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Carbon nanotubes are tiny hollow cylinders, made from a single graphene 

sheet, that possess many amazing properties. Another reason why nanotubes have 

generated intense research activities from scientists of various disciplines is they 

represent a new class of materials for the study of one-dimensional physics. In this 

thesis we investigate the electrical transport of semiconducting single-walled carbon 

nanotubes and their potential applications as biological sensors.  

Electrons have been predicted, by theoretical physicists, to go through 

nanotubes without much resistance. But this has not been properly quantified 

experimentally, and the origin of the routinely observed large resistance in nanotubes 

is not clear. In this thesis we show that in moderate long high quality nanotubes the 

electrical transport is limited by electron-phonon scattering. Systematic studies are 

carried out using many devices of different diameters at various temperatures. The 

resistance and inverse of peak mobility are observed to decrease linearly with 

temperature, indicating the influence of phonons. The conductance and peak mobility 

scales with nanotube diameters also, in a linear fashion and quadratic fashion 

respectively. Based on electron-phonon scattering, a theory model is developed that 

can not only predict how the resistance changes with gate voltage but also explain the 

observed temperature and diameter dependence. This work clarifies the nature of 

electrical transport in nanotubes and sets a performance limit of nanotube devices in 

diffusive regime.  



 

The electrical transport in nanotubes is extremely sensitive to local 

electrostatic environment due to their small size, large surface to volume ratio and 

high mobility, making nanotubes ideal key elements in biological sensors. In the 

second part of this thesis, we integrate nanotubes with supported lipid bilayers, mimic 

structures of cell membranes, and use this platform as a way to introduce biomolecules 

into the vicinity of nanotubes for sensing purpose. The quality of supported lipid 

bilayers near nanotubes is confirmed by probing the diffusion of lipid molecules. 

Nanotubes do not slow down lipid diffusions, but act as barriers for proteins bound to 

membrane embedded receptors. The ability of nanotubes to control membrane protein 

diffusions can be used to study the complex correlation between protein functions and 

their diffusion properties. Future efforts can be put into modulating the magnitude of 

nanotube barriers with electrical potentials for deterministic controls. We also 

demonstrate that the formation of lipid bilayers and the protein bindings on the 

membranes can be detected by nanotubes as their conductance are changed by those 

events. The sensitivity of this system can be improved to near single molecule level.  
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CHAPTER 1 

INTRODUCTION TO CARBON NANOTUBES 
 

Carbon is a really versatile element, for reasons rooted from its four valence 

electrons and the right atomic size. It can form numerous compounds, many of which are 

the basis of life on this planet. Even pure carbon can have quite a few allotropes. This is 

because the four valence electrons can make different types of bonds with other carbon 

atoms. Diamond and graphite (upper left and right in Fig. 1.1) have distinct optical, 

electrical and monetary properties, all just because the carbon atoms arrange themselves 

in different ways. It was not until about 20 years ago before people gained the ability to 

probe structure of nanometer scales and more interesting forms of carbon were 

discovered. The zero dimensional C60 buckyball (lower left in Fig. 1.1) was discovered 

in spectroscopy data in 1985 (Kroto et al. 1985), followed by one dimensional nanotube 

(lower right in Fig. 1.1)  in 1991 (Iijima 1991). These newly-found carbon structures 

couple quantum effects, lower dimensionality and the unique properties of graphene 

(single layer of graphite) (Novoselov et al. 2004; Geim and Novoselov 2007)  all together, 

and they have generated intense research in many disciplines because they bridge 

between Physics, Chemistry, Material Science and more. This thesis is devoted to the 

study of nanotubes. In this chapter, a broad introduction is given on the interesting 

properties of nanotubes and the current status of this field.  

 

1.1 Structure of nanotubes and characterization methods 

The structure of nanotubes originates from that of graphite. In graphite, carbon 

atoms sit in hexagonal patterns and form flat two dimensional sheets. Single-walled 

nanotubes (SWNTs) can be viewed as seamless cylinders rolled up from a piece of  
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Figure 1.1: Models of carbon allotropies. Clockwise from top left: diamond, graphite 

(scifun.ed.ac.uk), nanotube, C60 buckyball (staff.science.uva.nl).   

 

 

 

 

 

 

 

 

Figure 1.2:  Images of nanotubes. Left, an atomic force microscope image of a single-

walled nanotube.  Right, a TEM image of a multi-walled nanotube.  
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graphene. Another type of nanotube is called multi-walled. They are concentric cylinders 

of multiple layers of graphene. 

A transmission electron microscope (TEM) image of a multi-walled nanotube 

(MWNT) is shown on the right side of Fig. 1.2. Multi-walled nanotubes are typically 

larger than SWNTs. The observed properties are interplays of multiple layers and harder 

to understand. MWNTs are typically more defective. Therefore, our lab focuses on the 

study of SWNTs. All the experiments in this thesis are carried out with SWNTs or 

nanotubes with a couple of walls.  

Although the typical diameter of SWNTs is a couple of nanometers, there are 

plenty of ways to characterize them with modern tools such as the atomic force 

microscope (AFM), scanning electron microscope (SEM), TEM and scanning tunneling 

microscope (STM). Various optical spectroscopy techniques can be used as powerful 

tools to extract information as well.  

 There are a few ways to grow SWNTs, either as a chemical reaction (chemical 

vapor deposition) or a physical process (arc discharge and laser ablation). The growth 

process is hard to control due to one fact: there are an infinite number ways to form a 

SWNT. As a quantum system can be fully described by a set of quantum numbers, an 

individual nanotube can be uniquely identified with three quantities: nanotube diameter, 

chirality and number of walls. The meaning of these words will be explained in the rest 

of this section, along with methods to measure them. However, an underlying assumption 

of the above statement is that nanotubes are perfect. In reality defects should also be 

taken into consideration and will be discussed too.    

 

Diameter 

 A typical AFM image of SWNTs is shown on the left side of Fig. 1.2. One should 

not be fooled by the width of nanotubes in AFM or SEM images. The convolution of 
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nanotubes and the probing AFM tip or electron beams makes the lateral dimension much 

large than the nanotube diameter. AFM probes tube diameters by measuring how far the 

AFM tip lifts up from the substrate surface when it is on top of nanotubes. It is crucial to 

do it at small scanning range (~mm). Otherwise the diameter value will be underestimated. 

TEM can measure tube diameters too, but it is limited to suspended nanotubes.  

Raman spectroscopy is another tool to measure small SWNTs. The radial 

breathing mode (RBM) phonons, where all carbon atoms oscillate radially with the same 

phase, generate a strong peak in Raman spectroscopy at around 200 cm-1. The peak 

position is inversely proportional to tube diameters: w = 248 cm-1/ d [nm]. The RBM 

peak of large diameter tubes falls below the cut off frequency of typical instruments.  The 

magnitude of Raman peak can be enhanced significantly when the excitation is in 

resonance with the nanotubes sample. As will be shown in Chapter 2, the density of states 

in nanotubes has many peaks called Van Hove singularities. When the energy of Raman 

excitation light matches the energy difference between certain peaks, the absorptions is 

enhanced, and so is the Raman peak.  

 

Chirality 

Chirality describes how the atoms in nanotubes arrange them along the 

circumference (detailed discussion in Section 2.3). Chirality is more difficult to probe 

because it comes from atomic scale details. STM has been shown to be able to resolve the 

arrangement of carbon in SWNTs (Odom et al. 1998; Wildoer et al. 1998). But this is 

time-consuming to do and requires conductive substrates.  



 

 5

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Atomically resolved image of  SWNTs (Wildoer et al. 1998). 

 Another possibility is to use Raman spectroscopy (Dresselhaus et al. 2002). When 

the diameter of a nanotube is small, a precise measurement of diameter can reveal its 

chirality since there is one-to-one correspondence between these two quantities.  The 

RBM peak positions in Raman, as well as the photon energy when resonance Raman 

happens, can be used as the most accurate way to measure tube diameter, and thus 

chirality. Other features in Raman, D-band and G-band, are chirality dependent and can 

be used as corroboration of chirality assignment (Dresselhaus et al. 2002).  Fluorescence 

microscopy has also been used to assign absorption/emission peaks to species of 

semiconducting SWNTs (Bachilo et al. 2002), but this assignment is challenged by others 

due to the influence of strong exciton effects in SWNTs (Wang et al. 2005). All these 

characterizations are not very easy to carry out and the results are often inconclusive; 

fortunately many properties of SWNTs depend primarily only on diameter.   

 



 

 6

Number of walls 

 It is important to distinguish SWNTs from MWNTs. This can be done most easily 

with TEM. When nanotubes are integrated into devices like field effect transistors (FETs), 

however, they are typically sitting on insulating substrates, making TEM unfeasible. 

Since nanotubes are contacted by two electrodes in this case, the best way to see number 

of walls is to apply a high bias and see the value of saturation currents. When the current 

is around 25 mA, this is only one wall (Zhen et al. 2000). This is a result of how electron 

transports are limited by electron-optical phonon scattering at high electrical field. The 25 

mA value comes from the optical phonon energy (~160 meV) in nanotubes and the 

universal conductance quantum of one-dimensional channels (e2/h).  

 

Defects  

 Defects in SWNTs can be visualized with STM due to it is high resolving power 

(Ouyang et al. 2002). However it is easier to measure defects using Raman spectroscopy 

(Doorn et al. 2005). There are two ways to do so. First, the D-band, typical around 1340 

cm-1 in Raman spectroscopy, appears when there are 5 carbon rings, one kind of defect, 

present (Saito et al. 1998). Second, when a 5-carbon ring defect occurs in a SWNT, the 

diameters on two sides of this defect are not exactly the same. A shift in the RBM peak 

position should happen if the measurement is precise enough. Most important, this defect 

may lead to a change in the electronic band structure on the SWNT on two sides of the 

defect to strongly modify the magnitude of the RBM peak, as has been observed by a 

group at Los Alamos National Lab (Doorn et al. 2005).  

When nanotubes are integrated into FETs, one way to probe defects is to see the 

Coulomb oscillation at low temperature to acquire the size of the quantum dot and 

compare that to the length of the nanotube between source-drain electrodes (Woodside 

and McEuen 2002). Another method requires the use of AFM. A voltage applied to a 

conductive AFM tip can be used to locally modulate the Fermi level in a nanotube, and 
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the response in the nanotube conductance is directly related to its defects (Bachtold et al. 

2000) at the location of the AFM tip. This method is used in Chapter 3 to address a 

puzzle on nanotube mobilities. The observed defects with these two methods could come 

from irregularities in the substrates, where the nanotubes are sitting on, other than from 

the tubes themselves.  

 As mentioned before, SWNTs can be fabricated with different techniques. It has 

been shown that chemical vapor deposition (CVD) gives best quality tubes. The Los 

Alamos group (Doorn et al. 2005) saw only one major defect in twenty 500mm long 

SWNTs when Raman was taken along the tubes. As a comparison, STM study of laser 

oven grown nanotubes showed much higher frequency of finding such defects (Ouyang et 

al. 2001; Kim et al. 2003). In this thesis, all SWNTs are grown using CVD technique due 

to this reason. A discussion on growth techniques is included in Appendix I.  

 

1.2 Impressive properties of nanotubes and potential 
applications 
 

SWNTs have many other magnificent properties that have lured researchers of 

many disciplines into intensive studies. Figure 1.4 gives three cover images of major 

scientific journals, all of which feature nanotubes. The impressive properties in three 

aspects, mechanical, electrical and biological, along with potential applications will be 

presented in this section.  Besides them, the small size of nanotubes also leads to many 

unique advantages that will also be discussed.  
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Figure 1.4: Three examples of cover figures of major scientific journals featuring 

nanotubes. 

 

Mechanical 

 SWNTs are strong and stiff. The Young’s modulus of nanotubes, ~ 1TPa, is five 

times higher than that of steel (Treacy et al. 1996). Their theoretically predicted tensile 

strength, the maximum tensile stress one material can sustain before failure, is 130GPa 

(Yakobson 1998). A group measured this parameter of MWNTs and the largest observed 

value is about 63GPa (Yu et al. 2000). As a comparison, the tensile strength of steel is 

less than 1GPa. At the same time, SWNTs are extremely light. There was even a proposal 

to build a space elevator using SWNT ribbons (Edwards 2000) as shown in the left image 

in Fig. 1.4. There are huge fundamental and practical challenges standing in the way of 

this project. However, one day it is possible to replace the cables on the Golden Gate 

Bridge with nanotube cables. 

 These mechanical properties, coupled with electrical conductivity, also inspired 

people to integrate SWNTs into nanoelectromechanical systems. For example, an 

electrically actuated tunable oscillator using SWNTs has been demonstrated (Sazonova et 

al. 2004). A company is working toward commercializing large density and high speed 
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random access memories based on suspended nanotubes that can be modulated by 

external voltages to switch between two states (Nantero.com).  

 

Electrical 

 SWNTs are interesting electrical materials. Their amazing properties come from 

two origins: material and size. SWNTs are made of graphene. Graphene has high intrinsic 

electron mobility (Geim and Novoselov 2007) due to its lack of lattice defects as 

compared to most other semiconductor materials and its unique linear dispersion relation 

that will be presented in Chapter 2. The diameters of SWNTs are so small that the 

electron wave vectors along the circumferences are quantized. This produces a series of 

subbands in a nanotube.  It also makes SWNTs either metallic or semiconducting 

depending on their chirality (detailed discussion in Chapter 2).  

SWNTs have remarkable electrical performances. High quality SWNTs can have 

mobility larger than 10,000 cm2V-1S-1 and mean free path longer than 1 mm. Besides 

extraordinary conductance, these tiny SWNTs, when made into FETs, can have minimum 

capacitance coupling with gates. This two factors lead to small RC time constant. People 

have demonstrated SWNT FETs operating at up to 50GHz (Rosenblatt et al. 2005). One 

day when people had mastered the assembly technique to put desired SWNTs species 

ideally at the places they should be as the middle image in Fig. 1.4 shows, we could have 

computer chips running at fast speed while consuming less power.    

 The unique band structure and one dimensionality also make carbon nanotubes a 

unique optoelectronic material. The electron density of states in nanotubes has a serious 

of singularities, associated with the onsets of subbands. Effectively nanotubes can be 

viewed as semiconductors with multiple bandgaps and can efficiently absorb lights of a 

wide spectrum (Stewart and Leonard 2004; Ji Ung 2007). Contrary to chemical dopings 

in traditional semiconductor devices, the doping level of nanotubes can be modulated 
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electrostatically with high spatial resolution to generate electrons and holes at different 

regions. Electroluminescence in nanotubes can be realized with untraditional methods 

(Misewich et al. 2003). Research efforts in these areas are booming.  

 

Chemical/Biological 

 SWNTs are chemically inert, especially when no defects are present. This makes 

them chemically stable and biologically compatible. Studies have shown that SWNT 

FETs can operate in aqueous solutions (Kruger et al. 2001; Rosenblatt et al. 2002). Again 

because of their molecular-scale size and extreme sensitivity to environments, SWNTs 

are ideal materials to make detectors that are capable to reach single-molecule level 

sensitivity (Besteman et al. 2003; Bradley et al. 2005). A nanotube/lipid bilayer hybrid 

structure will be presented in Chapter 4 and 5.  

 Potential applications are not limited to sensors. On top of being chemically stable, 

SWNTs have large surface to volume ratio and are becoming an interesting material as 

electrodes in electrochemistry researches. SWNTs can be used as electrodes (Heller et al. 

2006) or nucleate sites for nanoparticle growth (Quinn et al. 2005).  The high surface area 

SWNTs are being researched as hydrogen storage candidates (Dillon et al. 1997). On the 

biology side, SWNTs have been used as drug delivery vehicles to bring chemicals into 

cells (Liu et al. 2007).  However there are issues concerning the toxicity of SWNTs, but it 

is more than likely that these concerns will turn out unnecessary as a study recently 

showed that injected SWNTs can be excreted out the bodies of mice within a couple 

months (Liu et al. 2007), during which time no toxic effects were observed.   

 

Small 

Another big advantage of SWNTs is their small diameter. For example, the lateral 

resolution of AFM is limited by the size of scanning tip. Ever since the discovery of  
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Figure 1.5: Left, SEM image of a MWNT attached to a conventional AFM cantilever tip 

(Wong et al. 1998). Scale bar is 1 mm. Right, AFM image of dendrimer-like DNAs taken 

with SWNT tip (Li et al. 2004). Scale bar is 100 nm.  

 
 

SWNTs, people have been trying to attach them onto normal AFM tips and use them to 

interact with sample in order to improve resolving capability. Examples are shown in Fig. 

1.5. 

One can even chemically modify the end of nanotube tips with functional group 

to do chemical force microscope (Wong et al. 1998). The small size of SWNTs makes it 

easier to study chemical bindings between only one pair of receptor/target.  

 Another application utilizing the small size of SWNTs is electron emitters. 

Because of the tiny cross sections of SWNTs, the electrical field around the tip can reach 

very high value when a potential is applied between SWNTs and the ground. This high 

field facilitates electrons to tunnel out. This kind of emitters can be used to extract 

electrons to generate light, either visible (TV) or X-ray (portable and high resolution X-

ray machine) (Liu et al. 2006).  

These examples are only a small subset of potential applications due to the small 

sizes of SWNTs.  
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1.3 Problems  
 

 Even with the hot pursuit of thousands of researchers around the globe, currently 

SWNTs are not in any high-tech products. The major problems right now are SWNT 

growth and manipulation.  

 As will be explained in Chapter 2 and 3, there are infinite number species of 

SWNTs. Some of them are dramatically different than others.  Up to today, no technique 

can grow single species of SWNTs on demand, namely, with controlled chirality and 

diameter. Progress has been made in separating different SWNT species in solutions 

(Arnold et al. 2006) although the processing may induce defects on nanotubes. 

Sometimes long nanotubes in large quantities are valuable to industrial applications. 

Recently more efficient growth (Hata et al. 2004) brought us hope along that direction.  

 Another more difficult problem is assembly. It is not easy to manipulate billions 

of individual nanotubes, especially when one wants them to behave against 

thermodynamics. For example, how could one put billions of nanotubes to the exact 

targeted locations as illustrated in the middle image in Fig. 1.4. Direct growth from 

individual spot is very hard because the growth is not deterministic in terms of yield, 

orientation, length, chirality and diameter. Other approaches use solution assembly by 

either functionalizing the substrate selectively (Keren et al. 2003) or by electrical 

manipulation using dielectrophoresis (Vijayaraghavan et al. 2007). The ultimate goal is to 

grow SWNT computer chips out of a beaker by directing molecular scale self-assembly.   

There is still a long way to achieve applications that fully utilize the wonderful 

properties of SWNTs. From an optimistic point of view, that means there are huge 

opportunities before us.  
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1.4 Scope of this thesis 
 

 This chapter gives a brief, but hopefully broad, introduction on many aspects of 

SWNTS. The main content of this thesis focuses on two separate issues. The first half, 

Chapter 2 and 3, discusses electron transport in SWNTs. Chapter 2 calculates the band 

structure of graphene and nanotubes. Chapter 3 presents experimental data and a theory 

model on electron transport in the regime where there are frequent electron scattering 

from lattice vibrations. It helps us understand the intrinsic electrical properties of SWNTs 

as one-dimensional conductors. This work clarified several misconceptions in this field, 

provided a simple theory to explain the observed conductance and mobility data, and 

discovered scaling laws in the electrical properties of SWNTs.  

 The second half, Chapter 4 and 5, probes the possibilities of integrating SWNTs 

with cell membranes and monitoring biological activities using this structure. Chapter 4 

gives an introduction to many physical properties of cell membranes. It also discusses 

artificial membrane mimics and why they are useful in studying cell membranes. Chapter 

5 focuses on one project that utilized the small size of SWNTs, their high sensitivity to 

local electrostatic environment and their compatibility with aqueous solutions. SWNTs 

were put underneath a patch of lipid bilayer. The quality and continuity of the bilayer 

over the SWNTs were probed and proved to be good. SWNTs interact with membrane-

bound proteins and slow down their diffusion. It was also demonstrated that SWNT FETs 

are able to sense protein binding events on the membrane surfaces.  
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CHAPTER2  

ELECTRONIC BAND STRUCTURE OF CARBON NANOTUBES  

 

In this chapter, the electronic band structure of graphene will be calculated with 

tight-binding methods (or Linear Combination of Atomic Orbitals (LCAO) as called in 

many chemistry books) (Ashcroft and Mermin 1976). The dispersion relation of 

nanotubes will be derived based on this result. The unique dispersion relation generates 

profound influence on the nanotube electrical and transport properties, which will be 

discussed in Chapter 3. 

Tight binding calculation of nanotube band structure can be found in many 

sources (e.g. graphene by P. Wallace (Wallace 1947), nanotube by R. Saito (Saito et al. 

1992) and E. Minot (Minot, 2004)). The purposes of this chapter will be to summarize 

and simplify these results, as well as comment on some frequently-asked questions.  

 

2.1 Atoms, molecules and crystals 
 

 The first question that many students ask when they are exposed to solid state 

physics for the first time may well be: what is the origin of energy bands in crystals? It is 

quite obvious that a free electron has a continuous energy spectrum while electrons in 

isolated atoms are confined to quantized energy levels. Electrons in crystals are in an 

intermediate state between free and confined electrons. They are delocalized to reach out 

to the whole crystal, similar to free electrons, but they feel the periodic potentials of the 

ions at the same time. This dualism gives rise to energy bands. The crystals referred in 

this chapter are covalently-bonded solids (Ashcroft and Mermin 1976), as in the cases of 

graphene and nanotubes.  
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 The delocalization of electrons in crystalline solids is a direct consequence of the 

nature of covalent bonds, which are characterized by sharing electron pairs between 

atoms. This sharing can happen because the distance between two bonding atoms are 

comparable to the range of certain atomic orbitals. When two atoms form a molecule via 

covalent bonding, the higher energy valence electrons can explore the whole molecule 

because they spend time in all parts of each atom. In a covalent crystal, when a valence 

electron of atom A moves to its nearest neighbor atom B, it can come back to atom A or 

move further to other neighbors of atom B. This is how valence electrons can reach the 

whole crystal, or in other words, become delocalized.  

 Similar to free electrons, delocalized electrons spread over real space and can 

have different modes, or wave vectors. The allowed states are set by boundary conditions.  

As the length scale of a crystal becomes very large, the energy difference between large 

numbers of states vanishes. Therefore, as contrary to atoms having discrete energy levels, 

solids have energy bands. They can be viewed, to the zero order approximation, as 

atomic energy levels broadened by delocalization.  

Although delocalized, the electrons in solids are not free. The configurations of 

atoms in crystals determine their band structures. The unique properties of various 

crystals are due to the fact that the electron energy does not grow quadratically with wave 

vector, as in the case of free electrons. This gives different solids their special flavors.  

 

2.2 Tight-binding calculations of graphene band structure 
  

In this section, the band structure of graphene will be calculated with tight-

binding method. The calculation, as well as the discussion in the previous section, is valid 

only in the regime where the overlap of atomic orbitals (wave functions) is significant but 

not too large. This condition ensures atomic orbital description stays relevant.  
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 Due to the periodicity in crystals and their large size compared to atomic scales, 

the electron wave functions satisfy Bloch theorem, and can be generally written in the 

form of Eq. 2.1. The function f is called Wannier function. 
)()( Rrr

R

Rk −= ∑ ⋅ φψ ie    (2.1) 

In other words, a Bloch function is nothing but a summation of wave functions, which are 

the same at each unit cell, multiplied by interference phase factors.  

The essence of tight-binding methods is that the Wannier function can be 

approximated by a linear combination of atomic orbitals.  This applies only when the 

overlap is not too large to distort the Wannier function to an extent that it does not 

resemble atomic orbitals any more. Mathematically, the essence of tight binding method 

is written in Eq. 2.2: 
∑=

n
nnb )()( rr ϕφ ,   (2.2) 

where jn(r) are the atomic wave functions.  

 Figure 2.1 shows the typical atomic orbitals of electrons with different angular 

momentum (1s, 2p, 3d, 4f). When two identical atoms form a molecule via overlapping 

one of their p orbitals, e.g. pz orbital, the resulting wave function is called Pi orbital, 

denoted by Pp-p and shown in Fig. 2.1. It almost looks like the simple addition of two pz 

orbitals sitting next to each other.  This is the essential bonding that leads to the Pp-p 

coupling in graphene and carbon nanotubes. Except in the latter cases, billions of carbon 

atoms form a gigantic Pp-p bond and electrons are free to move through the whole crystal.  
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Figure 2.1: Electron atomic and molecular orbitals (Wikipedia).  Left, the electron 

orbital filling scheme. Carbon atoms have 4 valence electrons, one of which is in 2s state 

and the other three are in 2p states.  Right, the shapes of s,p,d,f orbitals. A p bond, 

formed by two parallel p orbitals, is shown at the bottom right corner.  
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Figure 2.2: Lattice of graphene. The length of the carbon-carbon bonds is A&42.1 .  A pair 

of adjacent carbon atoms, denoted with solid dot and open dot respectively, forms a unit 

cell.  
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 Figure 2.2 shows the hexagon lattice of graphene. However this is not a Bravais 

lattice because there are no two primitive vectors that can construct position vectors R to 

reach every carbon atom in the lattice. Another way to look at it is that the view from 

atoms denoted with solid dots is different than that from atoms denoted with open dots. 

The views are mirror images of each other.  

The correct Bravais lattice to describe graphene is a triangular lattice with two-

atom unit cells. The primitive vectors of this triangular lattice are defined as 

yxa

yxa

2

1

))

))

aa

aa

2
1

2
3

2
1

2
3

−=

+=
 ,  (2.3) 

 
 

where Aaa cc
&46.23 == . acc is the length of carbon-carbon bonds in graphene, and 

equals roughly A&42.1 .  
 

 The tight binding calculation is a little complicated due to the dual-atom basis. 

The atomic orbitals of the two carbon atoms (one solid dot and one adjacent open dot in 

Fig. 2.2), j1 and j2, have to be taken into consideration.  The total function is a linear 

combination of j1 and j2: 

 
∑=+=

n
nnbbb )()()()( 2211 rrrr ϕϕϕφ  (2.4) 

In some sense this is a simple calculation because only one atomic orbital pz, as 

the one shown in Fig 2.1, is used. The chemical bonds between carbon atoms, the ones 

that dominantly determine the lattice constant a, involves three orbitals: s, px and py. 

These three orbitals are mixed up to from three equivalent bonds through so-called sp2 

hybridization. The electrons in these sp2 bonds are tightly confined near nuclei and can be 

neglected in this calculation.  

 The Hamiltonian is 
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∑+=
R

R)-(rp
2,1

2

2
V

m
H .             (2.5) 

The potential term is the summation all of potentials due to every atom in the lattice. 

Since j1 and j2 are atomic orbitals, they satisfy 

2,12,12,12,1

2

2
ϕεϕ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ (r)p V

m
.  (2.6) 

1ε  and 2ε are apparently equal because the two atoms in one unit cell are equivalent. 

When the Hamiltonian in Eq. 2.5 is applied to j1, 

112,1111 )( ϕϕεϕ ⎟
⎠

⎞
⎜
⎝

⎛
−+= ∑ rR)-(r

R
VVH   (2.7) 

Now the potential terms sum all atoms except the one at R = 0. It can be denoted as DV1, 

for simplicity, and 2,1ε  can be set at zero. Then Eq. 2.7 is simplified as  

2,12,12,1 ϕϕ VH ∆= .  (2.8) 

To get the energy eigenvalues of the Schrödinger equation 

kk k ψψ )(EH = ,  (2.9) 

ψk can be projected onto j1 and j2.  

kkk ψϕψϕ nnn VE ∆=)( . (2.10) 

When kψϕn  is calculated, only the overlaps between the nearest neighbors are 

considered as non-zero. In other words, the wave function is assumed to extend to one 
atom away, but not two. The same rule holds for kψϕ nn V∆  term, only the on-site and 

nearest neighbors integral are included. From Fig. 2.2, it can be seen that each carbon 

atom has three nearest neighbors .Define a as the overlap integral and g as the transfer 

integral, 

∫= 2
*
1ϕϕα    (2.11) 

∫∫ ∆=∆= 12
*
221

*
1 ϕϕϕϕγ VV , (2.12) 

Equation 2.10 can be simplified as 

( ) )()()( 221 kkk γξαξ bbbE =+   (2.13) 

( ) *
1

*
12 )()()( kkk γξαξ bbbE =+ , (2.14) 
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where )(kξ is an interference factor 

( ) ( )21 akakk ⋅−+⋅−+= ii expexp1)(ξ .  (2.15) 

 It’s determined by the geometry of the lattice, and is a function of electron wave vectors. 

Please note the relative phase is given by the locations of the neighboring unit cells, not 

the locations of neighboring carbon atoms. This can be seen from Eq. 2.1. Each carbon 

atom has three nearest neighboring atoms as shown in Fig. 2.2. One is sitting in the same 

unit cell and the other two are sitting in two out of the six neighboring unit cells at –a1 

and –a2.  

)(kE can be extracted by solving Eqs. 2.13 and 2.14: 
( )

( )
0

 )(                  )()(
 )()(                        )(

2

1
* =⎟⎟

⎠

⎞
⎜⎜
⎝
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⎠
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⎝

⎛

−

−

b
b

EE
EE

kkk
kkk

γαξ

γαξ
. (2.16) 

The solutions are 

)(1
)(

)(
k

k
k

ξα
ξγ

±

±
=E .  (2.17) 

In most literatures, a is considered much smaller then unity (the validity of this 

approximation will be discussed in Section 2.6).  Therefore Eq. 2.17 is simplified as 
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cos41)()( 2 xxy akakak
E γξγ kk   (2.18) 

 

Please note a is the lattice constant, i.e. ccaa 3= . The x,y coordinates are defined in Fig 

2.2.  

 The band structure in Eq. 2.18 is given by two parts. )(kξ  is determined by the 

symmetry of the lattice while g is determined by the strength of the overlapping between 

adjacent atomic orbitals and the lattice potential. Since the adjacent atoms have the same  
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Figure 2.3: Plots of the graphene band structure. Top, 3D plot of both binding and anti-

binding bands. Bottom, contour plot of one band. 
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electron affinity, graphene is a perfect example of covalent lattice. g would be small if 

electrons resided most of the time on one type of atoms in the lattice. The extreme case 

would be ionic crystal. It will be proven later that larger g means electrons can travel 

faster in the solid. 

Figure 2.3 shows the band structure of graphene. From the 3D plot on the left, it is 

obvious that there are two bands, one with lower energy and one with higher energy. 

These are so-called bonding and anti-bonding orbitals. The origin of the names is clear 

once we plug the eigenvalues back to Eq. 2.16.  With the low energy 
eigenvalue, ))(1/()()( kkk ξαξγ +⋅−=E  (g is negative!), b1 = b2. The wave functions 

at two carbon atoms in a unit cell are in phase. This makes the overall energy lower. That 

is why this band is related to bonding orbitals. With the other eigenvalue, b1 = - b2. There 

is a phase difference of 180 degree and the energy is higher.  

The 3D plot in Fig. 2.3 also shows that the two bands, bonding and anti-bonding, 

touch each other at 6 points. This illustrates that graphene is a zero-bandgap 

semiconductor since there is no bandgap. The dispersion relations near the touching 

points are conical. This statement and its implications will be discussed later.  

The first Brillouin zone is show in the left image of Fig. 2.4. The reciprocal 

vectors are  
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.  (2.19) 

 It is easy to understand the 6 fold symmetry. The two bands touch at the corner of 

the first Brillouin zone, which are called K points by convention. But it is important to 

note that only two of out the six K points belong to first Brillouin zone. One way to look 

at it is that each K point is shared by three Brillouin zones. The first Brillouin zone only 

contains 1/3 of each cone at the six K points. 
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Indeed, the two K points highlighted with black dots in Fig. 2.4 can be mapped by 

reciprocal lattice vectors to the one denoted with a grey dot. The other three K points can 

be related in the same fashion and form another group. However any two K points from 

different groups can not be connected by a reciprocal lattice vector. So there are two, and 

only two, non-equivalent K points in the first Brillouin zone. This is usually called K K’ 

degeneracy.  

 The first Brillouin zone can be rearranged as shown in Fig. 2.5. Unit 1 and 2 can 

be moved to Unit 1’ and 2’ by reciprocal vector b1+b2 and b1.  Unit 1’, 2’ and 3 form a 

triangular area defined by dashed lines. Now the whole cone near K point is sitting inside 

the first Brillouin zone. The other half of the hexagon can be rearranged into another 

triangle near K’ point.  In the next section, the band structure of carbon nanotubes will be 

derived based on that of graphene. It is helpful to use the form of the first Brillouin zone 

shown in Fig. 2.5. 

 

  
Figure 2.4: The first Brillouin zone of graphene. 
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Figure 2.5: Reorganization of the first Brillouin zone to put the K and K’ points in 

centers. The two triangles defined by dashes lines are the first Brillouin zone in a 

different presentation. 

 

2.3 Making nanotubes from graphene 

Nanotubes can be viewed as seamless cylinders rolled up from a piece of 

graphene. Since a 2D piece of graphene can be rolled up along different directions, the 

carbon atoms in the resulting nanotubes will be arranged with different patterns. As will 

be shown later, the way in which the nanotube is wrapped profoundly impacts the 

electronic properties of nanotubes. 

Each tube can be uniquely labeled by a set of two integer numbers (n,m) that are 

determined by the chiral vector Ch along the circumference: if the tube is made by joining 

atoms at O and A in Fig. 2.6, then Ch = OA = na1 + ma2.  The vector shown corresponds 

to Ch = 7a1 + 2a2, and this tube is called a (7, 2) tube. Due to the six-fold symmetry of a 
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triangular lattice, n and m are defined to be positive and satisfy m<n. The translational 

vector T, which is perpendicular to the chiral vector Ch, is apparently along the tube axis.  

Another way to label nanotubes is by their diameter d and chiral angle q, which is 

the angle between the chiral vector of a nanotube and that of a zigzag tube (Fig. 2.6).  It 

can be proven easily, through simple geometry, that these two labeling methods are 

equivalent. The conversion rules are written in Eq. 2.20: 

22

222
2cos

mnmnad

mnmn
mn

++=

++

+
=

π

θ
.  (2.20) 

 
 

    

Figure 2.6: Making nanotubes from graphene. The circumference vector Ch, which 

connects two points that will be ‘fused’ into one when the graphene is rolled into a 

seamless nanotube, is showed as OA.  The tube axis will be along OT. The circumference 

vectors of two special types of tubes are shown: armchair and zigzag.  

x

y 

Ch 

T 

q 

a1 

a2 

O 

A 

Zigzag 

Armchair 



 

 27

The two dark lines in Fig 2.6 are the chiral vector of two special tubes. Zigzag 

tubes have chiral vector parallel to a1 so that m always equals zero. The name is given 

because the carbon atoms along circumference go up and down in a zig-zag pattern.  The 

chiral vector of armchair tubes is along a1 + a2, which makes n = m. The atoms along their 

circumferences go up, down, down and up.   

With the (d, q) notation, zigzag tube and armchair tubes have special chiral angles. 

For zigzag, q equals 0. And q is 30± for armchair tubes. Due to the six fold symmetry of 

the graphene lattice, chiral angles of all other tubes are between these two values. The 

diameter of nanotube cannot be infinitely small because the bending energy associated 

with large curvature makes this structure unfavorable against graphene. The smallest 

nanotube ever observed has diameter of 0.4 nm, and is the inner layer of a large multi-

walled nanotubes (Qin et al. 2000).  This smallest tube roughly corresponds to a nanotube 

with n + m around six. The diameter, 0.4nm, is smaller than that of the smallest fullerene 

C60, 0.7nm.  
 
 

2.4 Band structure of carbon nanotubes 
 

Next, the band structure of carbon nanotubes will be deduced from that of 

graphene. The difference is that electrons in nanotubes are confined along the 

circumference. Because the diameter of SWNT is on the order of 1 nm, the wave vector 

along the circumference ⊥k is quantized according to Eq. 2.21: 

N1,...,q      q2
±±===⊥ qkq

d
k ,  (2.21) 

where N is the number of hexagons in the unit cell define by chiral vector Ch and 

translational vector T, and kq = 2/d is the step size in ⊥k . Since the length of nanotubes is 

macroscopic, typically from one mm to hundreds of mm, the wave vector along the tube 

axis //k  is considered continuous.  
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Figure 2.7: The electron wave vector along the circumference of a nanotube is quantized. 

 

Due to the quantization of ⊥k , not all the points in the graphene bands derived in 

Section 2.2 are accessible to nanotubes. Instead, the energy bands of a nanotube are 

limited to a series of 2D subbands with constant ⊥k  values. The dashed line in Fig. 2.8 is 

along the //k  direction and the angle between it and GK is the chiral angle q. The solid 

lines, which are perpendicular to the dashed line, have constant ⊥k  values. The energy of 

these 2D subbands is governed by the alignment of ⊥k  with respect to the K point. The 

subband with ⊥k  closest to the K point defines the lower energy subband. Because the 

graphene band structure does not have bandgap at K point, if one of these ⊥k  goes 

through K points, this nanotube will be metallic, i.e. gapless. Otherwise the dispersion 

relation of this nanotube has a bandgap and the tube is semiconducting.  

 It is simple to prove that 1/3 of all nanotubes are metallic. This can be viewed as 

an entry-level geometry problem. If a line is drawn from K point to intersect the dashed 

line in Fig. 2.8 at right angle, the distance between G point and the intersection point is 

( )θπ cos3/4 ×a . The question boils down to whether the ratio between this length and kq 

is an integer. With Eq. 2.20, it is easy to get 
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Figure 2.8: Extracting band structure of nanotubes from that of graphene. 
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If (n-m)/3 is an integer, then the subband with ( ) dmnk 3/22 +=⊥ will go through K 

point and give a gapless dispersion relation. If (n-m)/3 is not an integer, the tubes are 

semiconducting. That means 1/3 of nanotubes are metallic and 2/3 are semiconducting.  

They can be further categorized into two types: n-m = 3j+1 and n-m = 3j-1 with j being 

integers.  Ethan Minot’s thesis (Minot 2004) discusses how these two types of tubes are 

influenced differently by perturbations like stain or magnetic field along the tube axis.  

The degeneracy between K and K’, mentioned in Section 2.2, leads to a two-fold 

degeneracy in subbands. Due to the symmetry, subbands with ⊥k  = |k0| and ⊥k = - |k0| 

have exactly the same dispersion relation except that one is close to K point and the other 

close to K’ points. Pictorially, the degenerate states correspond to electrons traveling 

down the tube clock wise or counter clock wise with the same energy.  
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 We can also use mathematical formula to repeat the above discussion to 

understand the origins of subbands in nanotubes and to determine whether they are 

metallic or semiconducting. It can be shown that reciprocal vector along the 

circumferential direction of a (n,m) tubs is 

)(2/])2()2[( 22 nnmmnmmn +++++= 211 bbK    (2.23) 

and |K1| = 2/d.  The wave vector along the circumference is a multiple of K1.  

 As examples, consider the simple case of armchair tubes and zigzag tubes. For a 

(n,n) armchair tube,  
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The allowed ⊥k  values are  
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where q is an integer between –n to n. Plug it into Eq. 2.18, the energy bands are 
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Figure 2.9: The subbands of a (5,5) armchair tube. 
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Figure 2.9 plots the subbands of a (5,5) armchair nanotubes using Eq. 2.26. The 

first subband, which has q = 5, is plotted in colors: conduction band in green and valence 

band in red.  It is metallic because these two band meet at //k  = 2p/3a. The dispersion at 

the crossover point of the first subbands is close to linear.  The higher bands are plotted in 

dotted lines.  

 

For a (n,0) zigzag tube,  
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It is along the GK direction. Since there is a 6-fold symmetry, it is easier to rotate 

everything by 60 degree to make k1 along ky direction. After rotation, 
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The energy bands are 
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 The subbands of a (10,0) nanotubes are plotted on the left side of Fig. 2.10. Only 

the valence bands are shown since the valence and conduction bands are symmetric with 

respect to E = 0. This tube is a semiconducting one since there is a bandgap.  
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Figure 2.10: The subbands of a (10, 0) zigzag tube (left) and the first few subbands of a 

(40,0) zigzag tube (right). 

 
 

In conclusion, nanotubes have a series of subbands. The energy difference 

between subbands is inversely proportional to tube diameter, and reaches more than 0.2 

eV for small tubes as shown in Fig 2.10. 1/3 of all nanotubes do not have bandgap while 

the other 2/3 do. The dispersion relation can be extracted from Eq. 2.18. 

 

2.5 Simplified band structure  
 

 In the previous section, the dispersion relation of nanotube is shown to be a 

sensitive function of (n,m). In many cases, however, it is easier to use a simplified 

expression of the energy dispersion relation for semiconducting nanotubes:   
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where Eg is defined as bandgap and vF is electron Fermi velocity. It looks like a 

relativistic dispersion with Eg playing the role as rest mass and vF as the speed of light, 

and is no where near Eq. 2.18. The purposes of this section are to discuss how good this 
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approximation is and how the parameters like Eg and vF are related to transfer integral g 

and tube diameter d. Again these can be carried out in two ways. 

 If one wants to prove it mathematically, it is easier to use zigzag tube as an 

example. In the dispersion relation in Eq. 2.29, the energy of the valence band can reach 

zero if q/n = 2/3. However for a semiconducting tube n is not a multiple of 3, this 

condition cannot be satisfied. But we can pick q0 to be the nearest integer to 2n/3 and do 

Taylor expansion near //k  = 0 to the first order, then Eq. 2.29 can be written as 
2
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Compare it with Eq. 2.30, we can see that 

hh 2
3

2
3 γγ cc

F
aav −==    (2.32) 

As mentioned in Section 2.2, electrons in crystals with larger transfer integral g can travel 

easier and faster. Eq. 2.32 is a mathematical description of this observation. The transfer 

integral g in graphene is about 2.7 eV and makes the Fermi velocity vF in nanotubes to be 

around 8.7ä105 m/s. 

 The first term in Eq. 2.31 is basically the bandgap. It is a function of how far apart 

the subband deviates from K point. When n goes larger, the value q0-2n/3 grows smaller. 

That tells us the bandgap will be inversely proportional to tube diameter.  

 Another way to think about this issue is purely geometrical. If we assume the 

dispersion relation near K point to be exactly conical (as mentioned in Section 2.2, this is 

a good approximation at low energy), the energy of an electron is linearly proportional to 

the difference between its wave vector and GK. 
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Figure 2.11: When the dispersion near K point is conical, the energy of an electron is 

proportional to the vector shown in this figure, which is the difference between the 

electron wavevector and GK.  

 
 

The dispersion relation under this approximation is 
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k¦ equals 2q/d. From Eq. 2.22, GK = 2(2n+m)/3d. Then we have 
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where p is an integer. It is easy to see the bandgap equals 

d
v

E F
g 3

4h
=   (2.35) 

The bandgap is inversely proportional to diameter. When we use 2.7 eV as transfer 

integral, Eg is about 0.70 eV/ d[nm]. 

 Next the validity of this simplified dispersion relation will be studied. Figure 2.12 

shows the first subbands, calculated using different equations, of two zigzag tubes with 

different diameters. The left side figure is for a (10, 0) tube with diameter around 0.78 nm  

K 
k¦ 

k// 
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Figure 2.12: Comparison of nanotube band structures calculated from the simplified 

dispersion relation (dotted lines) and from the more rigorous one (solid lines).  The left 

figure is for a (10,0) tube and the right one is for a (40,0) tube. The deviation decreases 

with increasing tube diameter.  

 
 

and the right one is for (40,0) tube with d = 3.1nm. Dispersions according to Eq. 2.29 and 

Eq. 2.30 are plotted in solid lines and dotted lines. Clearly, this approximation works 

better for larger diameter tubes. This is because only the dispersion very close to K point 

is conical and tubes with large diameter can have wave vectors closer to K point. 

Equation 2.34 implies the subband bottoms are located at E = Eg/2, 2ä Eg/2, 4ä 

Eg/2, 5 ä Eg/2,…, (3j+1) ä Eg/2, (3j+2) ä Eg/2 with j being integers. Not surprising, this 

rule works better on large diameter tubes. As Fig. 2.10 shows, this pattern exists in the 

first 5 subbands of a (40,0) tube, but does not apply to a (10,0) tube. 

 Another failure of Eq. 2.30 is it predicts there is no crossing between subbands. In 

Fig. 2.10, the subbands do cross. In conclusion, this approximation works better for large 

diameter tubes and in low energy regime. The advantages of this version are its simplicity 

and independence (ignorance) of chirality.  
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2.6 Effects of tube curvature and non-zero overlap integral 
 

 The calculations so far are relative simple and ignore a few significant details by 

taking several approximations. Two examples, tube curvature effect and non-zero overlap 

integral, will be pointed out and their consequences will be discussed in this section.  

 

Tube curvature 

When the nanotube band structure is derived from that of graphene, nanotubes are 

basically treated as narrow pieces of flat graphene in which electrons satisfy periodic 

boundary condition. In reality, however, nanotubes have curvatures and should be 

considered as curved pieces of graphene. This modifies some conclusions of Section 2.4; 

the degrees of deviations depend on tube diameters.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Calculated bandgaps of nanotubes with different diameter and chirality 

when curvature effect is taken in account (Kane and Mele 1997), shown on large energy 

scale (top) and on small energy scale (bottom).  
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The Kane group at University of Pennsylvania studied this issue in details (Kane 

and Mele 1997). Apparently curvature makes the lengths of C-C bonds vary in nanotubes, 

and the p orbitals of adjacent carbon atoms are no longer necessarily parallel. Both 

factors influence the transfer integral g and make it depend on local curvature. When this 

is included into calculations, the bandgaps for nanotubes of different diameter and 

chirality are plotted in Fig. 2.13. 

When nanotubes are large in diameter, as Fig. 2.13 shows, they are divided in two 

groups: with bandgaps and without. This agrees with the results of Section 2.4.  When 

nanotube diameters are small, however, another group appears. It turns out curvature 

induces second order bandgaps in almost all nanotubes except armchair tubes, which 

appear to be gapless in Fig.2.13.  Most of the “metallic” tubes in Section 2.4 also have 

bandgaps in this picture. This is why it is rare to find a nanotube FET that shows very 

little changes in conductance when the gate voltage is swept. Since small nanotubes have 

large curvature, the second order bandgap is only significant in small tubes. This 

curvature induced bandgap scales as l/R2, as compared to the first order bandgap that 

scales as1/R (Eq. 2.35). Curvature effects have to be considered for small diameter tubes.  

When there are strains in a nanotube, they modify the lengths of C-C bonds and 

orientations of  p orbitals too. The detailed discussed on how nanotube band structure is 

affected by strain can be found in Mint’s thesis (Minot 2004) .  

 

Non-zero overlap integral 

 When the band structure of graphenes is derived in Section 2.2, a major 

approximation is taken. Namely, in Eq. 2.17 the overlap integral a is taken to be zero 

because it is smaller than unity. Figure 2.14 compares the dispersion along the GK 

direction with two different values of a: 0 eV (solid line) and 0.14 eV (dotted line). It 

shows that although the maximum energy difference can reach as high as |g|, the two  
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Figure 2.14:  The influence of the overlap integral a on the graphene band structure.  

The results based on zero a (solid line) and non-zero a (dotted line) agree near K point, 

but separate from each other at large energy scale.  

 
 

curves converge near K point. For low energy excitations, a can be chosen to be 0. 

However, due to the large separation between the subbands of small diameter nanotubes, 

the approximation, choosing a to be 0, may become invalid.  

Figure 2.15 plots the first three subbands of a (10,0) nanotube. The solid lines are 

for standard approximation, a = 0 eV. a is 0.14 eV in the dotted lines.  The energy 

differences at the bottom of the second and third subband are around 0.018|g| and 0.046|g|, 

or around 50meV and 120 meV. These are large values. The optical properties of 

nanotube are a hot research area now. Most of the researches are done with small 

diameter tubes because their bandgap is not too small, in the range of near infrared. The 

influence of non-zero a should be considered. They are on the same energy scales as 

excitons (Wang et al. 2005). Non-zero a  has other implementations than modifying the  
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Figure 2.15: The influence of the overlap integral a on nanotube band structures. The 

first three subbands for a (10,0) tube are plotted based on zero a (solid lines) and based 

on non-zero a (dotted lines). The difference becomes significant beyond the second 

subband. 

 

band structure (Goupalov 2005). But so far no experimental study has addressed this 

effect. 

In summary, this chapter derives the dispersion relations of graphene and carbon 

nanotubes with tight-biding method. In nanotubes, the curvature of the bands at low 

energy and the bandgap, as well as the separation between the subbands, depend on tube 

diameters.  A simplified version of nanotube dispersion relation that does not require the 

knowledge of the tube chirality is presented. The implications of a few approximations 

taken in this simple calculation are discussed in the last section. These results will be 

used in Chapter 3 to explain the observed electrical transport properties.  

 



 

 40

  

CHAPTER 3  

ELECTRON-PHONON SCATTERING IN SEMICONDUCTING 
NANOTUBES  

 

The electrical transport properties of SWNTs intrigued people ever since the 

discovery of SWNTs. Field-effect transistors (FETs) were first made from SWNTs 

several years ago (Tans et al. 1998) and have been subsequently investigated intensely for 

device (Bachtold et al. 2001; Liang et al. 2001; Javey et al. 2002; Rosenblatt et al. 2002) 

and sensing (Besteman et al. 2003; Star et al. 2003) applications. Both Schottky (Heinze 

et al. 2002) and low resistance (Javey et al. 2003; Yaish et al. 2004) contacts have been 

realized. It is expected that electron scatterings in nanotubes are suppressed due to 

various reasons in nanotubes. Therefore the mobility and conductance in nanotubes 

should be high. But the ultimate performance limits are not understood; for example, the 

reported mobility values vary by orders of magnitude in different studies (Shim et al. 

2001; Rosenblatt et al. 2002; Durkop et al. 2004; Li et al. 2004). 

This is partially because most groups have been interested in ballistic transport, 

where electrons can go through nanotubes without ever being scattered. This behavior 

has been observed by a few groups (Javey et al. 2003) using short nanotubes.  

Diffusive transport, where electrons are scattered many times in the conduction 

channels either by defects or lattice vibrations, can tell many intrinsic properties of 

SWNTs and reveal their ultimate performance limits. In this chapter the properties of 

moderately long (4-15 µm) and oriented SWNT FETs with good contacts are 

systematically studied to probe the intrinsic transport properties. Specifically, we study 

the mobility and resistance values in nanotubes and their dependence on temperature and 

tube diameter. Both experimental data and theory calculations are presented (Zhou et al. 

2005).  
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3.1 Experimental data 
 

The devices used in this experiment are shown schematically in Fig. 3.1b. Using 

the recipe from the Liu group at Duke (Huang et al. 2003; Huang et al. 2004) SWNTs are 

grown on silicon wafers with 200 nm oxide. Figure 3.1a is an atomic force microscope 

(AFM) image of one of the devices. The tubes are long with little mechanical bending 

and oriented with the gas flow direction in the CVD growth furnace. The electrodes are 

made of either Au or Pd to make ohmic contact. In order to keep the SWNT free from 

rare defects, we choose the channel lengths L to be from 4 µm to 15 µm.   

 

 

 

  

(a) 

 

 

 

         

 

(b) 

 

 

Figure 3.1: (a) AFM image of one device.  (b) Schematic of device geometry.  The gray 

layer is a 200 nm thick silicon oxide layer between the SWNT and the highly-doped 

silicon wafer used as backgate. 
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Figures 3.2 and 3.3 show the low-bias conductance in the p-type region for three 

SWNT FETs with different diameters as a function of backgate voltage1.  The main panel 

of Fig. 3.2 shows the temperature dependence of the conductance of one device with d = 

4 nm and L = 4 mm. The transition from off to on is more rapid and the maximum 

conductance increases with decreasing temperature. The resistance of the on-state, which 

is defined as when Vg is 10 V away from threshold voltage, decreases linearly with 

decreasing temperature down to 50 K, as shown in the upper inset. If we extrapolate the 

resistance linearly to zero temperature, the value of the intercept is 28 kW.  

Figure 3.3 shows data from two other semiconducting SWNT FETs of different 

diameters. The maximum on-state conductance increases with d; larger tubes have larger 

on-state conductance, and their conductance increases more dramatically upon cooling. 

This is shown in Fig. 3.4a, where data from a number of devices of different diameters 

are compiled. To minimize the influence of contact resistance, the temperature-dependent 

change is measured. The resistance of the same device is measured twice at room 

temperature and at around 50 K. The difference between these two values is normalized 

by tube length, and the inverse of this quantity is found to approximately scale linearly 

with tube diameter d.    

 

 

 

 

 

                                                 
1 Devices show hysteresis. Only the upward sweep is shown in the figures and used to 
calculate mobility. This is because, after treating devices with PMMA passivation to get 
rid of the hysteresis as described by a Stanford group (Kim, W., A. Javey, O. Vermesh, O. 
Wang, Y. M. Li and H. J. Dai (2003). Hysteresis caused by water molecules in carbon 
nanotube field-effect transistors. Nano Letters 3(2): 193-198.), the curve agrees with the 
upward sweep. 
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Figure 3.2: The conductance of a device with d = 4 nm and L = 4 mm versus gate voltage 

at different temperatures. Upper inset:  Ron as a function of T.  Lower inset: measured 

mobility as a function of T-1.  Both are shown with linear fitting. 
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Figure 3.3:   The conductance (a) and mobility (b) as functions of gate voltage for two 

different devices. The black curves are for a tube with d = 3.4 nm, L= 5.4 mm while the 

red curves are for a tube with d = 1.5 nm, L= 10 mm. 

 
 

 Shown in Fig. 3.3b are the field-effect mobilities for the two devices in Fig. 3.3a 

calculated using )/)(/( '
ggFE dVdGCL=µ , where '

gC  is estimated to be 11102 −×  F/m for d = 

4 nm tube and it scales with diameter according to )/21ln(1' dCg λ+∝
− , where l = 200 

nm is the oxide thickness.  The peak mobility is approximately 10,000 cm2V-1s-1 for the d 

= 3.4 nm, L = 5.4 mm tube, but about four times lower for the d = 1.5 nm, L = 10 mm 

tube. This is characteristic of all the devices measured; smaller-diameter tubes have lower 
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peak mobilities, as is shown in Fig. 3.4b. With the exception of a few devices with 

anomalously high mobilities (marked by circles in the plot), the data vary approximately 

as the square of the diameter (see inset to Fig. 3.4b). 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
 
 

 

Figure 3.4: (a) Device length L divided by resistance change DR from room temperature 

to 50 K versus tube diameter with linear fitting shown.  Data of similar diameter tubes are 

averaged. (b) Room temperature peak mobility as a function of tube diameter for many 

devices. Two devices showing anomalously large peak mobility are circled.  Inset to (b):  

peak mobilities versus tube diameters on  log-log scale with circled two data points 

omitted.  The solid line is a visual reference line for square law. 
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 To analyze these results, we first note that the device resistance is a combination 

of the intrinsic tube resistance RNT and contact resistance Rc. To separately determine 

these contributions, we used an AFM tip as an electrical nanoprobe (Yaish et al. 2004).  

For the device in Fig. 3.2, at room temperature we find: Rc ≈ 28 kΩ and RNT ≈ 30 kΩ at 

on-state. Note that Rc is the same as the extrapolated tube resistance at zero temperature 

(Fig. 3.2, upper inset). We therefore conclude that Rc is temperature-independent, and it 

is Ron, which is RNT at on-state, that varies linearly with T, extrapolating to zero at T = 0.  

At room temperature, Ron/L  is about 8 kΩ/mm for this semiconducting tube. This value is 

comparable to but somewhat higher than the resistivity of good metallic tubes (Mann et al. 

2003; Park et al. 2004) and is similar to reported values for semiconducting tubes 

(Durkop et al. 2004; Li et al. 2004). This effect was also observed recently by a Columbia 

group (Purewal et al. 2007). At the lowest temperature shown (T = 50K), the device 

resistance is small (Ron < 10 kΩ), but still finite, corresponding to a minimum resistivity 

Ron/L ~ 2.5 kΩ/µm. At lower temperatures, the device resistance begins to increase, 

presumably due to the effects of localization and/or Coulomb blockade (Datta 1997; 

Kane et al. 1998).  

The lower inset to Fig. 3.2 shows the peak mobility of the device at different 

temperatures after the constant contact resistance is taken into account. It varies 

approximately as T-1, reaching > 100,000 cm2V-1s-1 at 50 K.  

To summarize the experimental findings: Ron and m-1 both increase linearly with T. 

Both depend strongly on diameter, but in different ways: 1/Ron ~ d and µ  ~d2. The 

resistivity and peak mobility of a 4 nm nanotube is about 8 kΩ/mm and 15,000 cm2V-1s-1 

at room temperature. In the next section, we present calculations of electron-phonon 

scatterings and compare with these results.  

The only exception to the conclusions is that a few of the devices showed 

anomalously large peak mobilities, as indicated by the circled data points in Fig. 3.4b. To 

understand the origin of this behavior, we used scanned gate microscopy (Bachtold et al. 
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2000) to explore the uniformity of the conduction near the threshold region. In brief, a 

biased AFM tip is used as a local gate and the conductance of the device is recorded as a 

function of the AFM tip position. The results are shown in Fig. 3.5. For most devices, the 

response to the tip was relatively uniform (Fig. 3.5a), indicating that no single spot 

dominated transport.  For the devices with anomalously high mobilities, we found that 

the gate response was primarily localized to a few dominant spots. In this case, using the 

equation )/)(/( '
ggFE dVdGCL=µ , where L is the entire length of the tube, dramatically 

overstates the true mobility. This effect may also explain some of the extremely high 

values for the mobility reported in the literature (Durkop et al. 2004). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Scanned gate microscopy images of  the device studied in Fig. 3.2 with 

normal peak mobility (a) and  the circled d = 2.5 nm device with anomalously high peak 

mobility in Fig. 3.4b (b). The solid lines indicate the position of electrodes and dashed 

lines indicate the position of SWNT.  The device in (b) is dominated by a few short 

segments of tube near the threshold region. Therefore the mobility is overstated when the 

whole tube length is used to calculate the mobility. 
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3.2 Semiclassical transport, Boltzmann equation and the 
relaxation time approximation  
 

 In Chapter 2 the Schrödinger equation (Eq. 2.9) was solved to get the electron 

eigenstates and eigenvalues in nanotubes. When there are perturbations, e.g. electrical or 

magnetic fields, additional to the periodic crystal potential, however they must be 

included in the Schrödinger equation. But a shortcut is typically taken:  keep the 

eigenstates of electrons and treat them as semiclassical particles. For example, in this 

picture electrons will still be driven by external electrical fields, but their properties, e.g. 

effective mass and dispersion, are determined by the band structure derived from the 

original Schrödinger equation. They are called Bloch electrons. The most important laws 

under this semiclassical treatment are listed in Eq. 3.1 
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One implication of Eq. 3.1 is that Bloch electrons have different masses than electron rest 

mass. The so-called effective mass of an electron can be calculated from the band 

structure as shown in Eq. 3.2: 
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Because the wave functions of Bloch electrons are eigenstates of the lattice 

potential, they should travel through the lattice without any resistance. However, this 

almost never happens because no crystal can be perfect. The imperfections come from 

two main categories: defects, i.e. static imperfections, and phonons, i.e. the thermal 

motion of atoms in a crystal. Both of them destroy the periodicity of the crystal potential 

and make the wavefunctions of Bloch electrons of a perfect crystal no longer the 

eigenstates. In semiclassical picture, electrons, still in the eigenstates of perfect crystals, 

collide with defects and phonons and get scattered. This is how resistance arises in a 

crystal.  



 

 49

In semiclassical treatments, electrons are assumed to travel according to Eq. 3.1 

between collisions. The influence of collision events is centralized into the calculation of 

a local electron distribution function g(k,r,t), which describes the number of electrons 

sitting at states E(k) at time t and location r. It is similar to the Fermi- Dirac distribution 

in a thermally equilibrated system,  

( )( ) 1
1)( / +

= − TkkE Be
kf µ . (3.3) 

Transport currents and scattering will change the electron distributions, making it 

necessary to replace f(k) with g(k,r,t). 

 The way to calculate the distribution function is by the celebrated Boltzmann 

equation 
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The derivation of this equation can be found in solid state physics textbooks (Ashcroft 

and Mermin 1976). It describes how the local distribution function g evolves, in real 

space and momentum space, due to applied forces and collisions, whose effects are 

summed up by the term on the right hand side. To calculate this term, we need detailed 

physical origins of the collisions as well as the distribution function itself. The simplest 

approach is called the relaxation time approximation: 
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where g0(k) is the local equilibrium distribution function and t(k) is called the relaxation 

time.  

 Equation 3.5 is a major simplification in the sense that the relaxation time t(k) 

does not depend on g(k). The way to understand Eq. 3.5 is it shows that collisions make 

the distribution function relax back to its steady state. And the time scale of that 

relaxation is t(k). 
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 We will try to derive conductivity under an electrical field E using the above 

formalism. Since the external field is going to change g, we can expand g with respect to 

the electrical field. For simplicity, we ignore higher order terms and only keep the first 

two terms: 

10 ggg += , (3.6) 

where g0 is independent of E and g1 grows linearly with E. The first two terms of 

Boltzmann equation (Eq. 3.4) disappear in a uniform conductor at steady state. With the 

relaxation time approximation, it becomes  
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Expanding g in the form of Eq. 3.6 gives 
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Compare the terms with the same order of E on both sides and keep only the first order 

terms: 
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 We have derived the distribution function to the first order approximation in a 

general form. It depends on the band structure as well as an important parameter, the 

relaxation time t(k). In principle, every transport phenomenon can be calculated from Eq. 

3.9. t(k) will be derived in the next section. Since it depends on atomic details of the 

lattice and the collision mechanism, the calculation will be nanotube-specific.  
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3.3 Electron-Phonon scattering in nanotubes 
 

 In quantum mechanics, the transition rate from one eigenstate to another due to 

perturbations is calculated using the Fermi’s golden rule 

( )ωδπ
h

h
−−=Γ → fi EEiHf

2'2
fi ,  (3.10) 

where H'  is the matrix element that describes the interaction causing the transition, which 

is the electron phonon interaction in this section, and w is the angular frequency of the 

perturbation if it is oscillating in time.  

 Generally, collisions can come from two sources: lattice vibrations and defects. 

We will focus on how electrons are scattered by phonons. A phonon, or one mode of 

lattice vibration, moves atoms out of their equilibrium positions. The crystal potential 

associated with the positions of the atoms will oscillate too. We need to find out how this 

acts as a perturbation for the electrons in the crystal.   

 Define the potential induced by an atom at position Rn as V(r- Rn). When the 

atom moves by a displacement mn, the potential becomes V[r- (Rn+mn)]. The potential 

change at location r is  

( )[ ] ( ) ( )nnnnn RrµRrµRr −∇⋅−≈−−+−= VVVVnδ  (3.11) 

To the first order, it is linearly proportional to the displacement mn. This is why under 

deformation potential theory (Bardeen and Shockley 1950), the matrix element is 

assumed to be 

)(' rµnDH = ,  (3.12) 

where D, the proportional coefficient between H' and the displacement,  is called the 

deformation potential. The calculation of D is beyond the scope of this thesis. It is 

assumed to be constant for all tubes (Suzuura and Ando 2002; Pennington and Goldsman 

2003). The validity of this assumption is discussed in Appendix B.  The matrix element is 

then 

kDkH )('' rµn= .   (3.13) 
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 A group at University of Maryland (Pennington and Goldsman 2003) did a 

detailed calculation of Eq. 3.13. A lengthy derivation gives the following result 

 

( ) ( ) ( )[ ] ( ) DOSqEN
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⎜
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2

22

ρ
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where qz and E(qz) are the phonon wavevector and energy, N[E(qz)] is the phonon 

occupation number governed by Bose-Einstein distribution, DOS is the density of states, 

and r is the mass density along the tube axis.  

 When temperature is high, N[E(qz)] = kBT/E(qz), the transition rate is simplified to  

( ) DOS
v

TDkk
s

B
2

2

2 hρ
=Γ ⊥ ,  (3.15) 

where vs is the sound velocity2 in nanotubes. For a nanotube at constant temperature, G 

scales with the DOS at the Fermi level. Figure 3.6b shows the DOS of a semiconducting 

nanotube. There are a series of peaks called 1D Van Hove singularities. Figure 3.6a 

shows the first two subbands of a semiconducting nanotube. The Van Hove singularities 

occur when the energy is at the onsets of these subbands. If the conduction is confined in 

the first subband, the DOS goes from infinite at the band bottom to a constant value at 

high Fermi energy as Figure 3.6b shows. This indicates the transition rate is large at small 

Fermi energy, and decays to a constant value at higher EF according to Eq. 3.15.  

 

 

 

 

                                                 
2 The sound velocity in nanotube vs is around ~101 km/s, and is much smaller than the 

Fermi velocity in nanotubes, 8ä102
 km/s. The energy of phonons, zs qvhh =ω , are 

typically ignored and the scatterings are considered elastic.  
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Figure 3.6: (a) The band structure of a semiconducting nanotube. The dispersions of the 

first two subbands are shown.  (b) The DOS of a 1 nm diameter semiconducting nanotube. 

Eii is the energy difference between the ith conductance and valance subbands at band 

bottoms.  

 

 

Note the DOS at high Fermi energy converges to a constant value, 1/hvF, the same 

as the DOS in a metal tube. The minimum transition rate of nanotubes of different 

diameters is determined by the pre-factors in Eq. 3.15. Apparently, the mass density goes 

linearly with tube diameter, it is easy to conclude that 

d
T~minΓ   (3.16) 

 So far, the task of this section has been accomplished. The transition rate G, the 

inverse of the relaxation time t, has been calculated. Its dependence on temperature and 

tube diameter is shown in Eq. 3.16.  

 

 

 

(b) (a) 
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3.4 A model of electron-phonon scattering limited conduction in 
nanotubes  
 

The validity of the derivations in the previous two sections will be discussed in 

Appendix B.  But it is instructive to put everything of Section 3.2 and 3.3 together to see 

what these simple calculations can predict.  

 Continuing from Section 3.2, to the first order, the distribution functions is 

10 ggg += .  (3.17) 

The current is then 
( ) ( ) ( ) πππ 2/42/42/22

10
dkkvgedkkvgedkkvgeI ∫∫∫ +=×××= . (3.18) 

The factor 2µ2 comes from spin and K,K’ degeneracy. The first term is zero because it 

corresponds to the equilibrium currents that flow oppositely with the same magnitude. 

With Eq. 3.9, the second term can be written as 
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When the low temperature limit is taken where ∑g/∑E is not zero only at the Fermi level, 

the current simply becomes 

( )
Fkk

kv
h
eI

=

= Eτ
24 . (3.20) 

 
That indicates the conductance is  

( )
L
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h
e

L
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h
eG mfpFF

22 4)(4
==

τ ,  (3.21) 

where L is the nanotube length and ( )FFmfp kvkl )(τ=  is the so-called mean free path. lmfp 

describes how far an electron can travel before experiencing a collision. The constant e2/h 

is the universal conductance quantum. It equals the conductance of a ballistic 1D channel 

for a single spin mode. The factor 4 comes from the spin and KK’degeneracies. Since Eq. 

3.21 is derived from a diffusive conduction model, which is valid only when lmfp is 

smaller than the geometric length. That means G should always be no more than 4e2/h for 

a single subband. There are typically contact resistances present in series of the intrinsic 



 

 55

resistance of the conduction channel. The observed G will always be smaller than 4e2/h in 

that case. 

 Eq. 3.21 shows the value of G grows linearly with the mean free path. lmfp can be 

calculated from the knowledge we already have. v(kF) is determined by the band structure. 

With the simplified version of dispersion relation in Eq. 2.30, 
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Here v0 is the Fermi velocity of a metallic tube, or the slope of the Dirac cones of a 

graphene sheet. From Section 3.3, it is known that G(k) goes linearly with the density of 

states at the Fermi level. In a 1D system,  
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So the relaxation time t, the inverse of transition rate G(k), is linearly proportional to 

v(kF). If we define t0 as the relaxation time when Fermi level reaches the linear 

dispersion regime, then 

0
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)( ττ
v
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F = .  (3.24) 

When Eqs. 3.22 and 3.24 are plugged into Eq. 3.21, the conductance becomes 

 
( )

( )
2

0
2

2
0

2

2
000

2

3
21

14

2

4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

+⎟
⎠
⎞

⎜
⎝
⎛

=

F
F

F

dk

L
l

h
e

kvEg
kv

L
v

h
eG

h

hτ
.  (3.25) 

It only depends on the position of the Fermi level. kF is determined by the number of 

electrons in the tube. In our experiment, this is controlled through a gate placed next to 

the tube with a dielectric layer in between (Fig. 3.1b). Define C’
g as the gate capacitance 

per unit length and assume the threshold voltage, where the Fermi level is at the bottom 

of the first subband, is zero, then  
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The factor 1/8 comes from spin, K,K’ and ≤ k degeneracy. This leads to a gate voltage-

dependent conductance   
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The parameter a, defined as '3/8 gdCea π= , is determined by the nanotube diameter d and 

C’
g , determined the geometry of the FET device as shown in Fig. 3.1b. Figure 3.7 shows 

conductance as a function of gate voltage according to Eq. 3.25. The G initially goes 

quadratically at small gate voltage and reaches saturation at large Vg. 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Theoretical plot of SWNT FET conductance and mobility as functions of 

gate voltage according to Eqs. 3.27 and 3.30. The dotted line indicates where the Fermi 

level reaches the second subband at zero temperature. 
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 Besides conductance, people typically characterize a conductor with a few other 

quantities.  One of them is electron (or hole) mobility m, which relates the electron drift vd 

velocity to the applied electrical field: Evd /=µ . This quantity is, typically, a function 

of the Fermi energy in microscopic semiconductors. In microscopic two dimensional and 

one-dimensional semiconductors the Fermi level can be drastically changed by external 

gates. A quantity called field effect mobility can be defined as  

gg
FE dV

dG
C
L

'=µ .  (3.28) 

 

From Eq. 3.27, the field effect mobility of a nanotube is 
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The factor, 3pedl0/h, can be related to the effective mass at the bottom of the first 

subband as derived in Section 3.2: m*= h/3pdv0. Then the formula can be rewritten as 
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It is clear that mFE is a sensitive function of gate voltage Vg. When gate voltage is 

barely above the threshold, the relaxation time of electrons (or holes) and their velocity 

increase dramatically. At very high gate voltage, the Fermi level is in the linear 

dispersion regime where the conductance is not changing anymore even though more 

electrons are being added into nanotubes. This causes the field effect mobility to decay to 

zero. There is a maximum point in between. Its position can be extracted from Eq. 3.30 

with some simple algebra. When 3/aVg = , the maximum mobility is 

∗∗ ≈=
m
e

m
e

peak
00 32.0

16
33 ττ

µ .  (3.31) 

 Section 3.3 also tells us that in the diffusive regime, the relaxation time and the 

mean free path, depends on temperature as well as diameter. From Eq. 3.16 we can write 
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d
Tατ =−1

0 ,  (3.32) 

where a is a proportional factor. When Eqs. 3.27, 3.31 and 3.32 are combined, the 

maximum conductance and peak mobility for a nanotube with diameter d at temperature 

T is 
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 In conclusion, in the previous three sections, a model based on the relaxation time 

approximation is derived for electron-phonon scattering in nanotubes in the diffusive 

regime. It gives predictions on how conductance and mobility change in nanotube with 

respect to the Fermi level/gate voltage. These results will be compared with experimental 

data in Section 3.5.  

 

3.5 Comparing data with theory 
 

The experimental observations in Section 3.1 agree with the theory predictions of 

Section 3.4, at least qualitatively. On single device level, the measured conductance as a 

function of gate voltage in Fig. 3.2 looks quite similar to the theoretical plot in Fig 3.7.  

On the ensemble level, Fig. 3.4 shows that both resistivity and mobility of nanotubes 

depend strongly on diameter, but in different ways: 1/Ron ~ d and µ  ~d2.  This agrees 

with Eq. 3.33. The observed linear temperature dependence of resistivity and µ-1 is also 

predicted by the same equation.  

To be more quantitative, from the data in Fig. 3.2 we can extract values for the 

coefficient a from either the maximum conductance or the peak mobility:a  = 9.2 mK-1s-1 

and a= 12 mK-1s-1. A group at University of Maryland (Pennington and Goldsman 2003) 

obtained a value of α ≈ 6.5 mK-1s-1 for the total scattering rate in their theory calculations. 

More recently, using Monte Carlo simulation, an IBM group (Perebeinos et al. 2005) 

obtained nearly identical function forms to Eq. 3.33 but with a smaller value a ≈ 1.6 mK-
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1s-1. In general, theory calculations predict better conductance and mobility in nanotubes 

than what are observed in this experiment and in a recent experiment from a Columbia 

group (Purewal et al. 2007).  The origin of this discrepancy may come from the lack of 

knowledge of the deformation potential D value. In a recent study, a theory paper 

(Pennington et al. 2007) fitted the data in Fig. 3.2-3.4 and found out the best value for D 

is 14 eV, which is close to the value in graphene (16 eV).  

 

In conclusion, SWNT FETs were studied in the diffusive regime in this chapter. 

The on-state conductance increases linearly with the tube diameter d, and the peak 

mobility grows as d2. Both quantities grow linearly with T-1.  These observations are in 

good agreement with the predictions for scattering by low-energy phonons coupled with 

the 1D “relativistic” band structure. These results set the ultimate performance limits of 

SWNT transistors operating in the diffusive regime.  
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CHAPTER 4 

 INTRODUCTION TO CELL MEMBRANES 
 

From this point on, this thesis will focus on biology inspired researches. Biology 

may well be the most rewarding research area of this century. Unlike physics, where 

people can understand most phenomena based on a few fundamental principles and 

logical reasoning, biology, at least as of today, seems more complicated and is without a 

grand theory. This is because in biology everything is correlated to a certain level and ‘a 

single particle’ view is not feasible. Life is more complex than anything human beings 

have ever designed, such as computers, rockets and photolithography steppers.  

Modern biology was studied mostly from the chemistry perspective in the 

beginning. But physics is needed to understand many phenomena in life. For example, 

normally the most essential knowledge about a molecule is its chemical formula. But 

because many biomolecules are large in size, their conformations, which are strongly tied 

together with their functionalities, are governed by physics laws. Another example is 

physics laws also describe how biomolecules move around. Physicists also provide new 

tools/instruments to expand biologists’ experimental capabilities, such as better 

visualization of molecule structures or sorting cells/molecules. That is why biophysics 

has emerged as an active research area.  

Chapter 5 will describe our research on integrating nanotubes with cell 

membranes.  Since cell membranes have many unique properties that are not well known 

to the physics community, this chapter is dedicated to a brief introduction on membranes. 

The physical and chemical properties of the basic components of cell membranes, lipids 

and membrane proteins, will be discussed. The motivation and advantages of forming 

artificial membranes will also be provided together with some experimental techniques.  
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4.1 Lipids and membrane proteins form cell membranes  
 

Figure 4.1 illustrates a patch of cell membrane based on the Mosaic model. Cell 

membranes are mostly made of two major components: lipids and membrane proteins. In 

the Mosaic model, the lipid bilayer makes up the backbone of the membrane, where 

proteins are sparsely distributed and free to diffuse. Not surprisingly, this early-

established simple model did not capture many essential properties of cell membranes. 

The weight percentage of membrane proteins in cell membranes, it turns out, is 

significant and the protein mobilities are controlled by the cells in a way yet to be 

understood. However since this thesis deal with simple model membrane systems, most 

discussions will be on the level of this Mosaic model. A few of the most important 

properties of lipids and membrane proteins will be introduced in this section.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Schematic of a patch of cell membrane (library.thinkquest.org). 
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Lipids, one type of amphiphilic molecules 

 Most salts (ionic crystals) can dissolve in water. But for other small molecules 

that are made of a few atoms, some of them can dissolve in water while others cannot. 

Water is a polar solvent due to its intrinsic electrical dipoles. Just like in human society 

where people like to spend time with friends of similar characteristics, polar molecules 

are soluble in water while non-polar molecules are not. Hydrophilic and hydrophobic are 

used to categorize molecules into two flavors.  

 However, there is another category. When molecules become large, they can have 

segments that have intrinsic dipoles or charges while other segments that do not. Figure 

4.2 shows a molecule, commonly used in detergents, called sodium dodecyl sulfate 

(SDS). The head group around the sulfur atom becomes ionic in water solution, and is 

thus hydrophilic. Each line in the zigzag part denotes an individual -CH2 group. Since the 

bonding electrons in -CH2 groups have similar affinity to both carbon atom and hydrogen 

atom, this part is non-polar. The zigzag part can be considered as a hydrophobic tail 

group.  SDS belongs to a group of so-called amphiphilic molecules. The head group does 

not have to be ionic like in the case of SDS, an intrinsic dipole is enough to interact 

strongly with water. Figure 4.3 shows a lipid molecule, called 1,2-Dioleoyl-sn-Glycero-3-

Phosphocholine (DOPC), that has a dipole in the head group. It should also be noted that 

DOPC has two hydrocarbon chains instead of one.  DOPC will be of great interest in 

Chapter 5.  

 

 

 

 

Figure 4.2: Structure of SDS molecule (Wikipedia).  
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Figure 4.3: Structure of DOPC molecule (Avanti Polar Lipids).  

 
 

Assembly of amphiphilic molecules 

Amphiphilic molecules may dissolve both in water and non-polar solvents, e.g. oil. 

However their conformations could be different in different solvents. When the 

concentration is not too low, they can assemble into many interesting structures.  

When one SDS is put into a bucket of water, the hydrophobic tail group cuts the 

hydrogen bond network of the water molecules. In other words, a surface energy must be 

paid. The interfacial free energy of saturated hydrocarbon water interface is about 50 

mJm-2 (Israelachvili 1991). This value is smaller when unsaturated C=C bonds are present. 

When two SDS molecules are put into solution, they would like to have the tail groups 

next to each other so that the total surface area is reduced. However, entropy keeps them 

away. When the SDS concentration reaches above a threshold level, they can finally 

assemble into the micelle structure shown in Fig. 4.4. In micelles, the hydrophobic tail 

groups of SDS are wrapped inside the hydrophilic head groups to keep them away from 

the water. Thus it is in an energetically favorable configuration. Amphiphilic molecules 

can be used as surfactants. For example, SDS is used to wrap around nanotubes to 

disperse them in water solution (O'Connell et al. 2002).  
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Figure 4.4: Schematic of a micelle structure (answers.com).  

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5: Schematic of a bilayer vesicle structure (Barrett group, McGill University). 

 



 

 65

When many DOPC molecules are dissolved in solutions, they form a different 

structure as shown in Fig. 4.5. The DOPCs assemble in a tail-to-tail bilayer fashion and 

form vesicles with a cavity inside. This lipid bilayer structure already looks like a cell 

membrane.  

The self assembly is determined by interactions between the amphiphilic 

molecules and the water. Apparently there is a repulsive force between the polar head 

groups. The force between tail groups is attractive due to Van der Waal interaction and 

hydrophobic effects in water.  To make a stable structure, the areas occupied by the head 

group and tail group will be at values where the total free energy is minimized. These two 

values do not have to be the same.  

When all the complicated forces are put aside, phenomenologically, the shape of 

the self-assembled structure is governed by a dimensionless geometric factor called the 

packing parameter: p = V/(aµlc), where a is the head group area, V is the volume of the 

hydrocarbon tail group and lc is the critical length of the hydrocarbon chain. lc is the 

maximum length the chain can extend while still being fluid, and is on the same order as, 

but smaller than, the fully extended length. When p is less than 1/3 as in the case of SDS, 

individual amphiphilic molecule is in the shape of a cone and they will form micelles. 

When p is larger than 1/3 but smaller than 1 as in the case of DOPC, the molecules are 

analogous to truncated cones and they form either cylindrical micelles or bilayer vesicles.  

When p is around 1, the molecules are in the shape of a cylinder and they form planar 

bilayers (Israelachvili 1991).  

This packing parameter is not strictly an intrinsic property to the amphiphilic 

molecules. The solvent, water in this case, plays the important role. The strength of the 

electrostatic repulsion between head groups is mediated by ions in the water solution. For 

example, SDSs form micelles in low salt buffer. But when the ionic strength is increased, 

the head group would like to stay closer and the effective area would decrease. That 

makes the packing parameter go larger than 1/3 and they start to form cylindrical micelles. 
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Along the same line, introducing divalent ions like Ca+, which can be shared as 

counterions by adjacent head groups, can also reduce the repulsion between head groups 

and increase the packing parameter p.   

Besides electrostatic effects, temperature can also change the optimal structure for 

a given system. This effect is more subtle and difficult to predict. In general temperature 

can modify the packing properties of the hydrocarbon chains. Increasing temperature can 

make the hydrocarbon chain more mobile and reduce lc.  

Another interesting method to change the self-assembly properties is by 

introducing lipid mixtures. When two lipids are mixed together, assuming they do not 

phase separate into different regions, each of them can still be described by its own 

packing parameter. When one type of molecules with p < 1/3 is mixed with another type 

with 1/2  <  p < 1 at the right condition, they may form cylindrical micelles.  

 

Permeability of lipid bilayers 

Lipid bilayers are the central theme of this chapter. Mother Nature uses lipid 

bilayers to form the backbone of cell membranes. Unlike rock solid walls, cell 

membranes need to be permeable to certain molecules because cells need to get their food 

from and send out their wastes to the outside world. Cells in multiple cellular organisms 

need to communicate with others to coordinate their behaviors. The job of cell 

membranes is to successfully control the traffic of various molecules and conduct signals 

into and out of cells. 

When there is a concentration difference of a certain molecule across a bilayer, 

the molecules will try to permeate through the bilayer to equilibrate the concentrations on 

the two sides. The permeability P, defined as P = j/Dc where Dc is the concentration 

difference and j is the flux density, is obviously molecule dependent. A similar 
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permeability will be discussed in Chapter 5 to characterize the lateral diffusion and 

diffusion hindrance of lipids and proteins inside lipid bilayers.   

Let us first ponder on how molecules can go through a bilayer membrane. They 

first need to leave the aqueous solution to enter the hydrophobic zone in the middle of the 

bilayer. Then they need to diffuse through this zone and come out on the other side. The 

first quantity that influences P is how much the molecule prefers the hydrophobic oily 

environment compared to water.  This is quantified by a parameter called the partition 

coefficient B. Suppose a test tube is filled with water and a hydrophobic solvent such as 

octanol. When a small amount of these molecules is added into the test tube, after 

complete mixing, the ratio between the molecular concentrations in the hydrophobic 

solvent and in the water equals the dimensionless partition coefficient B. Besides that, P 

is also proportional to how fast the molecules can move around in the hydrophobic zone. 

In short, P is proportional to BµD with D being the diffusion coefficient in oil for each 

specific molecule. This has been verified experimentally in the 1980s by the Finkelstein 

group (Orbach and Finkelstein 1980). Figure 4.6 is the original plot in their publication. 

Although the ten different molecules have quite distinct permeabilities, they all fall onto a 

line that shows the proportionality between P and BµD. In general, small gas molecules 

and hydrophobic molecules have a high permeability.  Even small polar molecules like 

water and ethanol can penetrate the membrane. But large polar molecules, such as 

glucose, and charged molecules of any size, such as Na+, cannot.  

This tells us that cell membranes cannot be made of lipid bilayers only. Cells will 

starve to death because food cannot go through the bilayers in this passive transport mode. 

Luckily nature designs cell membranes with many proteins that sit in the bilayer to 

facilitate transport of molecules with or without the cost of energy consumption.  
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Figure 4.6: Permeability as a function of B times D (Orbach and Finkelstein 1980). 

 
 

Membrane proteins 

 Membrane proteins can be categorized by the way they associate with 

lipid bilayers. A transmembrane protein, one that spans the whole lipid bilayer, has both 

hydrophilic region and hydrophobic region. The end result is part of the protein likes to 

sit inside the bilayer while others want to be immersed in aqueous solution. This type of  
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Figure 4.7: Different types of membrane proteins (www.geneontology.org). 

 

Figure 4.8: Two examples of transmembrane proteins: potassium channel (left) 

(www.steve.gb.com) and hemolysine (right) (molbiol.ru). 
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proteins is shown on the right side of Fig. 4.7.  Another type of proteins anchors to 

membranes by making covalent bonds with the lipids, shown in the middle of Fig. 4.7, 

and they are called integral proteins. The last type attaches to other molecules in the 

membrane by weak electrostatic, hydrophobic and other non-covalent interactions and 

can be release from the membrane; these are called peripheral proteins.  

Obviously, only transmembrane proteins are capable of transporting molecules 

across the bilayers. There is a whole zoo of transmembrane proteins. One of the brightest 

stars is the potassium ion channel shown on the left side of Fig. 4.8.  The structure of the 

potassium ion channel was determined with protein crystallography by Prof. MacKinnon 

of Rockefeller University (Doyle et al. 1998), which won him the 2003 Nobel Prize in 

Chemistry. Another one in current spotlight is a-hemolysine (Mathe et al. 2005), as 

shown on the right side of Fig 4.8, which can let single strand DNAs go through 

membranes. The holes in the transmembrane proteins that allow molecules to pass 

through are visible in this figure. The difference between the two types of proteins shown 

in Fig. 4.8 is that the potassium ion channel can be gated to be either open or closed while 

a-hemolysine has just a passive opening. Artificial nanometer scale solid state pores have 

recently been fabricated (Dekker 2007) to simulate a-hemolysine. They show promise for 

several applications including DNA sequencing. 

The purpose of other types of membrane proteins will not be discussed. But an 

important fact about membrane proteins is that transporting molecules is not their sole 

job. They do not necessarily have holes as potassium ion channel and a-hemolysine. 

Membrane proteins can also conduct signals in other ways. For example, when a 

compound binds to part of a transmembrane protein on one side of the membrane, it can 

generate conformational changes in the transmembrane proteins to trigger a series of 

chemical events on the other side of the membrane. This example also indicates that the 

functions of these proteins are regulated by many methods, including ligand binding in 

this case and electrical potential in other cases.  
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Transmembrane proteins are hard to study because they require bilayers to keep 

their correct conformations, and many of them do not dissolve in water (thus are hard to 

crystallize). That is why their structures were determined much later compared to other 

proteins. This also makes people interested in forming artificial bilayers to provide 

playgrounds for membrane proteins, which will be discussed in Section 4.2.  

 

Diffusion in membranes 

One important property of lipids and membrane proteins in cell membranes can 

be seen from one experiment. Figure 4.9 is a schematic of a well known experiment in 

1970 (Frye and Edidin 1970) in which human cell and mouse cell were fused together 

and the human/mouse proteins mixed on the surface of the new entity (Yes, crazy 

biologist!). It proves that membrane proteins, lipids as well, are not static. Instead, they 

are moving around laterally in cell membranes 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Schematic of the cell fusion experiment (Frye and Edidin 1970). The 

membrane proteins from the two cells mixed uniformly within an hour. 
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The lateral diffusion of lipids and protein in the membrane is an important process 

yet to be fully understood. To the first order, it can be modeled as two-dimensional 

random walk. The mean square displacement in a two-dimensional diffusion increases 

linearly with time : <(xN)2> = 4Dt, where D  is the diffusion constant.  

Lipid diffusion is simpler than protein diffusion due to their small sizee, and it 

follows the random walk model most of the time. The typical lipid diffusion coefficients 

are around ~mm2/s. But there are exceptions. Each lipid species has a characteristic 

transition temperature. Below it interactions between the lipid tail groups are so strong 

that the lipids are tied together in a gel fashion. This makes the diffusion limited. When 

lipids with different transition temperature are mixed, they may phase separate out 

making so-called lipid rafts. The lipid raft model (Brown and London 1998) is proposed 

to describe the phenomenon where a mixture of different lipids/proteins are effectively 

bundled up and diffuse together.  

Membrane proteins can diffuse quickly in random walk fashion in artificial lipid 

layers. In real cells, however, the behaviors of membrane proteins typically cannot fit 

with the random walk model. Their diffusion coefficients can vary drastically. Cells have 

the ability to confine them to certain spots on the membrane. This will be discussed 

further in Chapter 5.  

 

Lipid bilayer fusions 

Another noticeable process in the experiment illustrated in Fig. 4.9 is that cells 

can fuse. In general when two lipid bilayer vesicles are put against each other at the right 

condition, they can integrate into one. These fusions are typically facilitated by 

membrane proteins in real life. 

Lipid bilayers fusion happens so often that it is used as another mechanism for 

molecule and signal transports across membranes, through a process called exocytosis. 
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One example, the complex synapse process, is shown in Fig. 4.10.  For the purpose of 

this section, one only needs to focus on how neurotransmitters, the green triangles in Fig. 

4.9, are excreted out via vesicle fusion with the cell membrane. These neurotransmitters 

are initially wrapped inside synaptic bilayer vesicles floating in the cytoplasm of the 

nerve terminal. When these vesicles fuse with the cell membrane of the neuron, 

neurotransmitters are exposed and released to the synaptic junction. The event is 

propagated to the cell on the bottom when the neurotransmitters bind to the receptors on 

its membrane. Exocytosis exists in cells other than neurons too, and is widely used to 

dump waste or signaling molecules.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Schematic of synapse processes that require lipid bilayer fusions 

(CNSforum.com). 
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In summary, this section presents a few characteristics of cell membranes and 

their components. An important method to study these properties is going to be 

introduced in the next section.  

 

4.2 Artificial lipid bilayers  
 

Real cell membranes are not easy to study. For example, a popular yet notoriously 

hard method used to study the transport behavior of ion channels is patch clamp method 

(Hamill et al. 1981). It requires using a micrometer sized pipette tip to make a well-sealed 

contact to a small patch of fragile membrane without breaking it. It is not easy to keep 

cells healthy and happy, especially for physicists.  

As in most biology experiments, fluorescence microscopy is used as a powerful 

tool to study cell membranes.  But sometimes it is difficult to eliminate the background 

light coming from the cell bodies. For example, the imaging is very challenging when 

fluorescence microscopy is used to visualize the processes happening at the cell-cell 

junctions.  

Most importantly, cell membranes are complex systems, typically composed of 

many types of lipids and a large number of proteins of different purposes. This makes it 

very difficult to study the properties of a single component.  

This is why people invented a few model membrane systems using lipid bilayers. 

These membrane mimics have various experimental advantages while capturing the 

essence of cell membrane. The artificial membranes are typically stable and can be used 

with many sophisticated imaging and electrically techniques. It is much easier to study 

single protein or process one by one with model membranes since their compositions are 

well controlled. Artificial membranes can be integrated with other organic and inorganic 

structures and could produce many medical applications, besides their significance in 

scientific research.  
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Here, a few types of artificial lipid bilayers will be discussed. They each have 

their own merits and drawbacks.   

 

Suspended lipid bilayer 

One way to form a small area lipid bilayer is by using sable hair brush to paint 

lipids (Akeson et al. 1999; Bernards et al. 2006) on a small aperture that connects two 

chambers. After the chambers are filled with buffer solution, a fine brush is used to put a 

small droplet of organic solvent with lipid molecules onto the aperture. After the solvent 

evaporates, a suspended lipid bilayer, sometimes called black membrane, is assembled 

across the aperture.  Figure 4.11 shows the apparatus and resulting lipid bilayer. The 

formation of the bilayer is monitored by measuring the junction resistance and 

capacitance. 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 

 

Figure 4.11: One example of suspended lipid bilayers (Akeson et al. 1999).   
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 Another way to form a suspended lipid bilayer in this same two-chamber 

configuration can be done without using brushes. First, one of the two chambers is filled 

with oil and the other with water. When lipids are put into water, they will form a 

monolayer at the aperture between water and oil to reduce the surface energy. This 

aqueous lipid solution can then be introduced into the oil chamber to gradually replace all 

the oil. Once the water oil interface reaches the aperture, another monolayer will form 

against the original one to make a bilayer.  

Suspended model membranes provide an excellent system to study transport 

processes through bilayers. For example, a-hemolysine can be inserted to a patch of 

suspended membrane and DNA translocation through the protein can be studied by 

monitoring the reduction in conduction through the protein pore (Mathe et al. 2005). The 

lifetime of this type of artificial membrane is on the order of hours, and is sufficiently 

long for most purposes. This type of model membrane does not have particular imaging 

advantage though. 

 

Supported lipid bilayer 

 Another kind of model system that is becoming more popular is called supported 

lipid bilayers (SLBs), shown schematically in Fig. 4.12. It is basically a two-dimensional 

lipid bilayer sitting on top of a flat and hydrophilic solid substrate such as glass, mica and 

oxidized silicon wafers.  

 SLBs are typically formed through vesicle fusion and rupture. Lipid molecules 

first self assemble into vesicles. When a droplet of this vesicle solution is put on a flat 

hydrophilic substrate, the vesicles will stick to the substrate and from a two-dimensional 

lipid bilayer sheet (detailed experimental methods in Chapter 5). This transition process 

was studied carefully by the Boxer group at Stanford (Johnson et al. 2002). When a  
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Figure 4.12: Side view of a patch of support lipid bilayer. 

 

Figure 4.13: Forming SLBs via vesicle fusion and rupture (Johnson et al. 2002). 
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vesicle is attracted to a substrate due to interfacial forces (this is why it only works on 

hydrophilic substrates), another vesicle floating in the solution can fuse with the one 

stuck on the substrate to form an American-football shaped cylindrical vesicle. The 

membrane curvature is reduced in the fusion process. And eventually these bigger 

vesicles rupture to form planar membranes.  Figure 4.13 shows this process in a pictorial 

way. There are other mechanisms for this transition process, but the one shown in Fig. 

4.13 is the main route. This implies that the transition from vesicles into SLBs is easier 

with high concentration vesicle solutions since it requires interactions and fusion between 

multiple vesicles. 

 

Advantages of SLBs 

One of the biggest advantages of SLBs’ is that they serve as a versatile imaging 

platform because the membrane is flat and sitting on microscope compatible substrates. 

For example, it is used as a model system to study membrane interactions between two 

cells. This is hard to do in other systems since they require sophisticated manipulation of 

cells and elimination of unwanted background light. The Groves group (Mossman et al. 

2005) used a flat SLB and a vesicle to simulate this process. The membrane-membrane 

junction is easy to form in this case. Total internal reflection technique, which relies on 

the evanescence light waves that can only penetrate a small depth (~100 nm) into samples 

of interest when total internal reflections happen, is used to illuminate only a thin layer of 

space around the membrane junction to get rid of background noise. Another microscopy 

that can be used with SLBs is fluorescence interference contrast microscopy, which can 

be used to acquire nanometer scale height variation information. The Groves group 

(Parthasarathy et al. 2006) made SLBs on top of SiO2/Si wafers. Both the excitation and 

fluorescence emission from the membrane interfere with the reflections from the nearby 

silicon surface. Therefore the intensity of the fluorescence signal is a sensitive function of 
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the membrane height, and is used to resolve sub-nanometer information in the direction 

perpendicular to the membrane.  

 Another advantage is that SLBs’ are much more stable. Compared with suspended 

bilayers, the head groups of lipids in SLBs can interact with the substrates beneath. And 

the sealed water cushion layer between the SLB and the substrate can potentially have 

different ionic strength than the bulk solution. Both factors can modify the packing 

parameter, which, as mentioned in Section 4.1, is a function of molecule structures and 

environment. Effectively there should be little tension in (at least the bottom leaflet) 

SLBs and they are mechanically more stable.  

Lastly, SLBs can be patterned. Since SLBs do not form on most metal surfaces, 

evaporated metal lines can serve as fences to confine SLBs.  Photoresist can also be used 

to cut the continuity of SLBs. One example is shown in Fig. 4.14. There are other ways to 

do the job without putting any other material around the SLBs. The key is to make  

 

 

 

Figure 4.14: Patterned SLBs using photoresist barriers (showing as dark lines). Each box 

is 200 mm by 200 mm (Groves et al. 1997). 
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different regions of the substrate surface with different properties. One method (Moran-

Mirabal et al. 2005) involves covering regions where SLBs are not needed with thin  

parylene film before the substrate is exposed to vesicle solutions. After a SLB is formed 

on the substrate, parylene film can be peeled off to leave SLB patches at regions of 

interest. With both techniques, the SLB patterns can be defined down to micrometer scale. 

 

Lipid mobility in SLBs 

 One may worry that the lipid mobility in SLBs is degraded due to the presence the 

nearby solid substrates. But since the attractive force is small, the lipids are still diffusive 

in SLBs. The diffusion coefficient can be measured accurately with Fluorescence 

Correlation Spectroscopy (FCS) (Moran-Mirabal et al. 2005) or Fluorescence Recovery 

After Photobleaching (FRAP). Detailed discussions can be found in Section 5.2. It is hard 

to compare the lipid mobility in SLBs to that in real cells since cell membranes are made 

of complicated mixtures of lipid varieties and membrane proteins. However the diffusion 

coefficient is on the same order.  

The lipids in SLBs can be manipulated with external forces. In one experiment, a 

charged lipid species is mixed with another neutral type in an SLB (Groves et al. 1996). 

They do not phase separate under normal conditions. When an in-plane electrical field is 

applied, however, the negatively charged lipids start to move under the influence. The 

distribution function is a result of the competition between the electrical potential and 

thermodynamic equilibration. As Fig. 4.15 shows, the negatively-charged fluorescence 

lipids, red in color, build up at the edges of SLB corrals opposite to the direction of the 

electrical field lines.  In Chapter 5, we will show another example where proteins 

attached a SLB are manipulated by fluid flow.  
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Figure 4.15: Driving charged lipid molecules in SLBs with electrical field (Groves et al. 

1996).  

 
 

Protein mobility and polymer supported lipid bilayer 

As mentioned before, membrane proteins can be integrated into SLBs in order to 

study their properties. But the mobility of membrane proteins can be degraded due to 

their interaction with the substrates. This is because proteins are large. When part of the 

proteins extruding from the SLBs strongly interacts with the substrate, they will be 

pinned. On top of that, the protein may denature, or change their conformations in other 

words, to lose their normal functionalities. There are a few methods to solve this 

difficulty (Sackmann 1996). First, when the extruding parts are not essential to protein 

functions, they can be chopped off. For example, if a protein only serves as receptors to 

other molecules, there are only two parts needed to remain intact: the group in charge of 

recognition and binding and the group that anchors the protein to lipid bilayers.  

 In the case of other more complicated transmembrane proteins like ion channels, 

however, the structure cannot be altered. Then the solution to the mobility and 
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denaturation problems can be solved by adding a hydrated polymer cushion layer 

(Sackmann 1996) between the lipid bilayer and the substrate as shown in Fig. 4.16.  This 

is actually a better mimic of cell membranes. Cells in multi-cellular organisms are 

surrounded by an extracellular matrix, which is essentially made of biopolymer meshes. 

Because of that, proteins are expected to perform their functions in polymer supported 

bilayers.  

Experimentally it may be a little more difficult to functionalize the substrates with 

a flat polymer layer and then form bilayers on top. Another possible solution is to use 

small percentage of lipids with very large head groups when constructing the bilayer. The 

hope is that these lipids will act as pillars to push the bilayer further away from the 

substrate to prevent proteins from interacting with the substrate. As far as the author 

knows, this idea has not been tried or has not been successful enough to be reported.  

 

 

 

 

 

 

 

  

 

 

 

Figure 4.16: Schematic of polymer supported lipid bilayers (Sackmann 1996). 
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In summary, a brief introduction to amphiphilic molecules, cell membranes and 

lipid bilayers are given in this chapter. Artificial membranes, including SLBs, are shown 

to be flexible platforms to study membrane properties. This knowledge is indispensable 

for the experiments in the next chapter. 
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CHAPTER 5 

SUPPORTED LIPID BILAYER/CARBON NANOTUBE HYBRID 

 

Single-walled carbon nanotubes (McEuen 2000) (SWNTs) offer unique 

opportunities for chemical (Kong et al. 2000) and biological sensing (Besteman et al. 

2003; Star et al. 2003). In this chapter, we will present our research on integrating 

SWNTs with artificial cell membranes for sensing protein binding events and studying 

the interaction between nanotubes and lipids/proteins.  

In Sections 5.2-5.5, we show the integration of supported lipid bilayers (SLBs) 

(Brian and McConnell 1984; Sackmann 1996; Richard et al. 2003)with SWNT field 

effect transistors (FETs). We first demonstrate membrane continuity and lipid diffusion 

over the tube. We show that, however, the NT acts as a diffusion barrier for a membrane-

bound tetanus toxin protein, and that the strength of the diffusion barrier depends on the 

diameter of the NT. Finally, we present results on the electrical detection of specific 

binding of streptavidin to biotinylated lipids.  

The formation of fluidic SLBs on SWNTs will allow the study of lipid-SWNT 

interactions and sensing of analytes binding to specific receptors imbedded in the SLBs. 

These studies should have an impact on our understanding of model and biological 

membranes (Zhou et al. 2007).  

But before the main content of the chapter, as a prelude, Section 5.1 is used to 

discuss why people are interested in nanotube sensors, what people have accomplished 

and why we chose to study cell membranes. 
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5.1 Prelude 
 

Why is a nanotube an interesting component to interact with 
biomolecules? 

 In order for nanotubes to be used in any experiments with biomolecules, which 

require water solutions to retain their normal functions, it is critical to show that 

nanotubes can work in aqueous environment. This was demonstrated a few years ago 

(Kruger et al. 2001; Rosenblatt et al. 2002).  

Figure 5.1 plots the conductance of a nanotube FET in 0.1 M NaCl solution as a 

function of solution potential. The detailed experimental method is explained in Section 

5.2.  When compared to similar curves where the Fermi level is controlled by a back gate 

as in Chapter 3, Fig. 5.1 shows the nanotube can be turned on much faster in solution,  

demonstrating the large capacitance between water and nanotubes (Rosenblatt et al. 

2002).  

 

 

 

 

 

 

 

 

 

 

Figure 5.1: The performance of a nanotube FET in 0.1M NaCl solution. 
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 After these studies proved the possibility of nanotubes working in salty water 

solutions, the first idea of integrating nanotubes with biology was the use of nanotube 

FETs as sensors. Since most biological molecules are charged, when they bind to a 

nanotube, the local electrostatic environment is altered, which may generate a 

conductance change in the FET. In other words, the threshold voltage of the FET is 

shifted. This is a general approach valid for all FETs, but using nanotubes FETs as the 

key element has quite a few advantages that can be summarized in four s-words: 

 Small. First of all, SWNTs are small, even when compared with micro 

biomolecules. The nominal diameter of a DNA double helix is 2 nm. SWNTs can be even 

smaller than that in diameter. This advantage can lead to high (even single molecule) 

sensitivity, high spatial resolutions and parallel operations. The high sensitivity can be 

very important. The concentration of macro molecules of interest is amazingly low in 

many cases. It would be great to have a small sensor that does not require too much 

analyte to get the test done.  

Surface. For an electrical charge based sensing scheme, it is desirable to put the 

conducting channels close to the analyte in order to increase the electrostatic coupling.  A 

nanotube is perfect in the sense that all the atoms are on the surface. Another advantage is 

there is only one conduction channel in nanotubes. In a typical traditional FET sensor, 

there are conduction channels underneath the surface that give rise to a large background 

noise. Having only one conduction channel on a nanotube surface can raise the sensitivity 

even higher.  

Stable. In traditional semiconductor FETs, it is not possible to expose the electron 

conduction channels directly to the aqueous environment because the ions can penetrate 

into the FETs and ruin them. A dielectric layer is needed to isolate FETs physically from 

ions in the solution. That would inevitably reduce the electrostatic coupling. Since carbon 

nanotubes are in such a chemically inert form, they will not react with ions even when 

there is reasonable (less than 0.7 V) electrical potential between them, as shown in Fig. 
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5.1.  In other words, ions and electrons in nanotubes are separated by a fence that is 

impenetrable at low voltage. This maximizes the electrostatic coupling and leads to high 

sensitivity.   

Superior mobility. Besides coupling efficiency, another factor influencing the 

sensitivity is transconductance.  It describes the amount of conductance change as a 

response to a doping level modulation, and is linearly proportional to the FET mobility. 

Under the same Fermi level modulation, signals from FETs with higher mobility are large 

in magnitude and more easily detected.  The mobility of nanotubes, as mentioned in 

Chapter 3, can reach more than 15,000 cm2V-1s-1 at room temperature (Zhou et al. 2005). 

This value is more than a few times larger than that of crystalline silicon. However, it 

could be a double-edged sword in some cases. When there is a significant contact 

resistance, the signal on FETs with high mobility and low resistance may be 

overwhelmed by noise imposed by contacts. However it is always possible to operate 

nanotube FETs at low doping level with the right gate voltage to make the signal coming 

from the sensing region stand out.  

 These properties of nanotube FETs result in an extraordinary sensitivity.  The 

sensitivity is given by signal to noise ratio. In our experiments, it is possible to 

distinguish a threshold change as small as 2 mV at 1 KHz bandwidth (This value cannot 

be improved much by decreasing the bandwidth because the dominating form of noise is 

1/f noise.). The capacitance between liquid solution and a nanotube is estimated and 

measured to be around 4 µ 10-10 F/m (Rosenblatt et al. 2002). That means a doping 

change of as few as 5 electrons in a 1 mm nanotube FET can be sensed. This does not 

necessarily mean that a detectable signal can be generated when 5 extra ions are put close 

to a micrometer long nanotube FET though due to charge screening: the mobile ions in 

electrolyte solutions can efficiently decrease the magnitude of electrostatic interactions. 

Single electron sensitivity is possible when the nanotube conduction channel 

length is further reduced. This unprecedented sensitivity will enable electronic-based 



 

 88

molecule detections to complement optical techniques currently used for the purpose. It 

will make huge impact in research and applications if it can be made to work effectively 

and reliably.  
 

Previous biosensors made of nanotubes 

 The first studies using nanotubes as biosensors focused on DNA or protein 

detection (Besteman et al. 2003; Star et al. 2003), based on the idea discussed above. 

These works are important because DNA and proteins are the two most essential 

components of life, and have been in the spotlight of modern biology. As the central 

dogma of molecular biology says (Alberts et al. 2002), DNA carries the genetic 

information from one generation to the next while proteins, made from the blue print 

encoded in DNAs, perform all the functions to keep cells alive. (RNA is also needed in 

the transcription and translation process to produce protein molecules.)  The ability to 

detect specific DNA sequences and proteins can generate huge clinical improvements, e.g. 

faster diagnosis and potential disease prevention.   

On the other hand, in these previous studies the biomolecules were almost treated 

identically to any charged particles, making these projects less appealing to biologists.   

 

Why do we choose to study cell membranes 

 There would be no life on Earth if there were only DNAs and proteins in the 

world. Without compartmentalization, entropy would put everything into thermal 

equilibrium and make the world featureless. It is membrane that forms playgrounds for 

DNA and protein to function properly. Figure 5.2 is a schematic of a cell. First of all, the 

cell is separated from its surroundings by its cell membrane. Even on the inside, different 

organelles are isolated as individual units by membranes. These membranes control the 

traffic of all kinds of molecules, including food, waste and signaling molecules, into and  
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Figure 5.2: Schematic of a cell (web.jjay.cuny.edu/~acarpi/NSC). 

 
 

out of the cell.  A cross membrane potential is also used in the photosynthesis process to 

store solar energy into chemical bonds, and in the metabolism to release energy from 

chemical bonds (Alberts et al. 2002; Nelson 2004). Membranes are indispensable units of 

life. That is why this part of the thesis will study membrane properties using nanotubes as 

a tool. 

Specifically, we will work with SLBs. SLBs self-assemble from phospholipids on 

flat, hydrophilic substrates like glass, and mimic many properties of cell membranes. The 

lipids in a SLB are laterally mobile and many reconstituted membrane proteins embedded 

in them remain functional (Salafsky et al. 1996; Mossman et al. 2005). Although it has 

been shown that lipid bilayers can form on top of multi-walled carbon nanotubes (Ye et 

al. 2005) or SWNTs coated with polyelectrolytes (Artyukhin et al. 2005), the nanotubes 
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in these experiments were not used as detection elements and the bilayers were not 

supported on flat substrates. Another group has placed membrane patches on SWNT field 

effect transistors (FETs) (Bradley et al. 2005), but no continuous SLBs were formed and 

the measurements were carried out in dry condition. As will be shown in following 

sections, our research, for the first time, integrated high quality SLBs with nanotube 

FETs. 
 

5.2 Forming SLBs on nanotube chips 
 

Methods of forming and imaging SLBs  

The phospholipid used for SLB formation was the zwitterionic 1,2-dioleoylsn-

glycero-3-phosphocholine (DOPC, Avanti Polar Lipids). Small unilamellar vesicles 

(SUVs) were prepared as previously reported  (Groves et al. 1996; Moran-Mirabal et al. 

2005) . Lipids were dissolved in chloroform at the appropriate molar ratios for a final 

concentration of 1mM, and allowed to mix. The solvent was evaporated under a dry 

nitrogen stream, forming a uniform lipid film. The lipids were then resuspended in either 

10 mM or 1 µM (working solution for electrical detection) PBS buffer (pH 7.4), and 

allowed to rehydrate. Finally, SUVs were produced by point-probe sonication at 100 

Watt for about 10 minutes, yielding vesicles 50-100 nm in size.  When vesicles were 

incubated on hydrophilic substrates above the transition temperature of the mixture, SLBs 

formed spontaneously via vesicle rupture and fusion.  

In experiments with chips containing SWNT FETs, polydimethyl-siloxane (Ng et 

al. 2002) (PDMS) microfluidic channels with a typical cross section of 10×50 µm were 

laid on top of SWNT FETs to confine liquid solution to the area proximal to the SWNTs 

(Fig. 5.3a). The alignment was done manually on a home-built probe station. A low-

magnification long-working distance microscope was used to keep track of the features 

on nanotube chips and PDMS stamps. The edges of PDMS stamps were attached to a 
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holder, made from two glass slides with spacing in between that were glued to another 

slide. The PDMS staples can be moved in three dimensions by a micromanipulator, and 

were laid down on facing nanotube chips once alignment was achieved.  

Once the PDMS sealing was visually checked under microscopes, the holder was 

removed and the channel was filled with vesicle solutions. This was done by putting a 

droplet of vesicle solution in one of the open reservoirs, holes punched in the PDMS 

stamps and connected to the ends of the channels. After an incubation of about 15 

minutes to allow SLBs formation, the channels were flushed many times with working 

buffer to remove excess vesicles. Putting chips with vesicle solutions into a hot moisture 

oven can help the SLBs formation if the transition temperature of the lipids is above 

room temperature.   

To image SLBs, Lissamine-Rhodamine Red 1,2-dihexadecanoyl-sn-glycero-3-

phosphoethanolamine (LR-DHPE) (Molecular Probes) fluorophores were mixed with 

phospholipids at 0.1% molar ratio.  Images were obtained by using an upright Olympus 

fluorescence microscope with a thermo-electrically cooled 12 bit CCD camera (Cooke).  
 

Nanotube device fabrication and cleaning 

The SWNT FET devices (shown schematically in Fig. 5.3a) were fabricated as 

previously reported (Rosenblatt et al. 2002).  Carbon nanotubes were grown by chemical 

vapor deposition on silicon wafers with 500 nm oxide capping layer3. Using 

photolithography, gold electrodes were defined on top of the SWNTs with 2-10 µm gaps 

between source and drain electrodes.  The nanotube growth yield was controlled so that 

most transistors had one nanotube bridging the electrodes. To do better optical imaging, 

devices were made on 170 mm cover slips as well.  

                                                 
3 The oxide thickness was intentional chosen, although not precisely tuned due to vendor limitations, to 
make the interference between lights reflected from the oxide surface and silicon surface constructive 
(Parthasarathy, R. and J. T. Groves (2004). Optical techniques for imaging membrane topography. Cell 
Biochemistry and Biophysics 41(3): 391-414.). In this way, the illumination and fluorescence intensity from 
fluorophores in the SLBs are maximized. We can use lower fluorophore concentration to do imaging.  
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Figure 5.3: Representation of the supported lipid bilayer/carbon nanotube hybrids. (a) 

Schematic of the side view of a SWNT FET inside PDMS microfluidic channel.  (b) 

Scaled schematic of a carbon nanotube under DOPC bilayer. DOPC lipid molecules are 

shown with two light green fatty acid chains. A toxin protein, represented in a ribbon 

model, binds to a membrane-embedded ganglioside molecule that is shown with two dark 

green chains. There is a thin water layer between SLB and substrate. 

 

 
 

 

 

 

 

 

Figure 5.4: SLBs cannot form on as-made nanotube chips (left). Fluorescence image of 

high quality SLBs is shown on the right as comparison. The SLB is confined inside a 

microfluidic channel on the right half of this image.   
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In the beginning, vesicles would not fuse on chips with nanotube devices. A 

fluorescent image of typical initial results of attempting to form SLBs is shown on the 

left side of Fig. 5.4. This can be compared to the right side of Fig.5.4 that shows a 

fluorescence image of a continuous SLB film on a clean SiO2/Si wafer. The only things 

left on nanotube chips in the left image were unfused vesicles and small patches of SLBs. 

Long dose of light was used to bleach fluorophores inside a small region, the result of 

which is the dark circle region on the left side of Fig.5.4.  The fluorescence from this 

region stayed low for very long time, proving that there are no SLBs on large scale and 

the lipids are not mobile. This failure of SLBs formation is because the surface is 

contaminated with organic photoresists and amorphous carbon during photolithography 

and tube growth processes.   

Wafers containing SWNT FETs were cleaned with room temperature piranha 

solution (volume ratio 3:1 concentrated sulfuric acid/30% hydrogen peroxide) without 

sonication for 3-5 minutes4 or in a UV-ozone cleaner for 90 seconds at 70°C to remove 

residual contamination from processing and render the surface hydrophilic. The cleaning 

procedures were developed to allow the formation of uniform, fluid SLBs, and were 

tested to insure that they did not degrade the SWNT FET device performance. Most 

devices survived the cleaning procedures and their electrical conductance did not change 

by more than 20%.  

 
 

Confirming SLBs quality by measuring lipids diffusion coefficients 

To verify the quality of SLBs on nanotube chips after cleaning, two standards 

were used. First, the SLBs should spread on the whole surface uniformly. This is 

confirmed by a uniform fluorescence as shown on the right side of Fig. 5.4 where a SLB 

                                                 
4 It has been noted that washing the chips with organic solvents, e.g. acetone and methanol, immediately 
before piranha cleaning can result in the lifting-off of electrodes and destroying the FETs.   
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was formed inside a PDMS channel5. Another standard is that lipids should be able to 

diffuse laterally within the SLBs. To test this, diffusion coefficients were measured and 

compared to reported values from other groups.  

This can be done with two methods. One method uses fluorescence recovery after 

photobleaching (FRAP) technique.  In these experiments fluorophores inside a circular 

region with radius R are photo bleached at time t = 0, as shown in the left panel of Fig. 

5.5. The fluorescence intensity I at the center recovers as the bleached fluorophores 

diffuse away. The right panel of Fig. 5.5 shows a typical fluorescence recovery curve.  

Since we use high intensity light to bleach all the fluorophores in the circle over a small 

period of time, we assume all the fluorophores inside it are dead6 and consider the non-

zero intensity as background noise.  Then we can define normalized fluorescence 

intensity F as F = (I-I0)/I¶ , where I0 and I¶ are the fluorescence intensities at time 0 and 

at infinite time. 

In the case of two-dimensional isotropic diffusion, the probability for a particle 

with diffusion coefficient D leaving the origin at time zero to be at distance r away from 

the origin at time t is 
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The fluorescence intensity inside the circle after bleaching should grow back 

when the dead fluorophores diffuse away and fresh ones come in. The normalized 

intensity of the center should be one minus the probability of any of the dead 

fluorophores occupying that location 

                                                 
5 SLBs form on the channel walls of the PDMS stamps. When the fluorescence intensity was studied 
quantitatively as in this section and some other parts, the images were taken once the PDMS stamps were 
removed inside a beaker with buffer solution, leaving the SLBs on the substrates intact.  Images in these 
cases were collected with a water immersion lens. Future experiments can use transparent substrate and 
total internal reflection microscopy to solve the background fluorescence issue if PDMS channels are 
indispensable.  
6 This is an approximation as fluorophores are constantly diffusing in and out of the circle. 
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Figure 5.5: Estimation of lipid diffusion coefficient using FRAP. Left panel: 

Fluorescence image around the bleached region (dark circle in the center) at time 0.  

Right panel: Fluorescence intensity at the center of the circle recovers over time. Inset: 

Inverse log of the normalized fluorescence intensity plotted versus time.  
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By fitting the curve in the right panel of Fig. 5.5, we get t ~ 2µ 102 s. Since R ~ 

50 µm in the test, the diffusion coefficient of DOPC is D º 3 µ 10-8 cm2/s. This value 

compares favorably with previous reports (Orth et al. 2003).  This method is simple in 

practice because it does not require complicated apparatus and can be applied to SLBs on 

opaque substrates.        

Another method is called fluorescence correlation microscopy (FCS). It records 

the fluorescence intensity of a small volume and analyzes the fluctuations due to 

molecule diffusion to reveal the dynamical information. In these experiments a 

diffraction-limited illumination volume was obtained by filling the back aperture of the 

objective. The illumination volume was calibrated by obtaining autocorrelation curves 
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from a freely diffusing molecule (Alexa488-dUTP) with known diffusion constant 

(2.1×10-6 cm2/s) (Foquet et al. 2004).  The calibration yielded a Gaussian excitation 

profile with a 1/ e2 decay radius of 280 nm.  

The curves obtained from the supported lipid bilayers were fit to the 

autocorrelation function (Magde et al. 1972; Magde et al. 1974; Webb 2001): 
1

11)(
−

⎥
⎦

⎤
⎢
⎣

⎡
+=

dN
G

τ
ττ   (5.2) 

which models the autocorrelation of the fluctuation in fluorescence arising from the 

diffusion of molecules in a two dimensional plane in and out of a Gaussian illumination 

volume.  

The detailed experimental method is as follows. FCS autocorrelation curves were 

acquired using a confocal fluorescence microscope in epi-illumination mode. 

Fluorescence was induced using a Coherent Sapphire laser (Model 488 – 02 CDRH) at 

488 nm.  The laser was passed through an excitation filter (Chroma Z488/10X) and a 10X 

beam expander (Newport Corp) to completely fill the back aperture of the objective and 

achieve a diffraction limited illumination profile. Fluorescence was collected through a 

dichroic mirror (Chroma Z488RDC) and an emission filter (Chroma AF 535/45). A 

coverslip corrected 60x, 1.2 NA water immersion objective was used on an Olympus 

IX71 microscope. Fluorescence was then coupled to an avalanche photodiode (SPCM-

AQR-14-FC) via a 50 µm core fiber optic patch cord. A flex02-12D correlator card 

(Correlator.com) was used to calculate FCS autocorrelation curves, and a PC was then 

used to acquire and record the intensity trace and correlation function. A power meter 

was used to monitor laser power and a set of neutral density filters (Chroma) was used to 

maintain an incident beam power of ~100 µW to minimize photo-physical effects related 

to non-radiative states and photo-bleaching. The nanotube devices used for FCS 

measurements were fabricated on 170 µm thick quartz wafers.  
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To obtain the diffusion coefficient of the SLB as a reference, FCS autocorrelation 

curves were obtained in regions where there should not be any nanotubes. Ten 

autocorrelation curves were obtained and averaged. The averaged curve (blue curve) 

along with the standard deviation from the measurements is shown in the left panel in Fig. 

5.6. A fit of this curve to the model autocorrelation function (black line) yielded a 

diffusion coefficient D = (5.44±0.02) ×10-8 cm2/s. It is easier to remember as D = 

(5.44±0.02) mm2/s. And it agrees with the value measured with FRAP. 

To probe the effect of the SWNT on lipid diffusion, FCS curves were obtained 

from lipids spanning a SWNT in an interelectrode gap (as shown the right panel of Fig. 

5.6). The curves were then compared to FCS data taken from interelectrode gaps where 

no SWNT was present. No significant shift in the diffusion coefficient or autocorrelation 

curve functional form was observed between these two sets of data (Fig. 5.6, red and 

green curves).  It is important to note that the FCS curves taken from the interelectrode 

gap show a longer mean residence time and a slightly different functional form than the 

curves taken from the reservoir. This can be attributed to the presence of reflective 

boundaries (electrodes) which restrict the diffusion of lipids and increase the probability 

that the lipids will reenter the illumination profile.  

In short, the DOPC diffusion coefficient in the SLBs was measured with two 

different methods: one at millimeter scale and one at micrometer scale. The values from 

these two methods match, and agree with previously reported value. These measurements 

confirm the quality of the SLBs on cleaned nanotube chips. 
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Figure 5.6: Left panel: Average normalized autocorrelation curves SLBs formed on 

chips containing SWNTs. Error bars represent standard deviations of at least 10 

measurements. Right panel: Bright field image of an interelectrode gap (5 µm wide). 

The green box represents the area where FCS autocorrelation curves were taken from 

interelectrode gaps devoid of (red curve in left panel) or containing SWNTs (green curve 

in left panel). The location of SWNTs was measured by AFM images prior to SLB. 
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5.3 Probing SLBs near nanotubes 
 

The experiments in the previous section prove the SLBs quality on large scale, but 

it is important to study the SLBs in the vicinity of nanotubes, which may act as 

perturbations in many forms.  

To test the continuity and fluidity of the formed SLB over a NT, we used FRAP 

on devices with the geometry shown in Fig. 5.7a. We created two square SLB patches 

(Groves et al. 1997) connected by a 2 µm wide, 12 µm long channel. Nanotubes 

emerging from the black catalyst islands (visible in the optical micrograph) cross the 

channel. We photobleached the fluorophores in the right square and observed if the 

fluorescence could recover by the diffusion of fluorophores from the left box across the 

NT to the right box.  Figures 5.7b-d show fluorescence images of the recovery process.  It 

is shown that fluorescent lipids can diffuse across the NT. No discernible differences 

were observed between the FRAP recovery over a NT and control experiments with the 

same geometry but without NTs. A second experiment was performed to confirm that the 

lower leaflet of the SLB was also continuous. In this experiment, 100mM CoCl2 was 

added to the buffer solution in the channel to quench the fluorescence coming from the 

fluorophores on the upper membrane leaflet (Ajo-Franklin et al. 2005). The FRAP 

experiment described above was then repeated to probe the fluorescence recovery of the 

lower leaflet only. The recovery speed remained the same within a 10% error. These 

experiments show that lipid bilayers are continuous and that lipids freely diffuse over 

NTs.  
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Figure 5.7: Test of lipid diffusion near SWNTs. (a) Optical micrograph of SWNT FET 

array used for diffusion tests. Two isolated regions of SLB are defined by gold electrodes 

and connected by a narrow channel crossed by NTs. b-d, Fluorescence images taken 2.5 

minutes (c) and 10 minutes (d) after fluorophores on the right side were bleached (b). 

The lipids diffuse freely across the NT.  

 
 
 
 
 
 



 

 101

A surprising result was seen when we examined the SLB fluorescence in the 

vicinity of the nanotubes. Linear features corresponding to a slight reduction (~ 2-7 %) in 

the fluorescence intensity were observed, as shown in Fig. 5.8a. Figure 5.8b is an atomic 

force microscope (AFM) image showing the same region displayed in Fig. 5.8a. It is 

evident that the dark lines in the fluorescence image correspond to the positions of the 

carbon nanotubes. The results were unaffected when a polarizer was added to the light 

path in both parallel and perpendicular orientations with respect to the long axis of the 

nanotubes. For the eight tubes studied, there was no obvious correlation between the tube 

diameter and the magnitude of the suppression. The width of the fluorescence 

suppression features are approximately 0.5 µm, set by the resolution of the imaging 

system. If we use the simplest possible scenario and assume that the fluorophores closest 

to the nanotube are completely dark, the observed reduction in fluorescence would 

correspond to a band approximately 10-35 nm wide.  

 

 

 

 

 

 

 

 

Figure 5.8: The fluorescence intensity distribution around SWNTs. (a) Fluorescence 

image of the gap region between electrodes of a SWNT FET. Several dark linear features 

were observed. (b) AFM image of the same region after SLB was removed. It is shown 

that the dark lines correspond to the position of the nanotubes.  (c),(d) Two more 

fluorescence images of SWNT showing up as dark lines.  
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The observed fluorescence suppression at the NTs could result from many causes. 

An obvious explanation is that the SLB is interrupted by the NT, but this possibility is 

ruled out by the FRAP experiments described above. Another possibility is that the NTs 

quench the fluorescence of any fluorophores in their vicinity. We expect the range of 

quenching to be approximately d + 2Ro, where d is the diameter of the NT and Ro is the 

Förster radius (Stryer 1978). Although Ro is unknown here, typical values are ~ 5 nm, 

which predicts a quenched width of ~ 10-15 nm. This is in reasonable agreement with the 

magnitude of the measured signal. It is also conceivable that the local curvature induced 

in the SLB by the NT excludes the fluorescently labeled lipids. Such curvature-induced 

segregation of lipid species has been seen in previous experiments (Roux et al. 2005; van 

Meer 2005; Parthasarathy et al. 2006) .  
 

5.4 Nanotubes as barriers to protein diffusion 
 

Having established that the SLB is continuous over the NT, we address the 

influence of the NT on SLB-bound macromolecules.  To test the diffusion of membrane-

bound proteins over the NTs, we chose a simple and well-studied toxin-ganglioside 

couple (Angstrom et al. 1994; Moran-Mirabal et al. 2005)  as model system (Fig. 5.3b). 

Tetanus and cholera toxins are part of a family of bacterial toxins that bind to glycolipid 

moieties present on the host cell’s membrane as a path for infection. Tetanus toxin 

fragment C (TTC) binds to tri-sialoganglioside GT1b, while cholera toxin subunit B (CTB) 

binds strongly to mono-sialoganglioside GM1. The lipid mixtures used for toxin binding 

consisted of 99:1 DOPC:GM1-BODIPY (Molecular Probes) for the cholera system, or 

98.9:1:0.1 DOPC:GT1b:DHPE-LR for the tetanus system. We first formed SLBs with 

these lipid mixtures on wafers containing NTs and performed FRAP studies of the 

ganglioside diffusion properties across NTs before protein binding. Using the BODIPY 
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fluorophore attached to GM1, experiments analogous to those presented in Fig. 5.7 

demonstrated that the gangliosides can diffuse across NTs with no measurable hindrance.  

 Strikingly different results were obtained after the gangliosides were incubated 

with toxin fragments using either GM1-CTB or GT1b-TTC systems.  FRAP experiments on 

ganglioside-bound toxins showed marked diffusion hindrance across NTs.  To 

quantitatively measure this diffusion barrier, we used fluid flow to apply a lateral driving 

force to the ganglioside-bound toxins (Graneli et al. 2006). The flow within the channel 

was generated by applying a pressure gradient across the channel using gravity feeding.  

It basically involved adjusting the water levels of the two reservoirs at the ends of the 

channel. The maximum flow was achieved when one reservoir was made almost dry. The 

maximum flow speed in the center of the channel was measured to be up to 1.5 mm/s. 

The flow speed measurement was done by taking 0.1s snapshots of fluorescently-labeled 

lambda-DNAs flowing in the channel. The moving DNAs appeared to be bright straight 

lines in these snapshots. The length of these trajectories divided by the time gave their 

speed. The largest value observed in many snapshots was assumed to the maximum speed 

of water flow in the center of the channel.  

We used the GT1b-TTC pair in which TTCs were labeled with Alexa 488 

fluorophores (Molecular Probes) to study diffusion of these units near nanotubes. The 

water flow created a hydrodynamic drag force and drove the toxin-ganglioside units in 

the direction of the flow.  This drag force generated a gradient in the TTC profile, as 

shown in Fig. 5.9. In each of the three devices shown, the SLB is much brighter on the 

right side of the electrode than on the left because the drag force drives the TTCs toward 

the left, where they build up against the electrode.  

The most important features in Fig. 5.9 are in the channel connecting the left and 

right sides of the SLB. At the location where a NT crosses the channel, there is often a 

dramatic step in the fluorescence intensity profile. Figure 5.9d shows the TTC 

fluorescence intensity as a function of distance along the channel crossed by a 2.1 nm 



 

 104

diameter NT;  the buildup of toxin upstream and the dramatic drop-off at the nanotube 

are clearly visible. Note the uniform background fluorescence from the SLBs on the walls 

of the PDMS channels has been subtracted. AFM imaging verified that the discontinuity 

happened exactly where the NT crossed the channel. The upstream build-up and the 

sudden drop-off at the NT mean that the NT acts as a significant barrier to the transport 

of the membrane-bound TTCs. Similar results are displayed for two other devices; the 

size of the barrier depends strongly on the NT diameter. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Driving ganglioside-bound toxins near SWNTs with flow. (a) Fluorescence 

image of ganglioside-bound toxin distribution around a 0.7 nm diameter SWNT. The 

fluid flow was driving the tetanus toxin toward the left side in all images. (b) 

Fluorescence intensity along the gap. (c),(d) and (e),(f) The same kind of images except 

the SWNTs crossing the channel are 2.1 nm and 3.4 nm in diameter. The sharp steps in 

fluorescence intensity happen at the position of the NTs. 
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 We can use the fluorescence intensity profiles to quantitatively determine the 

magnitude of the barrier presented by the NT to the TTC transport. We first assume the 

fluorescence intensity is directly proportional to the toxin density, which is valid at low 

fluorophore concentration. Define nL and nR to be the TTC density on the left and right 

side of the nanotube respectively, and LR nnn −=∆  as the sudden jump of TTC density at 

the NT.  In steady state, the flux density dxdnDFnJ /+= µ should be equal on both 

sides of the NT. Here F is the hydrodynamic drag force on the toxin, and µ and D are the 

mobility and diffusion coefficient of the TTC, connected by the Einstein 

relation TkD Bµ= . By considering the flux on both sides of the NT, we can deduce J and 

F: 
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 The validity of this calculation can be tested from the extracted drag force on the 

proteins. For example, for the 2.1 nm tube in Fig. 5.9c-d, the force is calculated from Eq. 

5.4 to be around 6µ10-16 N on each individual toxin protein. This force can be roughly 

estimated from Stroke’s law F = 3pmvd, where m is the viscosity of water, v is the water 

flow speed near the protein and d is the hydrodynamic-effective diameter of the protein. 

The speed of water flow at the center of the channel is measured to be around 1.6 mm/s. 

The water speed near the proteins is then estimated by assuming non-slip boundary 

condition and a parabolic velocity profile, which depends on the distance away from the 

surface. This value is about 0.2 mm/s, 1/1000 of the maximum water velocity at the center 

of the channel. The geometrical size of the protein is used for the hydrodynamic diameter. 

With these crude estimates, the force is on the order of 10-16 N, agreeing with the value 
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calculated from the toxin profiles in Fig. 5.9 using Eq. 5.4. This indicates that the model 

is reasonable.   

The permeability P of a barrier is defined as: nPJ ∆= . Denoting  Po= D/d as the 

permeability of a patch of lipid with the width of the NT diameter, the ratio P/Po is: 
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This normalized permeability represents the additional barrier caused by the NT, and can 

be determined from the fluorescence profile and the diameter of the NT.  For the NT in 

Fig. 5.9c and d, P/Po ~ 1.2×10-3.  Normalized permeabilities for other tubes are shown in 

Table 1. We see that P/Po is a sensitive function of tube diameter, with the barrier 

immeasurably small for d < 1 nm and immeasurably large for d > 4 nm. If we associate 

this reduction in permeability with thermal activation over a barrier using P/Po = 

exp(U/kBT), we obtain barrier heights of 0-8 kBT for NTs with diameter between 0.7 nm  

to 3.4 nm.   

 

 

 
Table 5.1 Summary of normalized permeabilities of 4 nanotube barriers 

 Device 1 Device 2 Device 3 Device 4 

Diameter (nm) 3.4 2.1 1.8 0.7 

P/Po 5.1×10-4 1.2×10-3 5.6×10-3 ~1 

U (kBT) 7.6 6.7 5.2 ~0 
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The suppression of lateral transport of membrane proteins by the nanotubes is 

reminiscent of similar behavior in cellular membranes where proteins are typically 

confined in microdomains.  A hypothesis consistent with the appearance of functional 

microdomains is diffusion hindrance by the underlying protein scaffold. Cells have a 

cortex (Pesen and Hoh 2005), a network of linear proteins (e.g. actin or spectrin (Bonetta 

2005)) located adjacent to the plasma membrane. This is shown in a schematic of cell 

membranes in Fig. 5.10, which is more complicated and closer to reality than the Mosaic 

Model mentioned in Section 4.1. Some studies indicate the cortex provides structural 

support to the membrane and is involved in the dynamic remodeling of the plasma 

membrane (Tank et al. 1982; Kusumi et al. 2005).  

Currently the correlation between membrane functionalities with their complex 

diffusion properties is under investigation. However, people previously have not been 

able to make diffusion barriers in SLBs systems. A mesh of nanotubes (Fig. A.3) can be 

used as a platform to probe this interesting phenomenon. In principle, the magnitude of 

nanotube barriers can be tuned with electrical potential since the proteins are charged.  

Initial trials did not reveal this effect. If that turns out to be feasible, nanotube meshes can 

match the cell’s ability to dynamically change protein distributions.  

 

Figure 5.10: A schematic model of cell membrane. This is closer to reality than Fig. 4.1. 
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5.5 Electrical detection of protein binding 
 

With the physical properties of SLB/SWNT hybrid established, we used the 

transistor properties of the NT to detect the specific binding of proteins to membrane-

imbedded targets. The streptavidin/biotin system (Chaiet and Wolf 1964) was chosen for 

its high binding affinity. A mixed lipid composition, 93.9:4:2:0.1 DOPC:1,2-Dioleoyl-3-

Trimethylammonium-Propane (DOTAP):1,2-Dioleoyl-sn-Glycero-3-

Phosphoethanolamine-N-(Cap Biotinyl):DHPE-LR, was used to form SLBs 

functionalized with biotin, as shown in the upper right inset to Fig. 5.11. All lipids were 

from Avanti Polar Lipids. To minimize ionic screening, 1 µM PBS buffer with 10 µM 

NaCl was used.  

Note the positive charge on DOTAP and negative charge on the biotinylated lipid. 

The purpose of DOTAP is to facilitate the SLB formations. When only biotinylated lipids 

are mixed into DOPC vesicles, they do not form SLBs in the low ionic strength buffer. It 

is speculated that the electrostatic repulsion between biotionylated lipids and silicon 

oxide surfaces, which have negative surface charges in this condition, prevents vesicle 

fusions on the substrates.  The addition of DOTAP solved this problem.  

 To isolate the electrodes from the electrolyte, the device was covered with a 30 

nm thick Al2O3 layer except in the regions between the source and drain electrodes 

containing the nanotubes, as shown in the lower left inset. When the Al2O3 layer is used 

in combination with microfluidic channels, the leakage current between the electrodes 

and the water solution is minimized. To reduce noise, a 10 mV AC source-drain bias at 

155 Hz was applied across the SWNT FETs and the conductance G was measured with a 

lock-in amplifier. A gold electrode immersed in the buffer solution controlled the 

potential Ve of the solution (Rosenblatt et al. 2002; Larrimore et al. 2006). All 

measurements were done in the same buffer after unfused vesicles and unbound proteins 

had been flushed out of the channel. SLBs formed only in regions not covered with Al2O3. 
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Fluorescence microscopy revealed that the SLBs formed were uniform and laterally 

mobile, and that the streptavidin/ biotin binding was stable even after washing.  

Figure 5.11 shows how the conduction of SWNT FETs was affected by SLBs 

formation and streptavidin binding to the biotins imbedded in the SLBs. The solid black 

curve in the main panel of Fig. 5.11 shows G vs. Ve before the lipids were added, while 

the red dashed curve was taken after the formation of SLB. The positively-charged SLB 

significantly shifted the threshold voltage Vt of the NT FET. However, this cannot be 

attributed entirely to charges on the SLBs.  As shown in Fig. 5.12, similar shifts are 

observed when neutral DOPC lipids are formed on SWNT-FETs in 1X PBS buffer. The 

average shift is 240 ≤ 70 mV. The threshold voltage shifts backwards when the SLB is 

removed with detergent. The mechanism of this phenomenon is under investigation. It is 

suspected to be related to the intrinsic dipole of DOPC (Fig. 4.3). But the silicon oxide 

surface and the water cushion layer between the SLBs and the substrate can also be the 

cause. The magnitude of the shift was larger with this positively charged lipid mixture in 

low ionic strength buffer in Fig. 5.11. 

After the formation of SLBs with embedded biotins, the device was then 

incubated with 5µM streptavidin for 10 minutes and rinsed. The bound streptavidins 

shifted Vt back toward positive voltages, as shown by the green dotted curve in Fig. 5.11.  

No shift was observed in control experiments where proteins that do not bind to biotin 

were added (e.g. tetanus toxin), demonstrating the specificity of the detection.  
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Figure 5.11: Detection of biotin-streptavidin binding with SWNT FETs. Conductance 

versus electrolyte potential of a small-bandgap NT FET before (solid black) and after 

(dashed red) biotinylated SLB was formed on the surface. The dotted green curve was 

taken after streptavidins bound to membrane-imbedded biotins.  Lower inset: Optical 

micrograph of devices used for sensing. The pink rectangular region between two yellow 

electrodes is the only opening in the Al2O3 insulation layer. Upper inset: Schematic of a 

carbon nanotube under biotin-functionalized lipid bilayer. 
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Figure 5.12: Detection of DOPC SLB formation with SWNT FETs. Current under 

constant 10 mV bias versus time for a SWNT FET during formation of a DOPC SLB in 

1X PBS buffer. The drop in conductance happened when vesicles fused on the SWNT. 

Lower inset: Current versus Ve for a semiconducting SWNT FET before (black solid 

curve) and after (red dotted curve) SLB was formed on top. Upper inset: Histogram of 

the threshold voltage shifts induced by DOPC SLB formation in 1X PBS buffer.  
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For the six devices studied, the shift of threshold voltage ∆Ve caused by 

streptavidin binding was ∆Ve = 80 ± 20 mV.  Using the model in reference (Artyukhin et 

al. 2006) that relates voltage shift induced by a layer of charge to its charge density: 

dweV λεεσ /2 0∆= , where wε is the dielectric constant of water and dλ  is the Debye 

length, we estimate that the observed  ∆Ve corresponds to an additional charge layer with 

σ = -7×103 e/µm2. The sign of σ agrees with streptavidins being negatively charged at the 

buffer pH and the charge density is comparable to the biotin density in the SLB of 3×104 

/µm2. The correlation can also be viewed from a surface potential point of view. Refer to 

Appendix D for discussions.  

The system studied is only one example of specific binding detection, any other 

charged protein that binds to a target located within the SLB should cause a similar effect 

on the SWNT FETs. The bilayers can be readily functionalized with many molecules. It 

is feasible to use the SLB/nanotube hybrids to study other binding systems. Another 

advantage of the structure is it eliminates the influence of chemically-active silicon oxide 

surface, whose surface chemistry and charge density are easily modifiable to complicate 

experimental observations. The lipid surface is relatively inert compared to silicon oxide, 

and helps to isolate the events of interest.  

 

In conclusion, we have used electrical and fluorescence measurements to probe 

supported lipid bilayers formed over carbon nanotube transistors. We show that the lipid 

molecules in a SLB can diffuse freely across nanotubes while ganglioside-bound toxins 

see a NT-diameter-dependent diffusion barrier. We further demonstrate electrical 

detection of protein binding on the lipid bilayers with NT transistors. This new lipid/NT 

model system has many potential applications to the study of both electrical and 

mechanical perturbations at cell membranes. This system can also serve as a generic 

platform for bringing mobile lipid-bound molecules and NTs in close proximity for 

studies of the physical, electrical, and optical interaction of single molecules with NTs.  
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CHAPTER 6 

CONCLUSIONS 
 

6.1 Summary 
 

We have studied electron transport in carbon nanotubes in the electron-phonon 

scattering limited regime and found out the performance limits of nanotube transistors as 

well as the dependence of their resistance and mobility on tube diameter and temperature. 

We have also integrated nanotubes with supported lipid bilayers (SLBs) and used this 

structure to detect protein binding events on the bilayers.  

To learn the intrinsic electrical properties of nanotubes, we performed systematic 

studies of nanotube transistors using moderately long and high quality nanotube samples 

in Chapter 3. Their electrical conductance and mobility were measured at various 

temperatures and correlated to their diameters. It was found out that, after the influence of 

the contact resistance was eliminated, the conductance grows linearly with tube diameter 

while mobility grows quadratically with tube diameter. They both scale inversely with 

temperature, indicating the important role of phonons. A theory model was established, 

based on electron-phonon scatterings, to explain how the electrical transport is modulated 

by gating and temperature. It predicts the same scaling behaviors as observed in the 

experiments and agrees favorably with the measured conductance and mobility values. In 

conclusion, this study shows the electron-phonon scattering is the dominating source of 

resistance in long nanotubes, and gives performance limits of nanotube transistors 

working in this regime.  

We integrated carbon nanotubes with supported lipid bilayers in Chapter 5. 

Experiments were carried out to confirm the quality of SLBs by measuring the lipid 

diffusion coefficients. Lipid diffusions near nanotubes were also tested to show that lipids 

can diffuse over the nanotubes without much hindrance and the bilayer is continuous over 
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the nanotubes. However, nanotubes act as barriers for a protein bound to a membrane-

embedded receptor. This hybrid structure was used to detect biotin-streptavidin binding 

events on the bilayer in low ionic buffer. The observed signal can be related to the protein 

charges. In conclusion, besides being sensitive electrical detectors, the SLB/nanotube 

hybrids can be used to probe the correlation between protein diffusion properties and 

their functions. 

 

6.2 Future directions 
 

We have presented the current status of our research on lipid bilayers with 

nanotubes in Chapter 5. However, it should not be view as an end, but rather as just a 

beginning. We have not yet really touched the biological function of membrane proteins, 

which are important cell constituents. Some of them control the transport of various 

molecules/signals (Doyle et al. 1998) into and out cells while some others are responsible 

for generating energy inside cells (Salafsky et al. 1996).  A few examples of the 

properties that could be studied with lipid bilayer/nanotube hybrids are: diffusion 

coefficients of membrane proteins, transport properties of ion channel 

proteins/photosynthetic centers, association/dissociation rates of reversible 

protein/receptor bindings, and charge detection of single proteins. The high sensitivity of 

nanotube FETs combined with micro-fabricated structures allows most of the studies to 

be done at single protein level with high speed to reveal properties that are otherwise 

concealed due to averaging. Another direction of the proposed future research will be to 

integrate carbon nanotubes with real cells. The conduction channel of the nanotube FET 

can be placed either close to a cell membrane or even inside the cell and used as a sensor 

or electrical probe.  

Applying nanoelectronic science and technology into biology is a new field and 

has a promising future. The proposed projects are examples of using nanoscale structures 
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as electronic interfaces to study biology at single-molecule level in an unconventional 

way.  

 

Probing membrane protein dynamics 

Although we have been able to specifically detect protein bindings to membrane-

embedded receptors in Section 5.5, more information can be obtained from this 

experiment. The induced threshold voltage shift fluctuates when proteins diffuse around 

nanotubes. In principle one could study the noise spectrum of lipid bilayer/nanotube FET 

hybrids, distinguish the part of noise that is induced by membrane proteins in the lipid 

bilayers and extract their properties such as diffusion coefficients and charge densities. 

The experimental scheme is inspired by optical FCS, mentioned in Section 5.2. But in 

this proposed experiment, the current change induced by the presence of membrane 

proteins plays the role of fluorescence intensity in FCS. The merits of this experiment 

over FCS are it does not require labeling molecules with fluorophores and offers higher 

spatial resolution.  

In this experiment, neutral SLBs with membrane proteins would be first formed 

on top of nanotubes in the same geometry as Fig. 5.3 shows, and the noise spectrum or 

current fluctuations of nanotube FETs under constant bias should be recorded before and 

after introducing molecules to bind with the membrane proteins. With careful modeling 

and calibration using proteins of known diffusion coefficients and charge densities, a 

correct fitting to the data should provide these two parameters of other proteins. 

The characteristic time scale in this experiment is set by the Debye screening 

length ld of the buffer solution, and the diffusion coefficient (D) of membrane proteins. 

To minimize charge screening, the experiment should be carried out in buffers with ld 

~100 nm. The typical value of D is around 1 mm2/s, and the time scale for membrane 

proteins to diffuse through the nanotube FET detection area is about 10-3 s. This is well 
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within the ability of most spectrum analyzers or current pre-amplifiers. One benefit of 

looking at these high-frequency signals is that nanotube becomes a quieter sensor at 

higher frequency because 1/f noise is the dominating noise source in SWNT-FETs 

(Collins et al. 2000).   

 

Study of protein binding dynamics at single molecule level 

The experiment proposed in last part deals with the statistical behavior of multiple 

proteins. Another ambitious experiment scheme is to reach higher charge sensitivity by 

reducing the length of nanotube conduction channel. In the experiment illustrated in Fig. 

5.11, the detection limit is about 2 mV in gate voltage at 1 KHz bandwidth. It means that 

when the gate voltage is shifted by 2 mV, the induced current change can barely stand out 

of the noise. Using the known capacitance of nanotube in solution (Rosenblatt et al. 2002) 

C = 4µ 10-10 F/m, this corresponds to bringing 5|e| into a 1 mm long nanotube FET. If the 

conduction channel is further reduced to 100 nm, this system can reach single charge 

sensitivity regime.  Then it is possible to see the on-off signatures of a single reversible 

binding event or the lateral diffusion of a single protein.  

To study the association/dissociation dynamics, it is better to have static proteins 

near nanotube FETs, since the membrane proteins are diffusing in the bilayer all the time. 

This part of study may be done with chemically functionalized nanotubes, to which 

proteins are directly attached (Besteman et al. 2003). This opens up possibility of 

studying even more types of molecules besides membrane proteins.  

 

Probing the transport properties of transmembrane proteins 

One advantage of the lipid bilayer/nanotube hybrid structure is that there is a 

continuous membrane separating the bulk solution from the water layer underneath the 

SLB, where nanotube sits. Therefore a new kind of interesting experiment can be based 
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on using nanotubes as electrodes to probe the potential difference between the two water 

regions on each side of the membrane.  

Membrane proteins can produce an ion concentration difference across a 

membrane, which generates an electrical potential according to Nernst equation DE = 

ln(C2/C1) µ kBT/ne, where C2 and C1 are the ion concentration inside and outside the 

membrane, and kBT/ne is about 59 mV at room temperature for n = 1. Two examples of 

proteins that can generate cross-membrane potentials are: (1) Bacteriorhodopsin, which 

absorbs light and uses this energy to pump protons across the membrane (Khorana 1988), 

and (2) potassium ion channels, which selectively transport potassium ions across the 

membranes while blocking other ions (Doyle et al. 1998).  

In this experiment, the lipid bilayer/nanotube hybrid structure should be slightly 

modified to probe this membrane potential. As shown in Fig. 6.1, the nanotube chip 

surface would be covered with dielectric layer except the regions around nanotube 

conduction channels. A patch of SLB would form at these openings where the nanotubes 

sit.  Effectively, the nanotubes are contained inside a tiny aqueous chamber. Because 

lipid membranes have extremely low permeability to charged ions, the only pathway for 

ions to exchange between this chamber and the bulk solution would be through the 

membrane proteins.  

Ion transport through the membrane proteins would be triggered by external 

stimuli. In the case of Bacteriorhodopsin, light can be shone onto the structure. In the 

case of an ion channel, the bulk solution could be flushed with a buffer of different 

concentrations or ions. The potential associated with these events would be monitored 

using nanotubes as electrostatic potential sensors (Larrimore et al. 2006). 
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Figure 6.1: Schematic of the proposed structure to use nanotube as cross-membrane 

potential sensor. Nanotube is sealed by a patch of membrane and the surrounding 

dielectric (shown as rectangles in granite) layer that defines the well.  Membrane protein 

bridges the two water regions on either side of the membrane and selectively allows ions 

to pass through. 

 
 

Some membrane proteins lose their function inside SLBs because part of the 

protein protrudes out and denatures on the substrate surface as mentioned in Section 4.1. 

In that case, lipids with very large head groups, such as polyethylene glycol as a spacer in 

the head group, can be used to increase the spacing between SLBs and substrates to a few 

nanometers. Another solution is to lay a polymer cushion layer under SLBs (Sackmann 

1996). 

One needs to get a sense of how small the chambers around nanotubes are. 

Regions with ~10 mm2 cross section can be easily fabricated with photolithography, and 

ones with ~0.1 mm2 cross section can be made with electron beam lithography. The 

height of these chambers is the thickness of the water cushion layer between SLBs and 

Figure 3.  Schematic of proposed structure to use nanotube as cross-
membrane potential sensor. Nanotube is sealed under a patch of membrane 
and the surrounding dielectric layer. Ions can only exchange between the 
bulk solution and the water cushion layer through membrane proteins. 
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substrates, which can be as small as 1-2 nm. The volumes of these chambers are therefore 

around 10 aL to 0.1 aL. 

With such a small volume underneath a SLB, even a single protein can generate a 

detectable cross-membrane potential on a short time scale. Let us consider potassium ion 

channels as an example. Suppose the chamber volume is 10 aL and the initial buffer is 

100 mM potassium chloride. When the bulk solution is replaced with 1mM potassium 

chloride and the potassium channel is opened, a single protein can decrease the 

concentration of potassium ions underneath the membrane down to 1mM within 6 ms 

(using the reported transport rate of ~108 ions/sec (Saparov and Pohl 2004).) The 

concentration difference of Cl- ions across the membrane will produce a potential 

difference of about 120mV, which can be easily detected by nanotube FETs. However, it 

would be interesting to see how the transport rate slows down with increasing cross-

membrane potential and at what potential the ion transport stops. This technique allows 

study of the functioning of single membrane protein in real time.  

If the chamber volume is reduced to 0.1 aL and the potassium ion concentration is 

10 mM to start with, the outflow of a few hundred potassium ions from the chamber can 

be detected. This is a sensitivity no other technique can reach. Another advantage of this 

powerful tool is that multiple studies can be done in parallel on a single chip. 

Nanotube/SLB hybrids can become an important new platform for studying the function 

of single membrane proteins. 

 

Integrating nanotube FETs with cells 

 Naturally, the next stage of this series of experiments is to study real cells.  This 

can be done in two schemes: (1) place nanotubes directly against the external side of the 

cell membrane, or (2) place them inside cells. These experiments may lead to the 
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invention of electrical sensors that can directly monitor single cell activities and measure 

properties inside cells that cannot be done with current methods. 

In the first scheme, the patch of SLB in Fig. 6.1 can be replaced with a real cell 

membrane. Recently Prof. Lieber’s group at Harvard University demonstrated that 

neuron activities can be detected with nanowire array (Patolsky et al. 2006) in a similar 

fashion. Since nanotubes have higher mobility and transconductance (Rosenblatt et al. 

2002; Zhou et al. 2005), integrating cell membranes with nanotube FETs will offer higher 

sensitivity compared to nanowires. The well formed by dielectric layers around 

nanotubes in the proposed structure in Fig. 6.1 not only helps to minimize the sensing 

region to a small area, but also helps to confine the product molecules of cell activities 

around nanotubes. It will further improve the signal strength.  

In the second scheme, a special property of SWNTs will be applied: their 

ultimately-small sizes. SWNT diameters are comparable to that of a DNA molecule. 

Therefore it may be possible to put the conduction channels of nanotube FETs inside 

cells without drastically disturbing them. A structure is proposed as shown in Fig. 6.2.  

The substrate underneath nanotubes is etched away so that nanotubes are suspended in 

solution. A cell will be brought in with a micromanipulator and put on top of a suspended 

nanotube FET. The suspended part of nanotube has a chance of penetrating the cell 

membrane and entering into the cell body. It will be interesting to see how this is going to 

affect cells and if cell skeletons and membrane cortexes will stop this intrusion. 
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Figure 6.2: Left, schematic of a nanotube (green cylinder) suspended over a trench.  

Right, when a cell (magenta sphere) is placed on top of a suspended nanotube, the 

nanotube may be able to penetrate inside the cell.  

 

If suspended part of nanotube FETs do indeed go inside cells, it could act as a 

detector to sense the ongoing electrical activities inside the cell or an electrical probe to 

control those processes! There are many fascinating experiments to perform. For example, 

carbon nanotubes have been functionalized to detect glucose concentration in solution 

(Sotiropoulou and Chaniotakis 2003). Nanotubes can be modified with the same 

chemistry and do sensing inside cells with this method. Besides molecule sensing, 

nanotubes can also serve as electrodes to probe the electrical potential inside cells, or to 

stimulate cells with electrical pulses. A wilder idea is to break nanotubes inside cells by 

running relatively high current (~20 mA) through them, which turns a single nanotube 

into two adjacent electrodes. They could be used as dielectrophoresis tweezers (Zheng et 

al. 2004) to manipulate molecules. Currently micropipette can be inserted into cells. This 

proposed nanotube probe, however, is less intrusive due to its much smaller size, and has 

higher spatial resolutions to map out different regions of cell bodies.  

 

In conclusion, carbon nanotube transistors are novel systems that offer promises 

in diverse areas ranging from real-time observation of protein dynamics to the study of 
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cell activities. They can solve fundamental scientific questions as well as generating new 

tools for biophysics. Using nanotubes to electronically ‘see’ single molecules has the 

potential for the same kind of scientific impact as single molecule fluorescence 

techniques have demonstrated. However the ideas offered here are not guaranteed to 

work, some of which may not be even theoretically correct. They are provided to 

stimulate people’s wildest imaginations to discover the potential of the new nanometer 

tools.  
 



 

 123

APPENDIX A 

NANOTUBE GROWTH 
 

The Japanese has a proverb: those who control materials will control technologies. 

This is certainly true in some sense. Material growers are highly appreciated in Japan. It 

has enabled them to have some of the best material samples in the world. Carbon 

nanotube was discovered in Japan in 1991 (Iijima 1991), which may or may not have 

been accidental.  

Although our lab is in Physics, but the current situation forces us to grow 

nanotubes ourselves.  Therefore it is important for Physics students to master nanotube 

growth. I recommend new students spend their first few weeks in the furnace room. This 

is the hardest part of making devices. Compared to the cleanroom part, which is very 

standardized and highly repeatable, nanotube growth still remains in the dark magic 

phase and one needs to get some kind of feeling. When the device fabrication fails, more 

than often it is due to something in the furnace. To emphasize the importance of materials, 

a story about graphene must be told. Many years ago our beloved adviser, if not the first 

person, had foreseen the unique physics and potential impacts in graphene. But no one 

could make a high quality single layer graphene until a group in University  of 

Manchester was lucky enough to find an effective way to do so (Novoselov et al. 2004). 

It is indeed a gold mine.  

The situation in the case of nanotubes is better. It is very easy to grow nanotubes 

using chemical vapor deposition (CVD) in our lab. But it is somewhat hard to get exactly 

the kind of nanotubes needed. The properties need to be controlled include tube diameter, 

length, orientation, yield and cleanness. Chirality control would be great, but it is 

impossible as of today. Here, I will share some experience and techniques from me and 
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other people in the lab. Not everything is guaranteed to be correct. Possible 

improvements that have been demonstrated by other groups will also be presented.  

 

Diameter control 

It can be seen in almost every chapter of the thesis that diameter is one the most 

important parameters of nanotubes. The bandgap of a semiconducting nanotube is 

inversely proportional to tube diameter and the mean free path goes linearly proportional 

to diameter (Chapter 2, 3). It is widely accepted that, in CVD growth, the tube diameter is 

controlled by the size of the catalyst nanoparticles (Cheung et al. 2002). Personally, I 

think it is not entirely true in at least one respect: it is hard to imagine growing large 

nanotubes from much smaller particles; but it is possible to grow tubes smaller than the 

particle size, especially if the catalyst particles are not in liquid phase (Kodambaka et al. 

2007).  

 Since there is typically a broad diameter distribution with any kind of growth 

recipes, we can select the nanotubes with the targeted diameters. The standard recipe,  

900 ±C Methane growth, normally gives large diameter tubes (Kong et al. 1998). In their 

original paper, Dai group claims that the tubes are between 1-3 nm. However, the tube 

diameters were measured using AFM at scan range of 10 µm. This dramatically 

underestimated the tube diameters. The good thing is that the authors have done extensive 

TEM studies to show their fat tubes are still single-walled. The other recipes, using very 

thin evaporated iron film as catalyst or soaking chips in iron nitride/methanol solution 

and growing at 700±C with Ethylene, tend to give thinner tubes in my experience.  

 If one wants to do better than that, efforts need to be put into making near 

identical catalyst particles and preventing them from aggregation at high temperature. A 

few recipes with better diameter control involve using Ferritin protein (whose iron 

content can be controlled) (Li et al. 2001), block copolymers (size of iron containing 
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segment can be controlled as well) (Lu et al. 2005) and identical metal containing 

nanoclusters (An et al. 2002). But complicated catalyst preparations go beyond the ability 

of Physics students. Collaborations may be needed.  

 

Long and aligned nanotubes 

 Having longer tubes is never a disadvantage.  They enable ones to study the 

intrinsic properties of nanotubes in electrical transport and optical applications. The first 

method that can get individual nanotube longer than one centimeter was discovered by 

Jie Liu’s group at Duke University (Huang et al. 2003). The key to this recipe is to get 

catalyst particles off the substrate, by the turbulence as a result of fast heating,  so that the 

growth is happening in the gas (Huang et al. 2004). Liu argues that the strong Van der 

Waals interactions between substrates and tubes/catalyst make them difficult to slide on 

the surface, and stop the growth prematurely.  

We were lucky to learn their fast heating technique. Although our tubes are not as 

long as theirs and the yield is not very high, but it still can help us in many cases. The less 

satisfactory results in our lab may be due to the different carboneous gas we use 

(Methan/Ethylene) as compared to theirs (Carbon monoxide). 

There are other recipes to grow long tubes without the fast heating step. Liu group 

also used an alcohol CVD to grow centimeter long tubes without any special measures to 

lift up the catalyst (Zheng et al. 2004). But this does not rule out the possibility that the 

tubes are flying in gas during growth. Another amazing result from a UIUC group, 

however, shows that their long tubes are actually grown on the substrates (Kocabas et al. 

2006).  Figure A.2 is taken from their publication. The substrate is [2,1,10] single-crystal 

quartz wafer. The nanotubes have a preferred orientation and can grow more than 100 µm.  

Similar effects have been seen on more expensive Sapphire substrates as well (Han et al. 

2005). Since people in our groups are growing tubes on transparent quartz substrates to 
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either eliminate the backgate or to allow better optical imaging, it should be natural to try 

these single-crystal quartz substrates with special cuts, if they are not too expensive.  

 

 

 

 

 

 

 

 

 

 

 

  

Figure A.1: Two long (~100 µm) nanotubes grown with the Duke recipe in our group.  

 
 

 

Figure A.2: Long and highly aligned nanotubes grown on quartz substrates (Kocabas et 

al. 2006). 

5 µm
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Yield 

Normally the yield is not a problem in our lab. One can adjust catalyst 

concentration, catalyst pad size and other parameters to control the yield to a preferred 

level. There are two cases where yield needs to be significantly increased. First in some 

experiments, it would be great to have really densely packed nanotube mashes. One 

example is Jose and I wanted to suspend lipid bilayers with nanotube mashes as support. 

Second, the fast-heating long tube growth recipe generally gives sparse nanotubes. One 

problem with that recipe is the nanoparticle catalyst easily gets off the wafer during the 

lift-off process that is used to define catalyst pads. In both cases, a better lift-off process 

can help. 

Currently catalyst pads are defined using photoresist or electron beam resist. The 

lift off is done in a solvent, either organic or water, to dissolve the resist, during which 

catalyst can get off the substrates. A dry lift process can solve this issue. The key is a 

polymer called parylene (Zhang et al. 2003; Moran-Mirabal et al. 2005) . A few 

properties make it an ideal material. First, a thin layer (~ µm) can be deposited on 

substrates from gas phase. CNF recently bought a machine to do that. Second, parylene 

does not dissolve in common solvents, and is compatible with photo lithography 

processing. A layer of normal photoresist can be spun on top of parylene film to define 

micrometer size features, which can then be transferred into parylene layer by oxygen 

plasma etching.  Third, the parylene layer, although extremely thin, can be mechanically 

peeled off from the substrates using tweezers. 

Figure A.3 shows a SEM image of nanotube meshes made for the lipid bilayer 

suspension purpose. The rectangular, where nanotubes are densely packed, was initially 

defined using parylene film. Nanoparticle catalyst solution was dried on the surface, 

followed by peeling off the parylene film. The end result is a nice nanotube mesh without 

too much catalyst residue. 
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Figure A.3: A dense mesh of nanotubes grown in a region defined by parylene. 

 
 

I have not tried to increase the fast-heating growth yield with this trick yet. The 

parylene technique should also be useful for other purposes where the dry lift-off is 

desired.  

 

Vertical nanotube forest 

 Another different type of CVD nanotubes is called vertical nanotube forest. 

Basically, when the nanotubes are densely grown (one per 20 nm x 20 nm), the Van deer 

Waals interaction will facilitate them to stand up and form a forest-like structure.  

 Typically people in our lab are not interested in this type of nanotubes since we 

study individual ones. However this could be useful for our collaborators and we can 

exchange the nanotube forest for their help. The key to nanotube forest is density. First, 

the catalyst particles need to be densely packed. Second, most of the nanoparticles need  
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Figure A.4: Nanotube mesh grown without water vapor in the CVD chamber. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.5: Aligned nanotube forest grown with water vapor in the CVD chamber. 



 

 130

to be active during growth. These two conditions would prevent nanotubes from falling 

onto substrates during growth.  

A thin layer of iron is typically used as catalyst particle precursor. The iron film 

breaks into individual particles at elevated temperature. Even a 0.5 nm iron films (this 

value should be consider as nominal) can lead to large particles and thus multi-walled 

nanotubes. Many groups use underlayers such as alumina oxide or molybdenum beneath 

the iron layer. It is not necessary. The key to make catalyst active and remain active for a 

long time is introducing small amount of water vapor into CVD chambers (Hata et al. 

2004). Figure A.4 is a SEM of nanotubes grown using thin film iron as catalyst. The 

growth condition is tuned to extremely high yield, but no water vapor is added. The 

nanotube density is high, but it is not high enough for nanotubes to stand up. The vertical 

nanotube forest shown in Fig. A.5 is grown under the same condition except a small 

amount of water vapor is added.  It seems to indicate, besides etching way amorphous 

carbon coating on catalyst particles to prevent them from being poisoned, water also 

helps to make every catalyst particle work from the very beginning.  The water content is 

not carefully controlled in this case. Mine record is 5 mm tall forests. And the world 

record is a few centimeters. 

 

In conclusion, there are many tricks to grow nanotube for one’s special needs. We 

should not be constrained by the kind of tubes we can make. Better tubes can lead to new 

functionality.  
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APPENDIX B 

VALIDATION OF THE THEORY MODEL IN CHAPTER 3 
 

When the experimental data and theory calculations on electron-phonon limited 

transport are presented in Chapter 3, it seems the theory in Sections 3.2-3.4 is able to 

explain most of the experimental observations. But it does not include many subtleties. 

Here are two examples of some major concerns: 1. Does conduction depend upon the 

chirality of nanotubes? 2. What if more than one subband participates in transport?  

These questions will be addressed in this appendix.  

 

Chirality  

 Up to today, people do not have the ability to control growth conditions to get 

tubes with specific chirality. In many cases, it is almost impossible to determine the 

chirality of a nanotube sample. It can be done with STM or a few optical spectroscopy 

techniques as mentioned in Chapter 1. But the processes are difficult to carry out on the 

device geometries that are typically used to study transports. In our experiments, the 

chirality of a nanotube device is not known. And there is no reason not to believe that the 

chiralities of an ensemble of nanotube devices are widely distributed over all possible 

values.   

 Not surprisingly, in many cases chirality comes into the horizon. In Minot’s study 

of nanotube band structure modulations from mechanical deformations (Minot et al. 

2003), the degree to which the band structure is modified strongly depends on the 

nanotube chirality. Similarly, it turns out the electron-phonon coupling is chirality-

dependent. But as the following discussion shows, this dependence in semiconducting 

nanotubes is relatively weak. 
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 In Section 3.3, the deformation potential D is assumed to be a constant value 

disregarding nanotube chirality. Let’s see if that is valid. T. Ando (Suzuura and Ando 

2002; Ando 2005) theoretically studied the electron couplings to different modes of 

phonons and gave the interaction Hamiltonian as 
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where V1 = g1 (∑ux/∑x+∑uy/∑y) and V2 = g2 exp(3ih)(∑ux/∑x-∑uy/∑y+∑ux/∑y+i∑uy/∑x) with 

u being the displacement and h as the chiral angle. The x direction is along the 

circumference and the y direction is along tube axis. The coupling constant g1 and g2 is 

estimated to be on the order of ~30 eV and ~2 eV. The off-diagonal terms are much 

smaller in magnitude.  

 The normalized electron wavefunction in nanotubes can be written as 
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Here s equals +1 for the conduction band and -1 for the valence band. n is the subband 

index and kv(n) = 2(n-v/3) /d is the wavevectors long tube circumference. In metallic 

tubes, kv(n) =0 for the first subband. In semiconducting tubes, kv(n) is the bandgap 

divided by Fvh2 .   

 The wavefunction looks complicated, but it is actually simple. It is a plane Bloch 

wave. The variable bv(n,k) gives the phase difference between the electron wavefunctions 

at the two carbon atoms in a unit cell. For the first subband in a metallic tube, kv(n) =0, 

the wave function is 
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Then the matrix element of the phonon-electron scattering is proportional to  
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 This shows that the diagonal terms do not induce scattering in metallic tubes. 

Only the much smaller off-diagonal terms generate resistance. This effect is due to the 

Berry phase, or pseudospin, that the electrons carry in nanotubes (Ando et al. 1998; 

McEuen et al. 1999) . In short, the wavefunctions of the left moving and right moving 

electrons are made of bonding orbital and anti-bonding orbital respectively. Because the 

long wavelength acoustic phonons cannot change the electronic states at the atomic scale, 

the transition between left and right moving electrons cannot be induced by them.  

 The off-diagonal term  
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depends on chiral angle h. Indeed the relaxation time of a metallic nanotube is  
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where tA and tZ are the relaxation time of an armchair and a metallic zigzag tube of the 

same diameter.  

 T. Ando (Suzuura and Ando 2002) pointed out that tA and tZ are equal when 

temperature is much higher than the radial breathing mode (RBM) 

temperature BBB kT /ωh= . In that case, the conductance of a metallic tube does not 

depend on chiral angle. Figure B.1 shows calculated resistivity as a function of 

temperature for three nanotubes of different chirality but the same diameter (Suzuura and 

Ando 2002). At high temperature, the three curves are on top of each other. That means 

near room temperature, the resistivity of nanotubes is chirality-independent.  

In Fig. B.1, the overall decrease of the resistivity with lower temperature is caused 

by acoustic phonon occupation effect. For low energy long wavelength acoustic phonons, 

the phonon population is proportional to temperature. But the radial breathing mode 

phonons, which contribute to scattering in all tubes except armchair tubes, disappear  
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Figure B.1: Calculated resistivity as a function of temperature for three nanotubes with 

different chiralities (Suzuura and Ando 2002). 

 
 

rapidly at lower temperature. This is because the dispersion of RBM phonons is not linear. 

As Fig. B.1 shows, zigzag tubes become slightly better conductors at lower temperature. 

The difference between the resistivity of armchair tubes and zigzag tubes could reach a 

factor of two at very low temperature. 

For semiconducting nanotubes, the situation is quite different. The matrix element 

is calculated as  
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 Obviously, the much larger diagonal V1 term dominates at the bottom of the 

subbands where k is small. Since V1 is chirality-independent, the matrix element is the 

same for all nanotubes in that situation. However, as the subband is filled more and more, 

the importance of V1 decreases as the factor ( ) ( ) 22/ knknk vv + goes small with 
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increasing k. That means the chirality dependent off-diagonal term V2 becomes influential 

at higher Fermi energies. But as has been shown before, even in metallic tubes, where V2 

term is the only mechanism for back scattering, the resistivity does not depend on 

chirality at high temperature and only varies by not too much at low temperature. So this 

can be considered as second order effect.  

In conclusion, one can assume, to a certain extent, the resistivity is the same for 

nanotubes of the same diameter independent of their chirality. The maximum field effect 

mobility, which is present at intermediate Fermi energy, should depend even less on 

chirality.  

 

Subbands 

In Chapter 3, all calculations are based on electron transport in the lowest subband. 

However the higher subbands can be filled when more and more electrons are put into 

nanotubes by electrostatic doping from the nearby gates. It is easy to estimate how 

quickly the second subband can be reached, disregarding thermal smearing effects.  

 Using the simplified band structure in which the energy of the second subband 

bottom is Eg,  

( ) 22
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h , (B.10) 

we can get the wavevector at which the second subband is reached, 

dv
E

k
F

g

3
2

2
3

==
h

.  (B.11) 

Assuming the gate capacitance to be 2µ10-11 F/m, the same value as in our FET devices 

with 200 nm silicon oxide layer, the second subband is reached at gate voltage 

 
[nm]

V12
d

VV tg =− .  (B.12) 
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For a 3 nm diameter tube, the second subband is reached when gate voltage is 4 V 

above the threshold. In typical measurements, the gate voltage is swept from -10 V to 

+10 V. That means there is normally more than one subband filled at high gate voltage. 

It is naïve, however, to think that the conductance scales with the number of 

populated subbands. Figure B.2 plots calculated conductance as a function of carrier 

density for two tubes (Pennington et al. 2007). It shows that, at small gate voltage, the 

conductance is slightly lower when multiple subbands are taken into consideration. This 

is because inter-subband scatterings reduce the electron relaxation time. The differences 

between the cyan curves (single subband) and red/black curves (multiple subbands) in 

Fig. B.2 are merely a scaling factor close to 1, demonstrating that it is not a bad 

approximation to consider only one subband. On top of that, the current theories on 

multiple subbands conductance do not include the contact effects. In principle, because of 

the higher energy of the higher subbands, there could be strong Schottky barriers between 

the contact metal and the higher subbands, generating large contact resistances and 

restricting the conductance through them. Therefore, the higher bands are ignored in 

Chapter 3.  
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Figure B.2: Theory predicted conductance through 1 (cyan) and 3 (red/black) subbands 

as a function of carrier density/gate voltage (Pennington et al. 2007).  

 
 

Another noticeable feature in Fig. B. 2 is that when there are more than one 

conducting subbands, the conductance is not monotonic when gate voltage is swept. The 

differential conductance is negative in certain gate voltage range. This is caused by the 

sudden appearance of many states from a higher subband when the Fermi level is moved 

close to its bottom. The electrons in the first subband, which initially have high mobility 

due to a small DOS at the Fermi level, can be scattered into the states in the higher 

subband. The result is, although the number of electrons is increasing, conductance drops. 

The tube in Fig 3.2 shows similar behavior at lower temperature and the wiggle happens 

around the expected gate value where Fermi level reaches the second subband. However 

there is no other evidence to prove this wiggle is caused by the presence of the second 



 

 138

subband. Further experiments are needed to definitely establish effects of the second and 

higher subbands.  

 

In short, the approximations taken during the calculations in Sections 3.2-3.4 do 

not affect the grand picture. They are valid to certain extent as discussed in this appendix.  
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APPENDIX C 

FUNCTIONALIZATION OF NANOTUBES WITH DNA 
 

The discussion in Section 5.1 shows why nanotubes are an interesting candidate 

as biological sensors. This idea led to the demonstration of nanotube DNA and protein 

sensors based on charge sensing in the early stage of this field. Here in this appendix, I 

will show the motivation and our initial results on functionalizing nanotubes with DNA, 

in route to use them as biosensors. We believe our scheme has a few unique advantages.  

 

Motivation 

Here are a few examples of why electronic based DNA and protein sensors are 

highly desired.  Many diseases are genetic. In other words, they are encoded in a person’s 

DNAs from the very moment this person is conceived. One possible way to prevent a 

person from genetic disease is to find out the potential threats early and prevent them 

long before the person becomes a patient. This requires DNA sequencing or sensing to 

detect known segments of DNA sequence responsible for diseases. Currently this process 

is slow and requires labeling DNAs with fluorescence tags. The proposed charge-based 

sensing can lead to easier, faster and parallel detection for high throughput.  

In some sense the protein sensors are even more important. When a disease is 

developed in a patient, certain characteristic proteins are produced and can be utilized as 

diagnoses indicators.  However, the amount of proteins is tiny at the early stages and, 

unlike DNA, proteins can not be amplified. This requires protein sensors to have very 

high sensitivities. In principle, the proposed nanotube sensors can reach these goals. 
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Specificity is required in electronic biosensors 

In order to achieve any practical significance, the electronic biosensors need to 

have specificity. But electrostatic interaction, which electronic biosensors base on, is 

quite generic. Any charged molecules bound to the nanotubes in these sensors due to 

certain reason would perturb the local environment and may generate false signals. The 

specificity needs to come from the molecular reorganization developed by Mother Nature 

during billions of years of evolution. That requires functionalizing nanotubes with 

receptors that allows only the targets to bind to this complex. In the case of DNA, the 

receptor attached to nanotubes could be a single strand DNA complementary to the 

targeted DNA. For proteins, it can be a compound or another protein acting as the 

receptors.  

 

The current status of nanotube biosensors and our proposal 

One of the very best properties of nanotubes turns out to be a big obstacle for 

functionalization: the fact that a SWNT is just one layer of carbon atoms. Most 

functionalizations start with generating functional chemical group on the surface. That 

will introduce defects in nanotubes and degrade their electrical properties. The problem 

was solved by non-covalent functionalization with a linker molecule designed by Dai 

group at Stanford (Chen et al. 2001). The pyrene group on the linker molecule, 1-

pyrenebutanoic acid, succinimidyl ester (Molecular Probes, Inc., USA) shown in the 

upper left corner of Fig. C.1, binds to the sidewall of nanotubes due to p-p stacking and 

hydrophobic interaction in aqueous solutions. The other side of the link, succinimidyl 

ester, readily reacts with primary amine group.  

 

 

 

 



 

 141

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 

Figure C.1: Functionalization of nanotubes with PASE (Chen et al. 2001). 

 
 

 

 

 

 

 

Figure C.2: AFM images taken before (left) and after (right) attaching glucose oxidase 

onto nanotubes (Besteman et al. 2003).  
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Since there are primary amine groups in the amino acid residues, e.g. lysine, 

proteins are naturally rich in amine groups and can form covalent bonds with the linker 

molecules. Several groups have successively absorbed proteins onto nanotubes using this 

technique and detected these events as a change in conductance. Dekker group at Delft 

(Besteman et al. 2003) attached an enzyme called glucose oxidase to nanotubes, with the 

PASE linker, and detected glucose using these complexes. Grüner group at UCLA (Star 

et al. 2003) deposited a polymer layer on top of nanotubes and functionalized the 

polymer with biotins. The complex was then used to detect streptavidins, which strongly 

bind to biotins.  The mechanism of the observed electrical signals is disputed over 

whether the signal comes from electrostatic gating, charge transfer or change of 

capacitance.  

The bad thing about the above experiments is that proteins only show up as 

globular objects under atomic force microscope (AFM). Therefore it is hard to confirm 

these features are indeed proteins in stead of other contaminations.  In Fig. C.2, it can be 

clearly seen that, after functionalizations, there are many blobs on the substrate far way 

from the nanotube. It makes one wonder if the coating on nanotubes is really specific. 

Another problem with the current experiment scheme is that it is hard to confirm the 

electrical signals, which are merely conduction changes.  

Due to the above reasons we started to make our version of DNA sensors using 

similar technique but with a few unique advantages. First, we wanted to attach DNAs 

longer than 1000 base pairs to nanotubes. These DNAs are so long that they show up in 

AFM as linear features. Second, by attaching only the ends of DNAs to nanotubes, it is 

possible to drive them close to or away from nanotubes with electrical potentials. By 

doing these operations, the electrostatic coupling between nanotubes and DNAs are 

modified, which should generate well-controlled signals as a way to confirm the presence 

of linear charged molecules. Unfortunately the second part was never tried out due to 
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timing issues. But the functionalization part was successful, and that’s going to be 

discussed here.   

 

Fabricating DNAs with modified ends 

 The first task is to have DNAs with primary amine groups at the ends. Short 

strand DNAs that are terminated with all kinds of common chemical groups are 

commercially available. But the problem is they are short, typically only up to 50 base 

pairs. This is because the yield of making these DNA strands decreases exponentially 

with increasing length. In order to have DNAs easily identifiable in AFM, we want to 

have DNA longer than 200nm when fully stretched. In other words, the DNAs need to be 

more than 600 base pairs long.  

 This was solved by elongating the short strand DNAs using polymerase chain 

reaction (PCR) (Saiki et al. 1985). PCR is typically used to amplify DNAs (to make 

multiple copies of a certain part of DNAs).  I will try to explain how it works in three 

shot paragraphs.  

Naturally cells use a protein called DNA polymerase to duplicate DNAs. In PCR, 

a number of DNA polymerase proteins are put into the reaction chamber together with 

copious amount of nucleotide A,T,C,G. The DNA that is waiting to be amplified is called 

the template. The segment of DNA that is going to be copied is determined by two short 

strands of DNA called primers, which match the sequence of the ends of the DNA 

segment of interest. In short, the reaction chamber is filled with DNA polymerase, the 

template, the primers and a supply of A, T, C, G. 

 PCR is a cyclic process. Each cycle starts with heating the chamber to around 94 

degree Celsius for the double strand DNAs to separate and for the polymerase proteins to 

terminate their work and get off the template. Then the temperature is lowered to a sweet 

spot where the primers can bind to single strand DNA templates. Then temperature is 
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raise to 72 degree Celsius for polymerases to work most efficiently to make copies of the 

templates. Polymerase works really fast and can make around 1000 base pairs in one 

minute. After a short period of time, determined by the template length, temperature is 

raised to 94 degree Celsius and a new cycle starts. The cycle is repeated many times to 

get huge numbers of the specific DNA sequence needed. The amount of product grows 

exponentially with numbers of cycles.   

Figure C.3: Schematic of PCR cycles (users.ugent.be/~avierstr).  
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Since we do not care about the DNA sequence, we randomly chose lambda DNA 

as our template. Standardized computer programs helped to choose a segment of lambda 

DNA as our target and extracted the sequence of corresponding primers. The primer 

selection is crucial to ensure the amplified DNA strands would not form secondary 

structures like hairpins with themselves. We chose our final single stranded DNA to be 

around either 1000 or 2000 bases long. The primers of the right sequence for our purpose, 

with amine-modified ends, were bought from Integrated DNA Technologies (idtdna.com), 

and the lambda DNA was bought from New England Biolabs (neb.com). The PCR was 

carried out successfully. This was confirmed with gel electrophoresis to measure the 

length and purity of our final products.  

 

Putting DNAs onto nanotubes 

 At this point, DNAs of sufficient length and modified with amine groups at the 

ends were made. There were four kinds of them: 1000 base pairs long or 2000 base pairs 

long, one end functionalized with amine or both ends. The next step would be to put them 

on the sidewalls of nanotubes using the PASE linker. 

 This can be done in two different methods. One method starts with putting PASE 

on nanotubes first. This is done by putting a droplet of PASE in dimethylformamide 

(DMF) on a silicon chip with nanotubes on top, and letting them incubate for 10 minutes. 

After DMF is blow dried, another droplet of DNA solution in water is put on the silicon 

chip and the complex is incubated for over night (this time scale can be significantly 

decreased).  Another method starts with mixing a small amount of PASE in DMF with 

DNA water solution, and let nanotube chips incubate with this mixture solution. Because 

succinimidyl ester group is not very stable in water due to hydrolysis, the PASE-DNA 

water solution degrades quickly and should be discarded after each run. 
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 The two methods both worked in the end. But all the initial trials failed. It turned 

out this was due to a tiny experimental detail: the buffer solution. The standard buffer for 

DNAs is TAE (Tris-acetate-EDTA). The name is an acronym of acronyms. The result is 

even biologists do not know what it is. As a physics student, I had the privilege of being 

totally ignorant, and had to learn everything from scratch. It turned out the full name of 

Tris is trishydroxymethylaminomethane and it has amino group in its formula. Although 

it is not primary amine, but we suspected that it still reacts with PASE. The PCR was 

carried out once again to make DNAs in PBS buffer solution. Then everything started to 

work out nicely.  

 Figure C.4 shows two AFM images of the result of successful functionalization. 

In the image on the left, a 2000 base pairs long DNA strand is doubly clamped onto a 

nanotube because both ends of this DNA were modified with amine groups. The length 

of DNA is around 700 nm, which agrees nicely with the number of base pairs. In the 

image on the right, 1000 base pairs long DNAs modified on one ends were attached onto 

two crossing nanotubes. This illustrates how densely the DNAs can pack together. The 

reason why all the DNAs are pointing the same direction is not known, and could be due 

to the way the solution was dried with a nitrogen stream.   

 

 

 

 

 

 

 

 

Figure C.4: AFM images of DNAs attached onto nanotubes.  
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If one argues whether the linear features in these images are really DNAs, it can 

be proven that they are at least insulating and thus cannot be nanotubes, the only other 

linear objects in the system. This was done using a scanned probe technique (Bockrath et 

al. 2002). The left side image of Fig. C.5 is a normal AFM topography image showing a 

DNA singly-clamped onto a nanotube. The right one is the phase image when a voltage 

potential is applied between the AFM cantilever and the conducting silicon substrate. 

Because the cantilever and the substrate form a capacitor, the voltage difference will 

create an electrostatic force on the cantilever, the magnitude of which depends on the 

capacitance. When the cantilever is on top of a conducting nanotube, the original 

capacitor is broken down into two capacitors in series. This inevitably changes the total 

capacitance, modifies the electrostatic force on the cantilever and generates a phase shift. 

That is why the nanotube produces a strong feature in the right figure. The other linear 

feature in the topography image, however, does not generate any changes in the phase 

image, thus confirming it is an insulator as DNAs should be.  

 

 

 

 

 

 

 

 

 

Figure C.5: Topography (left) and phase (right) image of a nanotube/DNA complex.  
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 It has been reported that single-stranded DNA can wrap around nanotubes and 

make them water soluble (Zheng et al. 2003). My collaborator, Sonny Mark, successively 

repeated the experiments with nanotube powders. But clearly the DNAs were not 

warping the tubes in Fig. C.4. This could be due to that nanotubes are sitting on solid 

substrates in our experiments. And maybe the DNA wrapping requires strong sonications 

to work, as what is done in the original report (Zheng et al. 2003).  

 This functionalization did not work on nanotubes that had been integrated into 

FET geometry (all the images shown above were taken on nanotubes that were freshly 

grown without further processing).  This is attributed to surface contaminations from 

photolithography. Later, the piranha cleaning method was found to be able to eat away 

the contaminations. But due to timing issue, the project had to stop prematurely.  But the 

experience was not wasted. Dr. Jun Zhu attached gold nano particles onto nanotubes in 

FET geometry with similar techniques. And further DNA sensing experiments can 

continue based on the functionalization techniques.  DNA sensors made from nanotubes 

have been demonstrated (Star et al. 2006). But the experiment was not quite convincing 

(Tang et al. 2006). Again, with DNAs attached to nanotubes like shown in Fig. C.4, one 

can do many manipulations to confirm the electrical signals and extract more information. 

This scheme can still be used to explore many new phenomena. 
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APPENDIX D 

ELECTRODE KINETICS IN SOLUTION 
 

 The research in Chapter 5 involves nanotubes working in aqueous solution. The 

potential difference between nanotubes and solutions is used to control the doping of 

nanotubes. Electrical field distributes in solution are very different than in solid state 

conductors. A few new concepts need to be familiarized to get the correct picture. 

 

Voltage distribution 

             The major difference between electrolytes and solid state conductors is there is 

no free electron in electrolytes. Instead the charges are carried by mobile anions and 

cations in solutions. Charges can transfer between electrodes, immersed in solutions, 

through chemical reactions only.   

When electrodes are put into solutions, they can be categorized into two kinds: 

reactive electrodes and inert electrodes.  The reactive electrodes can react with the 

solution to allow charge transfer in a circuit under a small voltage bias.  On the other 

hand, there is no chemical reaction between solutions and inert electrodes. We will 

discuss inter electrodes only. Under a small bias, all charges stay on their own side of the 

fence. Electrons cannot jump out the inert electrodes! There is almost no DC current 

flowing through the electrodes. But there is capacitive coupling, which means ions can be 

attracted to the electrodes when a potential difference is applied. Under larger bias, there 

will be chemical reactions even if the electrodes are inertial. That is because at large 

voltage the H+, OH- and other ions can be reduced or oxidized on the electrodes, in other 

words to exchange electrons with the electrodes. Although electrons go through the 

electrodes in these reactions, the electrodes themselves do not change their composition 

and the masses of them remain constant. 
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 The above discussion means the resistance between two inert electrodes immersed 

into solutions with a normal ionic strength mostly comes from ‘contact’ resistance. This 

is why the resistivity of a solution can only be correctly measured with AC voltage. Of 

course this statement becomes wrong when the solution becomes really resistive (with 

very few ions in it). Other than that, most of the electrostatic potential drops at the two 

electrodes interfaces. How the whole potential is split between the two electrodes is 

determined by their capacitances with the solution since it is basically a circuit of two 

capacitors in series. In electrochemistry experiments, the cyclic voltammetry is carried 

out with three electrodes. One is called reference electrode, whose purpose is to control 

the potential of solution to a well defined value. Then the potential drop at the working 

electrode is controlled.   

 In our experiments, nanotubes are grounded with a small bias across. A potential 

is applied through a gold wire immersed solutions. We think most of the potential is 

dropped at the nanotube-solution interface because of the huge size difference between 

nanotube and macroscopic gold wire (the capacitance grows with surface area). In the 

next section, the capacitance between electrodes and solutions is calculated. It also 

explains why nanotube FETs can be gated so efficiently in solutions.  

 

Capacitance 

a. Helmholtz model 

        If a voltage difference is applied on a piece of metal, a DC current is induced. But if 

a voltage is applied to an electrolyte with inert electrodes, what will happen? The 

simplest model is Helmholtz model (Albery 1975): the ions attracted toward the 

electrodes are lined up in the solution at a fixed distance xH away from the electrode as 

showed in Fig. D.1a. In this way a capacitor is formed.  The potential between the 

electrode and bulk solution induces charges on both side. The excess electrons or  
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Figure D.1: (a) Helmholtz model of double layers. (b) The profile of potential f 

perpendicular to the plane electrode. 

 

vacancies near the surface of the electrode are balanced by an equal number of ions in the 

solution. In the region close to the electrode, the electro-neutrality breaks down. xH is 

governed by the hydration spheres of the ions. If xH = 0.6 nm, CH =ε ε 0/xH =10 µFcm-2. 

Because of the high electric field in this layer, ε used in the estimation is 7 as compared 

to the value of bulk water 80. The potential drops in this capacitor as shown in Fig. D.1b. 

 

b. Debye-Huckel model 

Helmholtz model completely neglects the thermal energy of the ions. The ions 

pay extra free energy to line up near electrodes because of entropy.  The Debye-Huckel 

theory takes this effect into consideration and gives a different picture. For simplicity, 

suppose the electrode is planar. Then the variation of the potential, as well as the ion 

distribution, in the direction x perpendicular to the electrode can be calculated. 

        Let’s define f' =  f−f¶ , where f is the potential of the solution and φ¶ is the potential 

at infinite distance away from the electrode in the bulk solution. f'(0) is the potential 
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difference between the electrode and the bulk solution right at the interface, and f' (¶) is 

zero. The Poisson equation describes the relation between the ion distribution and the 

potential drop as  
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        The total charge at distance x is a results of all the kinds of ions: 
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where the ith type of ions has charge of zie and Ni(x) is the distribution function of ith 

ions per unit volume. Ni(x) is assumed to obey the Boltzmann distribution 
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        Then we get the so-called Poisson-Boltzmann equation 
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        Assume the solution is a simple (z,z) electrolyte, which means both anions and 

cations have z charges. Then  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∞
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

∞
−=

∂
∂

Tk
xzezeN

Tk
xze

Tk
xzezeN

x BBB

)(sinh)(2)(exp)(exp)( '

0

''

0
2

'2 φ
εε

φφ
εε

φ .  (D.5) 

Let’s define 
Tk
xze

B2
)('φθ =  and DL

B xx
N

Tk
ze

x /
)(2

1/ 0 =
∞

=
εεχ , where xDL is called the Debye 

screening length. Large ionic strength gives very short xDL. xDL = 0.3 nm for a 1M (1,1) 
electrolyte at room temperature. Then the equation can be written as 
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        The solution of Eq. D.6 is  
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        Since the Poisson-Boltzmann equation is a non-linear differential equation, in most 

cases there is no analytical solution. In the discussion below, I will use Eq. D.7 as the 

solution.  It should at least quantitatively agree with reality.  
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Figure D.2: The potential distribution outside an electrode according to the Debye-

Huckel theory. 

 

Suppose the ion concentration of the buffer solution is about 200 mM and the 

Debye screening length is about xDL = 0.67 nm.  If the potential of the electrode is 100mV 

higher than the bulk solution, then the voltage near the electrode drops as plotted in Fig. 

D.2. It is almost an exponential decay. 

        If we calculate the ions distribution near the electrode, apparently there are excess 

cations near the cathode and excess anions near the anode. The total excess charges of the 

ions are equal to that on the electrodes. One interesting phenomenon is in nanometer-

scale channels where the geometrical length is on the same order of the diffusive layer 

thickness, the solution in the channels loses neutrality when the walls are charged. If the 

surface is negatively charged, only positive ions can enter the channel. This effect has 

been observed and utilized to sort proteins (Karnik et al. 2006).  

We can calculate the capacitance per unit area between electrode and solution. 

Following Eqs. D.2 and D.7 
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        The total charge per unit area is  

)sinh()(4)2sinh()(2 0
00

θχθρσ ∞−=∞−== ∫∫
∞∞

zeNxdzeNxdx DLDL .   (D.9) 

Then the capacitance per unit area is  
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where NA is the Avogadro’s constant and c¶ is the ion concentration of bulk solution in 

the unit of molm-3 or mM. 
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The capacitance almost grows exponentially at high bias.  Fig. D.3 plots the capacitance 

per unit area according to different models. 

 

 

 

 

 

 

 

 

 

 

 

         

Figure D.3: The capacitance per unit area according to different models. 
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c. Combining the two model 

        The Debye-Huckel model can give unrealistic result because it does not take the size 

of the ions into consideration. For example, it may require huge amount of ions to stay 

within the hydration sphere radius away from the electrode. It is unrealistic. So the best 

way to describe the situation is to combine both the Helmholtz layer and the diffusive 

layer. Which one is more important is determined by their capacitance, and the one with 

less capacitance dominates since they can be considered as two capacitors in series. From 

Fig. D.3 we can see that Helmholtz capacitance is always smaller unless the ion 

concentration is very small and the bias is small too.  So when the ion concentration is 

high, most of the voltage drops across the Helmholtz layer. When the ion concentration is 

extremely low and the bias is small, the diffusive layer is important. It makes sense since 

when there are very few ions in the solution, the entropy they pay to line up near the 

electrode is huge. So diffusion wins in this situation. Anyway, the capacitance per unit 

area cannot exceed 0.1 Fm-2. 

        The research done in my group (Rosenblatt et al. 2002) shows nanotube FETs have 

almost the same response to solution potential at different ion concentrations, from 1 mM 

to 1 M. In other words, the gate coupling between the solution and the nanotubes does not 

depend on ion concentration at these levels. If only Debye-Huckel theory is considered, 

the capacitance should grow with ion concentration. So probably Helmholtz layer is 

dominating in these cases. 

       But another explanation, which does not acknowledge the Helmholtz layer, is that 

there is a constant quantum capacitance in series with the diffusive layer capacitance. 

Since the quantum capacitance is much smaller, the whole capacitance is fixed by it 

although the diffusive layer capacitance is changing.  

        From Helmholtz model, the unite length capacitance between 1nm diameter tube 

and water is about 0.1 Fm-2×p×1 nm = 3×10-10 Fm-1. The quantum capacitance is about 

4×10-10 Fm-1
 (Rosenblatt et al. 2002). They are on the same order. It’s difficult to 
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distinguish whether the whole capacitance is fixed by quantum capacitance or by the 

Helmholtz layer capacitance.  One experiment to test the existence of the quantum 

capacitance is to make really good coupling between tube and a solid state gate with a 

very thin insulating layer that has high dielectric constant to see if the coupling can be 

higher than the quantum capacitance. 

 

Surface potential 

 The streptavidin detection experiment using nanotube/SLB hybrids in Chapter 5 

can also be explained by surface potential change. When streptavidins bind to the biotins 

in the bilayer, they add a layer of surface charge and thus a potential change.  

Since the experiment was carried in low ionic strength buffer, we will use Debye-

Huckel model. Equation D.9 shows the relationship between a surface potential induced 

by a surface charge to its charged density. The data in Section 5.5 shows the binding 

events generate a threshold shift of about 80 mV. According to Eq. D.9, that corresponds 

to a charge density of about 5.2 ×104 e/µm2. This is slightly larger than the charge density 

estimated in Section 5.5. Actually the equation used in Section 5.5, dweV λεεσ /2 0∆= , is 

an approximation version of Eq. D.9. When x is small, sinh(x) approaches x and the two 

equations become equivalent. This discussion here helps to capture the essence of the 

sensing mechanism.   

 

In conclusion, the potential distribution in solution is discussed in this appendix. 

The capacitance between electrodes and solutions is calculated and showed that it 

behaves differently in solutions with different ion concentrations. The surface potential 

associated with surface charges is also presented. These discussions are helpful to 

understand the experiments involving nanotubes in solution.  
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APPENDIX E 

DIMENSIONALITY OF NANOTUBES AND OUR UNIVERSE 

 

Suppose when SWNTs are first discovered, people only have lousy SEMs. People 

see SWNTS as linear features in SEM images but cannot figure out whether they are one-

dimensional lines or two-dimensional tubes/stripes because the features are as wide as 

their probing electron beam.  People do not know the dimensionality of SWNTs.  

When people first study the electrical properties of nanotubes (for now, suppose 

they only have one species of tubes), they discover a new fundamental particle. The 

particle carries one electron charge, but its mass is much smaller than electron rest mass. 

The momentum of these particles only can only be along the tube axial direction, either 

pointing one way or the other. Therefore, people conclude that SWNTs are one-

dimensional.  

However, the next day people build a high energy collider and discover a new 

particle in nanotubes. It has double the mass of the first particle, but the same electron 

charge. Theorists predicate there are heavier particles, and they are consequently 

discovered in the collider. But the masses of these high energy particles follow a unique 

pattern of 1,2,4,5,6,7… times the smallest mass unit (refer to Chapter 2). No one can 

explain this phenomenon, and it becomes known as “the God’s hatred of three”. 

One day people obtain more powerful tools that can resolve nanometer details. 

Then it becomes apparent that SWNTs are not really one-dimensional. Instead they are 

two dimensional tubes with one of the dimensions much smaller than the other and rolled 

up to itself.  People also figure out that the mass of the fundamental particles are 

determined by how real electrons circle the circumference. The pattern in particle masses 

is a result of atomic details along the circumference.  
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Just when people think all the mysteries have been solved, they discover other 

nanotubes that have fundamental particles of different unit masses. With the help of high 

resolution TEM, they find out this is due to the size of the rolled-up second dimension, or 

the tube diameter. In conclusion, with high resolution imaging tools and high energy 

colliders, people figure out the exact spatial nature of nanotubes, discover a new 

dimension and learn how the masses of the previously observed particles come from the 

property of the smaller dimension.  

We, in reality, are living in a situation similar to the one described in the first few 

paragraphs. We know the fundamental particles of this universe and have a pretty theory 

to phenomenologically describe the interaction between them, but the theory cannot 

explain the origin of masses, charges and spins carried by these particles.  

Then there comes string theory. Up to today it has not generated experimental-

testable predictions. But the internal beauty and the astonishing insight of the universe it 

brings along make it an attractive, and almost the only, theory that are being studied by 

the best theoretical high energy physicists.  

I read a popular string theory book targeted at general audience, “The Elegant 

Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory” by 

Brian Greene, as I was writing this thesis. I could not help but notice how nanotubes are 

similar to the space fabrics described in string theory. In string theory, the world has 

more than the normal 3(space) + 1(time) dimensions. The extra six or seven dimensions 

are very small and wrapped, just like the circumferential dimension of nanotubes but in 

much more complicated forms. The masses of the fundamental particles arise from how 

strings oscillate around these complicated wrapped dimensions. Basically, everything we 

see in the universe, particles and forces, comes from the detailed fabrics of the universe. 

Furthermore, there is no reason that the fabrics of our universe, or how the small 

dimensions twist and wrap, are unique just like nanotubes come in different diameters 
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and chiralities. We should not be surprised one day to see parallel universes where the 

physical phenomena are quite different from ours.  

 

In conclusion, one should not ignore or refuse to accept string theory, although it 

may not be the ultimate theory or even correct. After all, it is beautiful and attractive to 

generations of physicists. I could not wait to see the real structure of our universe. The 

Large Hadron Collider (LHC) being build at CERN  may shed some light on it (Randall 

2007) very soon.   
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