending stiffness of graphene. 

In order to address the question of static structure, Arthur Barnard added an 

interference microscopy technique132 using a mercury arc lamp and 10-nm-FWHM 

bandpass filter. He saw static ripples on the order of  ~80 nm, as shown in Fig. 8.2. 

The bands represent constant elevation, as on a contour map, with the spacing between 

black and white bands corresponding to changes in z of λ/4 = 80 nm when corrected 

for the index of refraction of water. AFM does not show this structure when the 

graphene is adhered to the substrate, but after the etch it persists, even when the device 

is picked up off of the surface and settles down again. These ripples may be due to 

residue on the surface that causes local strains, or to grain boundaries. In any case, the 

amplitude is likely to be sample-specific. 

This rough measure of the height of the static ripples allows us to compare to 

the theory of static structure for the first time. A recent paper133 predicted the 

stiffening effect of static ripples of an effective squared amplitude !!""!  as: 

!!""~ !!!! !!""!  

which for 80-nm-high ripples gives 4 keV—also a good match to the experimentally 

measured stiffness. 



 

132 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
  

Fig. 8.2: Interference microscopy image of graphene cantilevers showing static 
structure. The light and dark bands can be roughly read as a contour map. The 
structure does not disappear when the devices are lifted off of the surface and 
settle down again. 
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 The predicted stiffening effect of static structure is not width-dependent, so we 

should also consider how it will change the predictions for the simple model of the 

pyramid’s spring constant in Chapter 6 (stiffening it to 6×10-6 N/m) and the Fopl-von-

Karman number in Chapter 4 (lowering it to ~105), though the measurements are not 

precise enough to let us distinguish between the static and thermal theory. In fact, the 

similar predictions of the two theories underline the fact that the three-dimensional 

structure of the graphene membrane dominates its out-of-plane mechanical properties, 

regardless of whether that structure is thermally induced, static, or a combination of 

the two effects. Theorists have begun to make predictions about the combined effects 

of static and thermal ripples,134 and further experimental work that allows us to tune 

the static structure or temperature of the devices should let us start to piece apart these 

two contributions.  
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