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The remarkable transport properties of carbon nanotubes
(CNTs) are determined by their unusual electronic structure1.
The electronic states of a carbon nanotube form one-dimensional
electron and hole sub-bands, which, in general, are separated by
an energy gap2,3. States near the energy gap are predicted4,5 to
have an orbital magnetic moment, morb, that is much larger than
the Bohr magneton (the magnetic moment of an electron due to
its spin). This large moment is due to the motion of electrons
around the circumference of the nanotube, and is thought to play
a role in the magnetic susceptibility of CNTs6–9 and the magneto-
resistance observed in large multiwalled CNTs10–12. But the
coupling between magnetic field and the electronic states of
individual nanotubes remains to be quantified experimentally.
Here we report electrical measurements of relatively small
diameter (2–5 nm) individual CNTs in the presence of an axial
magnetic field. We observe field-induced energy shifts of elec-
tronic states and the associated changes in sub-band structure,
which enable us to confirm quantitatively the predicted values
for morb.

The electronic structure of a CNT is elegantly described by the
quantization of wave states around a graphene cylinder1. Graphene
is a zero-bandgap semiconductor in which the valence and con-
duction states meet at two points in k-space, K1 and K2 (Fig. 1a). The
dispersion around each of these points is a cone (Fig. 1b). When
graphene is wrapped into a cylinder the electron wavenumber
perpendicular to the CNT axis, k’, is quantized, satisfying the
boundary condition pDk’ ¼ 2pj where D is the CNT diameter and
j is an integer. The resulting allowed values of k correspond to the
horizontal lines in Fig. 1a that miss Ki by an amount Dk’. The conic

sections of the dispersion cones by allowed k determine the CNT
band structure near the Fermi level as shown in Fig. 1b. The upper
and lower branches of the conic sections correspond to the con-
duction and valence states of the CNT. Both the K1 and K2 sub-
bands have the same energy gap between conduction and valence
states: E0

g ¼ "vFDk’.
The size of Dk’, and therefore E0

g, depends on the CNT
chirality1–3 and perturbations such as curvature13, axial strain14,15,
twist14 and inner–outer shell interactions16. From consideration of
chirality alone, CNTs are classified as metallic (Dk’ ¼ 0) or semi-
conducting (Dk’ ¼ 2/3D)1. Perturbations displace the dispersion
cones13, modifying Dk’ and resulting in an important class of small-
bandgap ‘quasi-metallic’ CNTs17. We have used these small-band-
gap CNTs in our measurements.

The electron states near the gap correspond to semiclassical
electron orbits encircling the CNT. The perpendicular component
of orbital velocity v’ ¼ ð1="Þ dE=dk’ determines the clockwise
(CW) or anticlockwise (ACW) sense of an orbit. For example, in
Fig. 1b we see that v’ is negative for the K1 conduction states but is
positive for K1 valence states. By symmetry, each CW (ACW) orbit
in the K1 sub-band has an equal energy ACW (CW) partner in the
K2 sub-band. As a consequence, the two sub-bands are degenerate,
but the CW/ACW sense of valence and conduction states is reversed.

From basic electromagnetic theory, an electron moving at vel-
ocity v around a loop of diameter D has an orbital magnetic
moment of magnitude m ¼ Dev=4. In a CNT, electron states at the
bandgap edges, where v’ is largest, have an orbital magnetic
moment of magnitude morb ¼ DevF=4 directed along the tube axis.
A magnetic field parallel to the CNTaxis, Bk, is predicted to shift the
energy of these states by:

DE ¼2morb�B ¼^
DevFBk

4
ð1Þ

For CNTs with a finite energy gap at Bk ¼ 0, the energy gap of one
sub-band becomes larger as Bk is increased, while the energy gap of
the other sub-band becomes smaller (Fig. 1c).

Previous work on the magnetoresistance of individual multi-
walled nanotubes10–12 and the magnetic susceptibility of CNTmats6,7

has not confirmed the magnitude of morb or the splitting of sub-
band degeneracy. In the current work we use two different tech-
niques to achieve this goal: (1) thermally activated transport
through individual small-bandgap CNTs that are depleted of charge

Figure 1 Nanotube states near the bandgap and orbital magnetic moments. a, The

valence and conduction states of graphene meet at K1 and K2. Horizontal lines show

the quantized values of k’ for the CNT structure in c. The misalignment between

horizontal lines and the K-points is Dk’. b, Graphene dispersion near the K-points is

described by the cones E iðkÞ ¼^"v Fjk2 K i j, with v F ¼ 8 £ 105 m s21 (ref. 1).

Lines of allowed k intersect the two cones (blue and red curves). The conduction

states near K1 (upper blue curve) have dE=dk’ , 0. Electrons in these states move

around the CNT in a anticlockwise (ACW) fashion. The valence states near K1 (lower

blue curve) have dE=dk’ . 0 and are associated with clockwise (CW) electron

motion. ACW (CW) orbits correspond to positive (negative) magnetic moments along

the CNT axis. The conic section near K2 lies on the opposite face of an identical

dispersion cone. Therefore, K2 conduction (valence) states have CW (ACW) orbits. c,

Top, perspective view of a CNT in the presence of a magnetic field Bk. Below, the

dispersion relations E 1ðk kÞ and E 2ðk kÞ, shown in blue and red respectively. The sub-

bands are degenerate at Bk ¼ 0: The magnetic field breaks this degeneracy.
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carriers, (2) energy level spectroscopy near the bandgap edge of
CNT quantum dots.

We have found that a suspended CNT device geometry (Fig. 2) is
well suited for studying small changes in bandgap. Measurements of
many such devices, using a gold-coated atomic force microscope
(AFM) tip as a movable, local electrode18,19, show that CNT
segments contacting the oxide substrate are doped p-type, while
suspended sections of the same tube are almost intrinsic. At small
gate voltage V g the suspended section is depleted of charge carriers.
The oxide-bound sections, however, remain p-doped and act as
electrodes to the suspended section. By studying the conductance of
the suspended section at different temperatures and magnetic fields
we can determine changes in EKi

g .
Figure 3a shows device conductance G versus V g of two small-

bandgap CNTs. Device 1 shows a sharp dip near V g ¼ 0.4 V,
corresponding to depletion of carriers in the suspended segment.
A second, broader dip occurs at Vg < 2 V as the oxide-bound
segments become depleted. The inset shows the dip from the
suspended section of device 2. In both cases, the addition of a
magnetic field substantially increases the conductance at the bottom
of the dip.

When the suspended CNT segment is depleted, conductance
occurs via thermal activation of carriers across the energy gap.
Conductance is smallest at Vg ¼ V*, immediately before the sus-
pended segment becomes n-type (Fig. 2c). The minimum conduc-
tance due to thermal activation, G act(V*), can be estimated by
considering the Fermi-Dirac function at temperature T and
the Landauer formalism for one-dimensional (1D) conduction
channels15,20

GactðV* ;TÞ ¼
2e2

h i¼1;2

X
tij j

2 2

exp EKi
g =kBT

� �
þ 1

ð2Þ

where jtij
2

is the transmission probability for thermally activated
carriers in the ith sub-band. The device conductance G is a
combination of G act in series with the conductance of the p-type
sections of CNT and the conductance of the metal–CNT contacts,
both of which are largely temperature independent.

We have measured G versus Vg for devices 1 and 2 at several
temperatures. In Fig. 3b (open circles) we plot the change in
resistance DRðTÞ ¼ GðV*; TÞ21 2GðV g ,, 0; TÞ21 of device 2
at B ¼ 0 T. From the slope and intercept of the fitting exponential,
and assuming sub-band degeneracy ðEKi

g ¼ E0
gÞ we find: E0

g ¼
40 meV and jt1j

2
þ jt2j

2
¼ 1:6: Because jt1j

2
þ jt2j

2
is close to 2,

we conclude that transport is nearly ballistic and that both the K1

and K2 sub-bands make comparable contributions to the device
conductance. We find similar values of E0

g in both devices (see
Table 1) even though the CNT diameters are significantly different.
This suggests that the bandgaps are not curvature related13. Further
work is needed to identify the perturbations responsible for E0

g.
Magnetic fields dramatically reduce DR, as shown in Fig. 3c. The

temperature dependence of DR at B ¼ 10 T is also shown for device
2 (Fig. 3b, filled triangles). If we fit this high-field temperature data
with the same method used for zero-field data, we find E0

g ¼ 22 meV
and jt1j

2
þ jt2j

2
¼ 0:8: The bandgap of at least one sub-band is

significantly lowered by the magnetic field and we argue below that

the apparent change in jt1j
2
þ jt2j

2
is due to the increasing bandgap

of the second sub-band.
The magnetic field dependence of DR can be quantitatively

described by equal and opposite changes in EK1
g and EK2

g owing to
the coupling of m orb with B k. We have accurately fitted our
measurements of DR(B,T) using equation (2) and setting EK1

g ¼
E0

g 2 aB and EK2
g ¼ E0

g þ aB (see the fitted curves in Fig. 3c). The
only fitting parameter is a; E0

g and jtij
2

are found from the
temperature dependence of DR at B ¼ 0 T and setting jt1j

2
¼ jt2j

2
.

The fitting results for devices 1 and 2 are summarized in Table 1.
In agreement with equation (1), the measured morb scale with
diameter and are an order of magnitude larger than previously
measured spin magnetic moments in CNTs21,22. Thermally activated
transport (equation (2)), combined with the breaking of CW/ACW
sub-band degeneracy, describes DR over a wide range of T and B. At
B ¼ 10 T device conductance is almost entirely due to carriers that
are thermally activated across the smaller bandgap. Transport
occurs in a single sub-band, explaining why jt1j

2
þ jt2j

2
decreases

by a factor of 2 when sub-band degeneracy is incorrectly assumed at
high field. Our measurements confirm theoretical predictions4,5 for
the sign and magnitude of orbital magnetic moments in CNTs and
show that an applied magnetic field can split the degeneracy of the
K1 and K2 sub-bands.

Orbital magnetic moments should also influence the energy level
spectra of CNT quantum dots (CNTQDs) in applied magnetic
fields. In our device geometry a CNTQD forms when Vg . V* and
electrons are confined to conduction states of the suspended section
by p–n tunnel barriers (Fig. 2c). Figure 4a shows the formation of a

Table 1 Summary of thermal activation results

D (nm) E0
g (meV) f(8) a (meV T21) morb (meV T21)

Experiment Theory
.............................................................................................................................................................................

Device 1 2.6 ^ 0.3 36 ^ 3 30 ^ 3 1.3 ^ 0.1 0.7 ^ 0.1 0.5 ^ 0.1
60 ^ 3 0.7 ^ 0.1 0.7 ^ 0.1 0.5 ^ 0.1

Device 2 5.0 ^ 0.3 40 ^ 3 45 ^ 3 2.1 ^ 0.2 1.5 ^ 0.2 1.0 ^ 0.2
.............................................................................................................................................................................

f is the misalignment angle between CNT axis and the magnetic field direction. The exper-
imental value of morb is given by a/2cosf. There is uncertainty in theoretical values of morb owing
to uncertainty in vF and D.

Figure 2 Device geometry and band bending. a, CNTs are grown on Si/SiOx substrates by

the chemical vapour deposition method26. Electrodes (5 nm Cr, 50 nm Au) are patterned

by photolithography27. The central region of the CNT is suspended over a trench defined

by electron-beam lithography and wet etching using 6:1 buffered HF. b, AFM image of the

suspended section of CNT and nearby oxide-bound sections of device 1. Scale bar,

130 nm. The suspended section appears fuzzy because it is displaced by the AFM tip

during imaging. From the image we find CNT diameter D ¼ 2.6 nm, suspended length

L ¼ 500 nm, and determine the misalignment angle f between applied magnetic field

and the CNT axis. c, Band bending in the suspended CNT segment and neighbouring

oxide-bound segments when V g ¼ V *. The number of thermally activated carriers is

minimized and there is no n-type region to facilitate tunnelling processes. The oxide-

bound sections remain p-type at small V g.
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CNTQD in device 1 at V g . V*, T ¼ 1.5 K. There is a large region
of zero conductance as the Fermi level passes through the energy gap
of the suspended section. At higher Vg the Coulomb diamonds
labelled 1, 2, 3 and 4 correspond to charge states of one, two, three
and four electrons in the conduction band of the suspended
segment.

In the Coulomb blockade model of quantum dots23, the width of
the Nth diamond is proportional to a fixed electrostatic charging
energy plus the energy difference between the quantum levels
occupied by Nth and (N þ 1)th electrons. The energies of the
quantum levels in our CNTQD can be estimated by considering
electrons confined to a 1D potential well of length L. The confine-
ment results in quantized kk values which, combined with the
dispersion relations EiðkkÞ, determine the energy levels of the dot.
Near the bandgap edge EiðkkÞ are parabolic, therefore, the energy
levels of the first few conduction states should be:

1ðn; i;BkÞ ¼
E0

g

2
þ

"2p2

2m*
i L2

n2 ^morbBk ð3Þ

where the quantum number n is a positive integer, the effective mass
m*

i ¼ EKi
g ðBkÞ=2v2

F , and þ applies to CW orbitals while 2 applies
to ACW orbitals. The first few level crossings predicted by equation
(3) are shown in Fig. 4b.

Figure 4c shows low-bias G–V g plots of a Coulomb peak from
device 1 as B is increased. The peak corresponds to the second
electron added to the dot (the intersection of Coulomb diamonds 1
and 2). The peak shifts ,1.2 mV T21 and doubles in conductance as
B reaches 3.6 T. Figure 4d shows the first eight Coulomb peaks. The
positions of the peaks generally move between 1.2 and 1.6 mV T21.
The fifth and subsequent peaks show clear changes between positive
and negative slopes. Peaks appear to be paired, each pair having a
different zigzag pattern.

The main features of Fig. 4d are described by the CNTQD model.
Peaks with de=dB . 0 correspond to tunnelling into a CW orbital,
while peaks with de=dB , 0 correspond to tunnelling into a
ACW orbital. The measured value of morb ¼ jde=dBkj ¼ 0:7^

0:1 meV T21 is inferred as described in the legend of Fig. 4, and
agrees with the values in Table 1 for device 1. Furthermore, the
striking difference between the first four peaks and later peaks is in
qualitative agreement with the modelled spectrum (Fig. 4b). The
first pair of peaks (spin up and spin down, n ¼ 1, ACW orbital) are
not expected to undergo level crossings. The second pair (peaks 3
and 4 in Fig. 4d) may undergo a level crossing at low field, but the
resolution of our data is limited by thermal broadening; levels
separated by less than 4kBT < 0.5 meV merge together. The third
and fourth pairs clearly show the changes in slope that are expected
when level crossings occur. We conclude that there are quantum
levels near the bandgap edges with both positive and negative
orbital magnetic moments whose magnitudes are consistent with
theoretical predictions4,5. The Coulomb blockade model does not
describe all the features in Fig. 4d. The detailed structure of
this CNTQD system may depend on effects such as exchange
coupling21,24, and will be the subject of future work.

Our measured values of morb are 10–20 times larger than the Bohr

  

 

Figure 3 Effect of magnetic field on device resistance. a, I2V g curves for devices 1 and 2

at T ¼ 100 K. Curves taken at B ¼ 0 T have lower conductance than curves taken at

B ¼ 10 T. b, DR as a function of 1/T for device 2. The data shown are for B ¼ 0 T (larger

DR ) and B ¼ 10 T (smaller DR ). c, DR as a function of B for device 1 at T ¼ 78 K (upper

curve) and device 2 at T ¼ 90 K (lower curve).

Figure 4 Energy levels of a nanotube quantum dot. a, Differential conductance dI/dV sd as

a function of source–drain voltage, Vsd, and Vg. Data are from device 1 at T ¼ 1.5 K. Dark

blue represents dI/dVsd ¼ 0, dark red represents dI/dVsd ¼ 0.2 e 2/h. In the white

regions (top and bottom of the plot), current levels exceeded the measurement range. The

first four Coulomb diamonds, corresponding to discrete charge states, are labelled 1–4.

The gate coupling a is twice the ratio of Coulomb diamond width to Coulomb diamond

height23. For this device a < 2.2. b, Modelled energies of quantum levels from equation

(3), approximating m*
i as constant. The energy scale d¼ "2p2=2m*

i L2. For device 1 we

have d < 0.25 meV. Coloured lines represent expected zigzags in the first six

Coulomb peaks, with red and blue representing respectively ACW and CW states. Arrows

indicate spin degeneracy for each state. c, Conductance I /Vsd as a function of

magnetic field B for the second Coulomb peak of device 1, f ¼ 308, Vsd ¼ 0.5 mV. Shifts

in peak position V p
gðn; iÞ are related to energy shifts of quantum levels by:

dV p
gðn; iÞ=dB ¼ a·d1ðn; iÞ=dB . d, Low-bias conductance I /Vsd as a function of Vg and B

showing first eight Coulomb peaks of device 1, f ¼ 308. Dark blue represents I /Vsd ¼ 0;

dark red represents I /Vsd ¼ 0.35 e 2/h. The colour scale for peak 1 is magnified by 100

times.
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magneton and the spin magnetic moment in CNTs21,22. The reason
is the large size of electron orbits encircling the CNT compared to
the radii of atomic orbitals. These large magnetic moments give
researchers a powerful new tool to control the energy structure of
CNTs. For example, the tunnel transparency of p–n barriers can be
tuned by using a magnetic field to modify the bandgap. This effect is
seen in Fig. 4c: the conductance of the Coulomb peak increases as
the tunnel barriers become more transparent. This will be useful, for
example, to study Kondo physics in CNTQDs24,25 at different
tunnelling strengths. Researchers can also tune the energy levels of
electrons in the 1D box formed by a CNT. By applying large
magnetic fields it is possible to investigate the properties of a
CNT in which only one sub-band is occupied. Conversely,
by matching the energies of different sub-band states, the inter-
actions between states arising from CW and ACW orbits can be
explored. A
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Magnetic information storage relies on external magnetic fields
to encode logical bits through magnetization reversal. But
because the magnetic fields needed to operate ultradense storage
devices are too high to generate, magnetization reversal by
electrical currents is attracting much interest as a promising
alternative encoding method. Indeed, spin-polarized currents
can reverse the magnetization direction of nanometre-sized
metallic structures through torque1–4; however, the high current
densities of 107–108 A cm22 that are at present required exceed
the threshold values tolerated by the metal interconnects of
integrated circuits5,6. Encoding magnetic information in metallic
systems has also been achieved by manipulating the domain walls
at the boundary between regions with different magnetization
directions7–13, but the approach again requires high current
densities of about 107 A cm22. Here we demonstrate that, in a
ferromagnetic semiconductor structure, magnetization reversal
through domain-wall switching can be induced in the absence of
a magnetic field using current pulses with densities below
105 A cm22. The slow switching speed and low ferromagnetic
transition temperature of our current system are impractical. But
provided these problems can be addressed, magnetic reversal
through electric pulses with reduced current densities could
provide a route to magnetic information storage applications.

Figure 1 A micrograph and a schematic drawing of the device. a, A 20-mm-wide channel

with three pairs of Hall probes separated by 15 mm was defined by photolithography and

wet etching. b, To reduce the coercive force of the two regions, 7–8 nm and 3 nm of the

surface layers of regions II and III, respectively, were removed. A domain wall was

prepared at the boundary of regions I and II, and its position after application of a current

pulse was monitored by R Hall ¼ V Hall/I, using a small probe current I. Hall voltage V Hall is

measured at the Hall probes. Magneto-optical Kerr microscopy was also used to image

the domain structure.
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