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Abstract

Scanned Probe Microscopy of the Electronic Properties

of Low-Dimensional Systems

by
Michael Thomas Woodside
Doctor of Philosophy in Physics
University of California, Berkeley

Professor Paul L. McEuen, chair

The local electronic properties of low-dimensional systems are explored using a
low-temperature atomic force microscope (AFM) sensitive to electrostatic forces. Two
low-dimensional systems are measured: atwo-dimensional electron gasin the quantum

Hall regime, and a one-dimensional electron gas in single-walled carbon nanotubes.

The properties of the edge of a quantum Hall conductor are investigated by study-
ing non-equilibrium edge state populations. Electrostatic force microscopy (EFM) is used
to measure the local Hall voltage distribution at the edge of a quantum Hall conductor in
the presence of a gate-induced non-equilibrium edge state population. Disequilibrated
edge state potentials are clearly observed, with a sharp voltage drop seen near the edge of
the sample. Equilibration of the edge state potentials by inter edge state scattering is also
imaged locally with EFM. Scanned gate microscopy (SGM) is used to probe the inter
edge state scattering further, by investigating the scattering mechanisms involved. Scat-

tering is found to be dominated by individual scattering centers, which are imaged with



SGM. Evidenceisfound for scattering from both weak links between the edge states and

microscopic impurities.

The local electronic properties of carbon nanotubes are explored by studying sin-
gle-electron charging effects in quantum dots that form within the nanotubes. SGM is
used to locate individual quantum dots in a nanotube and observe Coulomb oscillationsin
their conductance. The dependence of the scanned gate images on the AFM tip voltageis
found to be influenced strongly by the electrostatic environment of the nanotube, and a
phenomenological model isintroduced to describe these effects. EFM measurements are
used to detect Coulomb oscillations in the electrostatic force exerted by the nanotube on
the AFM tip. These Coulomb oscillationsin the force are due to the change in the electro-
static potential of the quantum dot associated with single electron charging. Coulomb
oscillations in the resonant frequency of the AFM cantilever are also observed, due to the
spatial gradient of the force exerted by the dot. In both cases, quantitative agreement with
theory is obtained. Finally, degradation of the Q-factor of the cantilever resonanceis
observed at the same locations as the Coulomb oscillations in the conductance, the force,
and the resonance frequency. An explanation in terms of dissipation of the cantilever

energy through coupling to single electron motion in the quantum dot is proposed.
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ciarrer 1 INtroduction: Electron Trangport in
Low Dimengons

1.1 Introduction

When electrons in a conductor are physically confined so that they can no longer
move in fully three-dimensional space, but only in two-dimensional, one-dimensional, or
even point-like zero-dimensional regions of space, alow-dimensional systemis created.
The electronic properties of low-dimensional systems have been the subject of much inter-
est in the last two decades, driven by the twin goals of discovering new physics and devel-
oping potential applications. Studies of low-dimensional systems have indeed yielded
exciting new discoveries, such as the Quantum Hall Effects, for which two Nobel Prizes
have been awarded. They have also permitted beautiful demonstrations of more estab-
lished physics in elegant model systems, such as energy level structure (Kouwenhoven
1997) and the Kondo Effect (Goldhaber-Gordon 1998) in artificial atoms. The electronic
properties of low-dimensional systems remain an important topic of research, with on-

going explorations of novel physical, chemical and biological systems.

To date, much of the work on these systems has involved measurements of elec-
tron transport. Transport measurements are a powerful tool that have provided many cru-
cial insights into the properties of low-dimensional electrons. They are not ideal for

studying the local properties of these systems, however, since they are typically not capa-
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ble of good spatial discrimination. In order to study the local electronic properties of low-
dimensional systemsin more detail, we turn to novel scanned probe technologiesthat have
been developed in the years since the invention of the scanning tunnelling microscope
(Binnig 1981) and the atomic force microscope (Binnig 1986). Scanned probe micro-
scopes use avery small sensor probe that can be scanned with high spatial resolution over
the sample. They therefore provide an excellent tool for probing the local properties of a

system.

In this dissertation, we report investigations of the electronic properties of low-
dimensional systems using scanned probe techniques. We employ an atomic force micro-
scope that is sensitive to electrostatic forces to study the properties of two particular sys-
tems: intwo dimensions (2D), an electron gas in the quantum Hall regime; and in one
dimension (1D), carbon nanotubes. These scanned probe investigations are complemen-
tary to the results of electron transport studies. We therefore begin with areview of elec-
tron transport in low dimensions. In section 1.2, we give a brief survey of the variety of
transport phenomena observed in low dimensional systems. Thisisfollowed by amore
detailed look at two phenomenathat will prove important in later measurements: conduct-
ance quantisation in 1D (section 1.3) and single electron transport in quantum dots (sec-
tion 1.4). Insection 1.5, we present a brief outline of some of the scanned probe
techniques that have been used to study the electronic properties of low-dimensional sys-

tems, before concluding with an outline of the rest of the dissertation.
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1.2 Electron Transport and Low Dimensions

The study of electrical conduction, the motion of electric charge inside matter, has
along and distinguished history in the annals of physics. Indeed, physicists’ understand-
ing of electricity hasled to technology that has fundamentally altered the basis of modern
society, from labour-saving devices (robots, elevators, washing machines, ...) to environ-
mental control (lighting, refrigeration, air conditioning, ...) to communications and the
information revolution (telephones, radio, television, computers,...). It isnow over 100
years since the first successful comprehensive theory of conductivity was proposed by
Paul Drude (Drude 1900a, 1990b). Remarkably, electron transport still remains a central
areaof active research in condensed matter physics, in fields as diverse as superconductiv-
ity, magnetic structures, and mesoscopic systems. To alarge extent, this continuing rele-
vance is due to the fact that the electrical behaviour of materialsis extremely sensitive to
their microscopic properties: the conductivity of different materials, for instance, can vary
by over 20 orders of magnitude. Electron transport thus provides avery sensitive tool for

probing the properties of many physical systems.

Advances in materials science and semiconductor fabrication technology over the
last 3 decades have now made it possible to construct conductors with dimensions on the
order of micronsto nanometers. These conductors are called mesoscopic because they are
intermediate in size between everyday macroscopic systems and the microscopic atomic
scale. Interesting physics arises in mesoscopic systems because the size of the system has

been reduced to the same order of magnitude as the typical length scalesfor scattering and



Introduction: Electron Transport in Low Dimensions

Fig. 1.1: Examples
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guantum mechanical coherence. In addition, it ispossibleto physically restrict the motion
of the electrons in one or more dimension, effectively reducing the dimensionality of the
electrons. Since the balance between kinetic and potential energies depends sensitively on
the dimensionality, this also has profound consequences for the electronic behaviour. The
study of electron transport in low-dimensional mesoscopic systems has led to the discov-

ery of arich set of qualitatively new physical phenomena.

Some of these phenomena arelisted in Fig. 1.1. For example, electrons confined
to atwo-dimensional (2D) plane, known as a 2D electron gas (2DEG), give rise to the
integer and fractional Quantum Hall Effects and related phenomena such as composite fer-

mions, fractionally charged quasiparticles, and skyrmions (for areview see Das Sarma

4
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1997, Prange 1990). There are aso interesting questions concerning metal-insulator tran-
sitionsin 2D systems (Kravchenko 1996). Examples of 2D systemsinclude S MOSFETs
and GaAg/AlGaAs heterostructures. Electrons confined to form a one-dimensional (1D)
wire give rise to conductance quantisation and L Uttinger liquid behaviour (for areview see
Sohn 1997). Such 1D systems include quantum point contacts, semiconductor quantum
wires, nanowires, and carbon nanotubes. Finally, when electrons are confined in all direc-
tions and form a zero-dimensional (OD) “dot”, Coulomb oscillations and single-electron
trangport through individual quantum levels are seen (for areview, see Grabert 1992).

Examples of OD systems include nanocrystals and semiconductor quantum dots.

Electron transport in low-dimensional mesoscopic systems thus covers avery
broad range of behaviours and systems. The work presented herein will be concentrate on
only two specific systems: for 2D electrons, the integer quantum Hall Effect; and for 1D
electrons, carbon nanotubes. Aswe shall see later, electron transport in the integer quan-
tum Hall regime involves 1D conducting channels embedded in a 2D plane of electrons,
while transport in nanotubes involves OD quantum dots embedded in a 1D wire. These
two systems thus encapsulate many of the interesting features of low-dimensional sys-

tems.

1.2 Conductance Quantisation in a One-Dimensional Channel

The conductance G of asampleisthe relationship between the current | that flows

across the sample in response to an electrochemical potential difference Au acrossit:

5
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| = G- Au

In the Drude model of conduction, the conductance G, an extrinsic property of the sample,
iscalculated in terms of thelocal conductivity o, an intrinsic property which expressesthe
local current density j in terms of the net electric field E in the conductor: | = - E.

The conductivity ¢ isfound to depend on the density n and mass m of the electrons, and on

the average time t between electron scattering events in the conductor:

The conductance of the sampleis calculated by integrating the local conductivity. Inthe
case of asample of width w, height h, and length | with uniform conductivity ¢, we obtain

the well-known result (Kittel 1986):

G = G(VLh) Ly

The Drude model works very well for awide variety of applications within the
macroscopic domain. It breaks down in mesoscopic systems, however, because it treats
scattering in an average way. The Drude model assumes that the scattering time t is suffi-
ciently short that scattering events will completely randomise the momentum and phase of
the electrons as they pass through the conductor. 1n mesoscopic systems, however, the
sampleis of the same size-scale as the mean free path and the phase coherence length, so
that thisis no longer a good approximation. Instead, conductance in mesoscopic systems
is approached in terms of atransmission problem through the conductor. This approach to
the conductanceis known asthe Landauer-Buttiker theory (Landauer 1957, Bittiker 1986;

for areview, see Datta 1995).
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Fig. 1.2: Conductionin aquasi-1D wire. Electronstravel freely in x, with
wavevector k, but their motion is quantised in'y, producing 1D subbands
N=1,2,3,... Electrons coming from the right contact (left-moving electrons) have
an electrochemical potential ., those coming from the left contact (right-moving
electrons) have a potential L. An electrochemical potential difference Au=p,-u,
givesriseto anet current in the wire. Here two (spinless) subbands are occupied,
so the conductance in the absence of scattering is G = 2e/h.

Consider the conductance of a narrow wire in the absence of scattering. Electrons
are free to move along the axis of the wire, but their transverse motion is quantised by the
lateral confinement, creating anumber of 1D subbands as shownin Fig. 1.2. Welabel the
electronic states in each subband by their momentum k along the wire. The contacts at
either end of the wire act as thermodynamic reservoirs that establish the electrochemical
potential of the electrons originating from them. If thereis an potential difference
between the contacts, Ay, then the states travelling in opposite directions are popul ated to
different levels and a net current flows between the contacts.

In each mode, the number of electrons carrying the net current is (3—9 eAu, where
S—E is the electronic density of states per unit length of the channel, and the electrons

move at the Fermi velocity ve. The current in each mode (neglecting spin) is therefore

- [an
dE

given by:

-eA uj eV

Er
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dn _ 2n(m) _ﬂ(k_g : issimply:
i 2\ K while Vg = >alm , SO that the current in each modeis simply:

= (5) o

If there are N 1D modes occupied in the conductor, the sum of the currents yields a total

In1D

conductanceof G = N(%Z) )

This describes the conductance when the conduction is ballistic, i.e. thereisno
scattering in the sample. Scattering is included by assuming that each 1D modei in the
conductor has a probability T; of being transmitted. The current transmitted in each mode

is reduced by the factor T;, resulting in atotal conductance of:

o

Eq. 1.2 expresses the conductance in aquasi-1D channel in terms of the transmis-
sion probabilities of 1D channels. We can see from this equation that when all the trans-
mission probabilities are unity and the conduction isballistic, the conductance is quantised
in terms of the conductance quantum e?/h. The guantisation of conductance in aquasi-1D
channel is an important prediction of the Landauer-Bittiker model that differs markedly
from the Drude model. Thisresult has been verified experimentally by measurements of
the conductance of a short electrostatically-defined constriction (van Wees 1988, Wharam
1988). Asthewidth of the constriction isincreased, its conductance increases not linearly

as predicted by the Drude model (Eg. 1.1), but in steps of e?/h, as predicted by Eq. 1.2.
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1.3 Quantum Dotsand Single-Electron Transport

If we take a one- or two-dimensional sample and restrict the motion of the elec-
trons further, so that they are effectively confined to a zero-dimensional box, we create
what is known as a quantum dot. Quantum dots have been studied extensively in semi-
conductor heterostructures, particularly dots that are created by electrostatic confinement
in 2D electron systems. The rich behaviour of quantum dotsis described in detail in
reviews of the subject (Grabert 1992, Kastner 1993, Sohn 1997). Here we briefly present
the essential properties of quantum dots that will be needed to understand the results dis-

cussed later.

For large samples, the fact that electronic charge is quantised is essentially irrele-
vant, and charge can be treated for most purposes as a continuous variable. Asthe size of
the system being studied becomes smaller, however, the effects of charge quantisation
gain inimportance, until at the level of OD quantum dots they can dominate the conduct-
ance. This can be seen by considering the effect of adding a single electron to asmall con-
ducting island (often called a quantum dot) that is coupled through tunnel barriersto
source-drain leads!. Dueto the Coulomb repulsion between this electron and the el ectrons
already present on the quantum dot, the electrostatic potential of the dot increases by an
amount &/C upon addition of the electron, where C is the capacitance of the dot. The
energy U = e?/Ciscalled the charging energy, and it sets the energy scale at which the

effects of charge quantisation become important. For kgT « U, thethermal energy is

1. Tunnel barriers (rather than Ohmic contacts) are required to see single electron charging, to ensure that the electrons
on theisland are sufficiently well localised, i.e. that the electron occupancy of theisland iswell defined.

9



Introduction: Electron Transport in Low Dimensions

insufficient to allow even a single additional electron onto the quantum dot. The charge
on the dot isthus fixed and no current can flow through the dot unless some other meansis
found to provide the charging energy. This phenomenon is known as Coulomb blockade:

transport is blocked by the Coulomb repulsion from the electrons already on the dot.

The charge occupancy of aquantum dot can be changed by using agate to alter the
electrostatic potential of the dot and overcome the charging energy. A voltage Vg applied
to agate with capacitance Cy will change the el ectrostatic potential of the dot continuously
as Vg ischanged. Expressing this potential interms of charge, the gate voltage induces an
effective continuous charge g = Cy4Vy. The actual charge on the dot can of course only
change by integer multiples of €; this continuous charge effectively represents the charge
that the quantum dot would like to have if charge were not quantised. Aswe sweep Vg up,
the charge on the dot remains quantised while the gate changes the el ectrostatic potential
of the dot and induces a continuous charge g, until the gate voltage has provided enough
energy to overcome the charging energy. At thispoint, an electron can tunnel onto the dot,
changing the actual charge on the dot by e, and conductance through the dot is no longer
blockaded. The competition between the continuous charge g induced by the gate and the
guantised charge that can actually transfer onto the dot thus resultsin periodic peaksin the

conductance as a function of Vg, known as Coulomb oscillations.

The basic physical picture of Coulomb oscillationsisillustrated schematically in
Fig. 1.3. Here, weinclude the fact that the quantum dot, being avery small object, hasits

own discrete quantum level spacing, AE. The dot is connected to two contacts viatunnel

10
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(a) Coulomb blockade (b) Conductance peak

tunnel quantum dot N = Nl

barrier —~ff ...

contact Wief AEf 5 e L

I\‘ eft udot(N) 1AE+% urighl ........

= Iy
= ——

)"/ Birhoppepmyreny SONPPRPPR & N B I i . Oy

} [ 1 V, [ 1 I ]

backgate

Fig. 1.3: Coulomb oscillations in the conductance of a quantum dot. (a) When the electrochemical
potential of both leads lies in the energy gap U+AE, no electrons can tunnel onto the dot. The
occupancy of the dot is fixed and the conductance vanishes due to Coulomb blockade. (b) When
the gate voltage is tuned so that the electrochemical potentia of the dot lies between those of the
leads, electrons can tunnel onto and then off of the dot, changing the occupancy of the dot and
causing a peak in the conductance.

barriers. A source-drain bias Vg much smaller than the charging energy and level spacing
(i.e. inthelinear regime) is applied acrossthe dot. Thereisan energy gap U+ AE between
the highest occupied state and the lowest empty state on the dot; all other states on the dot
are separated in energy by only the level spacing AE. When the electrochemical potential
L of both leads lies within the energy gap, as shown in Fig. 1.3(a), no electrons can tunnel
on or off the dot, the conductance is zero, and the dot is in Coulomb blockade. When the
gate voltage has tuned the electrostatic potential of the dot so that the energy of the lowest
unoccupied state lies between W e and fyjgr, asin Fig. 1.3(b), then an electron can tunnel
onto the dot, changing the dot occupancy from N to N+ 1. The electrostatic potential of the
dot then jumps up immediately, and the electron in the highest occupied state is able to

tunnel off of the dot. The dot occupancy alternates between N and N+ 1 due to successive

single-electron tunnelling events, leading to a peak in the conductance.

11
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The ssimple model described above leads to an expression for the electrostatic

potential ¢(N) of adot with occupancy N:

C,V
0(N) = (N=Ng)&——L1 @)

Here, C isthetotal capacitance of the dot to its environment (i.e. to all gates aswell asthe
leads), and N is the dot occupancy at O gate voltage. Similarly, the electrochemical
potential nyor(N) of adot with occupancy N is given by:

& C.V
Mgot(N) = E+ (N=Ng) 5 —e—— @4

where Ey, isthe energy of the single particle state for the Nth electron. From this expres-

sion we find the addition energy required to add a single electron to the dot:

2

e
Haot(N+ 1) =hgo(N) = AE+ C (1.5)

aswell asthe spacing in gate voltage AV, between conductance peaks:

AV. = L(AE+ e—z) (w6)

g ng C

Note that the peak spacing is not strictly periodic, asthe level spacing AE may change
from one state to the next and even the charging energy U is not strictly constant (it isa

parametrisation of the Coulomb interactions among the electronsin a given state).

The variation with gate voltage of the conductance, the charge on the dot, the elec-
trostatic potential of the dot, and the electrochemical energy of the dot are all plotted in
Fig. 1.4. Asthe gate voltage moves through a conductance peak, the charge on the dot

increases by one, the electrostatic potential increases by €%/C, and the electrochemical

12
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o E E E Fig. 1.4: Dependence of the
i i i conductance, electron occup-
ancy, electrostatic potential,
and electrochemical potential
of aquantum dot on the gate
Jk . voltage. The conductance (a)
: : : : shows sharp peaks when the
% : | | number of electrons on the dot
: ' : (b) changes by 1. At the same
N time, the electrostatic poten-
' tial of thedot (¢) jumps by
| : : €/C and the €lectro-chemical
N-1 E E potential (d) jumps by AE+e%/
' ' ' C.

conductance

electron number
4

Y

electrostatic
potential ¢

electrochemical
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. .
AV, gate voltage Vg

potential increases by AE+ e?/C. All of these changes have been shown as abrupt, as

expected at T=0K. At finite temperatures, they are al broadened by the Fermi distribu-

tion function.

If the source-drain biasis increased into the non-linear regime, with eVgy > AE,
then electrons can tunnel onto either the lowest or second-lowest unoccupied states. As
Vg isincreased, ever more excited states are involved in the transport. The excitation
energies of the guantum dot can therefore be explored by non-linear single-electron tun-

nelling. The transport measurements are thus in effect a spectroscopy of the energy levels

13
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of the quantum dot, single-electron transport spectroscopy. This provides a very power-

ful tool for investigating the properties of quantum dots (Sohn 1997).

1.4 Scanned Probe M easurements

Electron transport measurements are very useful for investigating the energetics of
mesoscopic systems. They suffer, however, from alack of spatial discrimination: it isdif-
ficult to tell which part of the sample is responsible for which part of the observed behav-
iour. Thisisbecause by their very nature transport measurements probe the entire system
at once. Understanding the microscopic mechanisms responsible for the behaviour, how-
ever, often requires the ability to probe and manipulate only one small portion of the sys-
tem at atime. Thedesireto study the local properties of mesoscopic systems hasled to the
recent development of anew generation of low-temperature scanned probe techniques that

are well suited to investigating electronic propertiesin low-dimensional systems.

Some of these techniques are designed as non- or minimally-perturbative probes
capable of measuring the intrinsic properties of the system. Electrostatic force micros-
copy has been used to perform electrometry (Schonenberger 1990), to measure local con-
tact potentials (Nonnenmacher 1991), and to measure local electrostatic potentials (Martin
1988, McCormick 1998a, Bachtold 2000). Scanned capacitance measurements have also
been used to measure the local electrostatic potential, as well as the local compressibility
of the electrons (Tessmer 1998, Finkelstein 2000). A scanned single-electron transistor

has been used as yet another way to perform electrometry and measure both the local elec-
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trostatic potential and the electronic compressibility (Yacoby 1999, Zhitenev 2000). And
of course scanning tunnelling microscopy remains a very useful technique for local spec-

troscopic and structural measurements (Odom 1998, Wildoer 1998, LeMay 2001).

Other techniques have been developed to explore the response of the system to
deliberate perturbations. Scanned gate microscopy has been used to electrostatically per-
turb the system and image el ectron orbits under various conditions (Eriksson 1996, Crook
2000, Topinka 2000 and 2001). It has also been used to study scattering from potential
perturbations and impurities (Bachtold 2000, Tans 2000, Bockrath 2001, Woodside 2001).
In another approach, atomic force microscopes have been used to mechanically perturb
and manipulate conductors, for instance by compressing or stretching them, changing

their shape, or cutting them (Tombler 2000a, Bozovic 2001, Postma 2001).

All of these approaches have provided valuable insights into the microscopic
properties of the systems studied. In the work presented here, we use two particular tech-
niques. To measure the local electrostatic potential, we apply electrostatic force micros-
copy, while to study scattering centers and single-electron charging, we apply scanned
gate microscopy. These measurements are made with alow-temperature atomic force
microscope specially designed to study the electronic properties of low-dimensional sys-

tems.
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1.5 Outline

The rest of this dissertation will present research into the local electronic proper-
ties of two specific low-dimensional systems, 2D electron gases in the quantum Hall
regime and 1D carbon nanotubes, using scanned probe microscopy. Chapter 2 will pro-
vide a description of the low-temperature atomic force microscope used in this research
and how it can be used to measure the el ectronic properties of these systems. The specific
experimental techniques employed, electrostatic force microscopy and scanned gate
microscopy, will be discussed in detail in this chapter. Chapter 3 will introduce the integer
Quantum Hall Effect in 2D electron gases. Electrostatic force miscroscopy will be used to
investigate the local electrostatic potential distribution associated with non-equilibrium
currents in a quantum Hall conductor. A measurement of local equilibration ratesin this
chapter will lead in Chapter 4 to an investigation of the individual scattering centers
responsible for equilibration in the quantum Hall regime. Chapter 5 will turn from 2D
electron gasesto 1D carbon nanotubes, reviewing transport in carbon nanotubes as well as
previous scanned probe studies. In Chapter 6, scanned gate measurements of nanotubes at
the single-electron level will be discussed, whilein Chapter 7, scanned force measure-
ments of nanotubes at the single-electron level will be presented. Finally, Chapter 8 will

briefly outline questions that remain to be answered and directions for future work.
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cuaerer2. 1HE LOW-Temperature Atomic Force
Microscope

2.1 Introduction

Sinceitsinvention in 1986 (Binnig 1986), the atomic force microscope (AFM) has
developed into a powerful and versatile tool with applications in many fields of science.
The strength of the AFM liesin its combination of high spatial resolution and excellent
force sensitivity coupled with a very robust force sensing mechanism that can operatein
many different environments (Sarid 1994, Wiesendanger 1994). It iseasily adapted to
sense avariety of forces (e.g. van der Waals, frictional, electric, magnetic, chemical, ...) or
to probe other properties of the sample altogether (e.g. electronic, thermal, ...). The AFM
can also be used not just to sense forces but to apply them, providing a microscopic probe
with which to manipulate samples as desired. Because of these features, atomic force
microscopy is proving to be an invaluable tool for fields as diverse as biology, chemistry,

materials science, engineering, and physics.

The basic concept of the AFM isvery simple: asharp tip is mounted on the end of
a soft cantilever and placed above the sampleto be studied. The cantilever behaveslike a
spring, so that any forces acting on the AFM tip cause the cantilever to deflect (Fig. 2.1).
By monitoring the motion of the cantilever through one of a variety of techniques (Sarid
1994), we can then measure the force being applied to the tip. For example, if thetipis

brought into contact with the sample surface, then inter-atomic repulsion between tip and
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(a) \ Fig. 2.1: Principle of operation

cantilever of the atomic force microscope
deflection (AFM): asharp tip senses the
cantilever tip force from the sample, which is
g measured by detecting the
deflection of the cantilever. (a)

In contact mode AFM, thetip is

®) cantilever in contact with the sample sur-
deflection face. (b) Innon-contact AFM,
thetip is held just above the

cantilever tip

AR foe

sample

sample surface.

sampl e deflects the cantilever, and the sample topography can be imaged. Measurement
with the tip in contact with the surface is known as contact mode AFM. If thetipisheld
above the surface, then longer-range forces such as the electrostatic force can be meas-
ured. Thisisknown as non-contact AFM. Thetip can also be used to perturb the sample,
for instance by applying electric fields or mechanical stresses to the sample. Many differ-
ent feedback and control systems are employed to implement the various incarnations of
atomic force microscopy. In essence, however, the AFM is simply aforce transducer,

trandating forces on the tip into mechanical motion of the cantilever.

The dynamics of AFM cantilever motion are reviewed in section 2.2. Thisisfol-
lowed in sections 2.3 and 2.4 by a discussion of the forces acting on the AFM tip (prima-
rily electrostatic) that will be relevant for the experiments described later. The design of
the low-temperature AFM used in the experimentsisreviewed in section 2.5. The chapter

concludes with adiscussion in sections 2.6 and 2.7 of the principal measurement tech-
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niques used in thiswork: electrostatic force microscopy (EFM) and scanned gate micros-

copy (SGM).

2.2 AFM Cantilever Dynamics

In order to use the AFM to measure forces, we need to understand the dynamics of
the response of thetip and cantilever to an applied force. Thisismost easily done by mod-
elling the cantilever and tip assembly as a damped simple harmonic oscillator (see, for
example, Sarid 1994). For small displacements z, the cantilever acts as alinear spring,
obeying Hooke'slaw F = kz , where k isthe spring constant. The equation of motion

of the tip in response to an applied force F(t) is then:

2
d zj
m=—=|+7v

(dt2

Here misthe effective mass of the tip-cantilever system, and yisadamping term (e.g. due

dz _
(d— +kz=F (2.1)

to air resistance or defectsin the lever).

For aperiodic driving force F(t) = Fcos(wt) , theresponse z(t) isalso periodic,
Z(t) = Acos(wt—0), with:
A(w) = F Q 22
k 2 2.2 2
Q(1-(w/wp") +(w/wp)

(OO ()
tan® = 20 7~ g 1_(0(2—(%) 2.3)
Qlwg—w’) 0
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a

Fig. 2.2: Amplitude and phase
response of acantilever toal pN
driving force calculated from Egs.
1.2 and 1.3, for ahypothetical can-
tilever withk=3 N/m (similar tok
of actual AFM cantilevers). The
resonance Q is 30 000, typical for
an AFM cantilever in vacuum at
low temperature. A 1 pN driving
force produces a 10 nm response
on resonance, which is easily
detectable. Note that the band-
width of the resonanceis

Amplitude (nm)
(9]
1
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a
[\)
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O 110 extremely narrow, only 1 Hz for a
0.9995 1.0000 1.0005 cantilever with atypical resonance
Frequency (/@) frequency of 30 kHz.

Thisisthe classic resonance response, where we have defined the resonance frequency
of the cantilever as ®, = Jk/m, and the quality factor Q of the resonance as

Q = (mw,)/y. The smaller the damping, the larger the Q factor, and the larger the
amplitude response to a given force. Q also sets the width of the resonance, asit isthe

ratio of the resonant frequency to the full width at half power.

Egs. 2.2 and 2.3 describe the response of a freely-oscillating cantilever, which is
the situation in non-contact AFM. To illustrate what this response looks like, in Fig. 2.2
we plot the response of a hypothetical cantilever to a1 pN driving force calculated from
Eq. 2.2 and 2.3. The cantilever in this calculation has a spring constant of k=3 N/m and
aresonance quality factor of Q = 30 000, typical vaues for the actual AFM cantilevers
used in the measurements we discuss later. We see that a small driving force (1 pN) pro-
duces on resonance alarge displacement of the cantilever that can easily be detected. The

high Q factors of AFM cantilevers allow them to sense very small forces on resonance.
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Note that the high Q also resultsin avery narrow resonance linewidth: for example, atyp-
ical cantilever with aresonant frequency of 30 kHz and Q = 30 000 has a resonance width

of only 1 Hz.

The previous equations assume that the driving force isuniform. Itisusually the
case in non-contact AFM, however, that the force driving thetip is not simply uniform but
varies slowly in space. In this case, we approximate the force by Taylor expanding it
around the equilibrium position of the tip Z; in terms of derivatives of the force:

F(t) ~ [F(zy) + F'(z5)(z—2z)] cos(mt). The solution to the equations of motion

becomes:
F 2
A(o) =( LZOU(;DO] : Q2 - (2.4)
Q- (/0D + (00g)/0gD)
tan® = ——020;—)——2— (2.5)
Q((’)o, -—0)

The force derivative acts to change the effective spring constant, creating a new spring

constant k” = k—F’(z;) and shifting the resonance frequency to:

An attractive force, having a positive F’, thus effectively softens the cantilever and
reduces the resonance frequency. Typical force gradients in the work that will be pre-
sented in later chaptersinvolve frequency shifts of afew Hertz, or on the order of afew

partsin 10*. Note that this frequency shift is larger than the typical width of the reso-
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nance, and so has important effects. The changes in the response amplitude at resonance,
however, are sufficiently small that they can be essentially ignored (Eg. 2.4). The princi-
pal effect of the force gradient is thus to shift the resonant frequency of the cantilever.

(For further details on cantilever dynamics, see Sarid 1994 or Wiesendanger 1994).

Finally, we consider the force sensitivity of an AFM. The ultimate [imit on the
force sensitivity is set by the thermal vibrations of the cantilever: forces causing deflec-

tions smaller than the thermal vibration are clearly not easily measured. From the equipar-

1

tition theorem, the thermal fluctuations at temperature T have an energy E,y ., = >

kgT,
where kg is Boltzmann’s constant. Equating this to the energy of the cantilever oscilla-
tion, we have k(éSzﬁ} = kgT, where 6z isthe thermal displacement of the cantilever.
Most of the response of the cantilever to thermal oscillationswill be concentrated near the

resonance frequency, however, asis clear from Fig. 2.2. Taking thisinto account, we can

write the effective noise amplitude on resonance, 6zy ¢ , as (Albrecht 1990):

4QBkgT
Oy, eff = | ook @7

Here, B isthe bandwidth of the measurement, which is assumed to be |ess than the reso-

nance linewidth. The minimum force that can be measured on resonance, and hence the

ultimate force sensitivity of the AFM, istherefore:

_ _ 4ABKKgT
Fmin = (k/Q) - SZN, off = Q(Do (2.8)

We will use these equations in section 2.5 to calculate the force sensitivity of the low tem-

perature AFM used in the experiments reported in subsequent chapters.
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2.3 Electrostatic Force on the AFM Tip

A large part of the versatility of the AFM as a experimental tool comes from its
ability to sense many different types of forces. Inthiswork, wewill use the AFM to probe
electrostatic forces. Sincethetip and the sample are two conducting surfaces that together
form a capacitor, we can calculate the electrostatic force F 0n the AFM tip in terms of
the tip-sample capacitance C. The energy U stored in a capacitor with capacitance C is
well known: U = %C(AV)Z, where AV isthe electrostatic potential difference between
the plates of the capacitor. The forcein the z direction normal to thetip is then:

Fos = 5C(AV)° @9

where C" = dECE: Is the derivative of the capacitance. This expression includes the work

done to maintain the potential difference at a constant value (Jackson 1975).

For small amplitude oscillations around the equilibrium height of the tip above the

sample, Zg, the force may be Taylor expanded in terms of the capacitance derivatives:
1., 2.1, 2
Fes(2)~§C (Zp)(AV) +§C (Zg)(AV)” - (z—2p) (2.10)

Thisimplicitly assumesthat AV # AV(z), an assumption that we will see later breaks
down in some situations. Comparing this result to Egs. 2.4 and 2.6, we see that the first
term sets the amplitude of the cantilever response, while the second term changes the
spring constant of the cantilever and sets the frequency shift of the oscillation. Thusthe
amplitude of the response varies as C” while the frequency shift variesas C”. Both terms

are quadratic in the el ectrostatic potential difference between the tip and the sample.
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The force on the tip depends on the derivatives of the tip-sample capacitance.
These can be calculated easily for simple approximations to the tip-sample geometry. For
example, approximating the tip and sample as parallel disks with radius R equal to the
radius of curvature of thetip, the capacitanceis C ~ (4nsOR2)/ z, and the first derivative
isC’ = —(4neOR2)/ 22. As expected for an electrostatic interaction, the force on the tip
islong range, dying off slowly as the tip moves away from the sample. In fact, this
approximation underestimates the capacitance by ignoring the sides of the conical AFM
tip. A full numerical calculation of the capacitance for arealistically-shaped AFM tip sit-
ting above a planar sample shows that the capacitance derivative is even more long range,
with C < zl/2 at tip heights of z~ 100 nm, due to the effects of the conical sidewalls
(Belaidi 1997). Thisisindeed the distance dependence measured for atip sitting above a

2D electron gas (McCormick 1998a).

To give an idea of the order of magnitude of the electrostatic force on the AFM tip,
we calculate Fo5 under typical experimental conditions. Previous measurements of the
capacitance derivative C” over a 2D electron gas (McCormick 1998b) found that C’~
5x10"M F/m at atip height of z~ 50 nm. With atypical dc electrostatic potential differ-
ence of AV ~ 0.5V between the tip and the sample, we find from Eq. 2.9 that the dc elec-

trostatic force on thetip is Fes ~ 5 pN.

In actual experiments, the cantilever is deflected not just by the force on the AFM

tip, but also by the force on the cantilever itself. For short range forcesthisis negligible,
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since the cantilever isfar away from the sample (typicaly 3 um or more, compared to a
tip-sample separation on the order of 50-100 nm). For long range forces such as the elec-
trostatic force, however, the force on the cantilever produces a significant deflection.
Empirically, the force on the cantilever has been observed to be of the same order of mag-
nitude as the force on the tip, typically accounting for about 1/2 of the total cantilever
deflection (McCormick 1998b). Fortunately, the force on the cantilever shows much
slower spatial variation than the force on the tip, because of the large area of the cantilever
(~500 umz) and its height above the sample. It can thus usually be ignored as a constant,

non-local signal on top of the local signal from the tip in which we are interested.

Finally, we note that the tip will also affected by van der Waals forces, in addition
to the electrostatic forces in which we are interested. In contrast with the electrostatic
force, the van der Waals force, which is due to the interaction between instantaneously
induced dipolesin the tip and sample, is a short range interaction. It can be calculated by
approximating the tip as a sphere of radius R at a height z above an infinite plane. For

z« R, theforceis:

AR
Fraw™ @1

6z

where A is the Hamaker constant, A ~ 1012 J (Israglachvili 1992). For z» R, the distance
dependencefallsfrom z2to z3. Atatypical tip radius of 50 nm and height above the sam-
ple of 50 nm, the van der Waalsforceis~ 0.3 pN. Asthisisan order of magnitude smaller
than the electrostatic force, the van der Waals force can be safely ignored in the work that

follows.
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2.4 Contact Potential and Fixed Charges

In Egs. 2.9 and 2.10, the electrostatic force on the sample is expressed in terms of
the electrostatic potential between the tip and the sample. Experimentally, however, volt-
age sources set the electrochemical potential rather than the electrostatic potential. This
has some important practical ramifications. In particular, if thetip and sample are made of
different materials, then they will have different workfunctions. When the tip and sample
are connected electrically as done here, the electrochemical potential is the same in both,
but the workfunction (chemical potential) difference leads to an additional electrostatic
potential difference between tip and sample, called the contact potential (Fig. 2.3). Thisis
analogous to the electrostatic potential induced in a semiconductor pn junction by the
chemical potential difference between the differently-doped sections (Ashcroft 1976).
The value of the contact potentia isjust equal to the difference between the two work-

functions.

If the voltages on the tip and sample are Vi, and Ve, respectively, then the

actual electrostatic potential between the tip and the sample AV is given by:

AV =V,

tip_V [0} (2.12)

sample ™
where @ isthe contact potential difference between the tip and the sample. The value of

the contact potential depends on the materials of the tip and sample, but istypically on the
order of afew hundred mV. Infact, the exact value of the contact potential depends on the

details of any charged dipole or monopole layers at the surfaces of the sample and tip
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(a) Before electrical contact:

vacuum level

Wsample l
Ep(sample) ———
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(b) After electrical contact:
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Fig. 2.3: Contact potential between tip and sample. (a) The tip and sample are made of differ-
ent materials and so have different workfunctions, W, and Wegnye- (b) Electrical contact

between tip and sample aligns the electrochemical potential Ef, giving rise to an electrostatic
potential between the tip and sample known as the contact potential, @ = Wyj,;-Weample:

(Ashcroft 1976). It isthus not a constant for any pair of materials but must be measured
experimentally. The easiest way to measure the contact potential isto vary Vijp-Veample

until the electrostatic force on the tip vanishes (Eq. 2.9), avariation on the Kelvin probe
method (Nonnenmacher 1991). The contact potential is then just equal to the value V-

Vsampl e

This pictureis complicated by the effect of fixed charges on the surface of the sam-
ple or thetip. Such charges establish yet another electric field between the tip and the
sample which contributes to the el ectrostatic potential difference between them. A fixed
charge on the sample will induce an image charge on the AFM tip of the opposite sign.

Thisimage charge on the tip then interacts el ectrostatically with the sample, effectively
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altering the tip voltage experienced by the sample. For example, a negative charge on the
sample surface will induce a positive image charge on the AFM tip, effectively increasing
the potential difference AV between the sample and the tip. Because there are usually
many fixed charges on or near the sample surface (charges in oxide layers, nearby
dopants, charged dirt, ...), the value of the effective contact potential can vary significantly
asthetip ismoved around over the surface. For example, Yoo et al. (1997) reported spa-
tial variations of 50 mV for 2D electron gas systems, while McCormick et al. (1998a,
1999) found even larger variations, on the order of 100 mV or more. In addition, sincethe
charges on the surface and tip can change with time, there can be similarly large temporal
variationsin the contact potential (exampleswill be shown in subsequent chapters). These
variationsin the contact potential can cause significant variationsin the el ectrostatic force,

and must therefore be properly taken into account in the measurements.

2.5 AFM Design and Performance

We next turn to the design of the AFM used to make the measurements reported in
later chapters. As mentioned above, this AFM is designed specifically to make electro-
static measurements of mesoscopic samples at low temperatures. A detailed description
of the construction of this home-built machine is given elsewhere (McCormick 1998b).

Here, we provide only a brief overview of the design.

The layout of the AFM isshown in Fig. 2.3. A commercial AFM tip made of Si is

coated with a25 nm thick layer of Ti and mounted on a scan head. The scan head contains
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Fig. 2.4: Design of
low-temperature
AFM: schematic
and photographs of
the instrument.
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apiezoelectric driver used to oscillate the cantilever mechanically. This scan head is
attached to a 4-inch long 4-quadrant piezoel ectric scan tube providing fine position con-
trol of thetipin all three axes. The sample sits on a Besocke-style walker (Besocke 1986)
providing coarse positioning in al three axes, with arange of almost 1 mm in z (vertical
axis) and over 3mm in x and y (horizontal axes). Coarse lateral position sensing is pro-
vided by three parallel plate capacitors around the sample. Up to 20 electrical leads on the
walker allow transport measurements to be performed while scanning the AFM tip. This
whole assembly is attached to a®He cryostat, placedina7 T superconducting magnet, and

cooled to 600 mK.

The force on thetip is sensed with a piezoresistive cantilever (Tortonese 1993).

Thisisacantilever made of Si that has doped conducting channels running down the
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length of the cantilever. Deflection of the cantilever deforms the band structure of the S,
changing the resistance of the conducting channels (Seeger 1991). We incorporate this
piezoresistive cantilever into a Wheatstone bridge cooled to the base temperature of the
cryostat, so that the cantilever deflection is monitored simply by measuring the resistance
of the cantilever. The deflection signal from the resistance bridge is then amplified by a
home-built low-noise amplifier before being passed to the computer controlling the AFM.
The electronics and software used to control the AFM were all built in-house also, and are

discussed in greater detail elsewhere (McCormick 1998b).

Since force measurements with an AFM depend on measuring small motions of
the cantilever, the AFM hasto be isolated vibrationally from the environment in order to
achieve high force sengitivity and high spatial resolution. Thisis particularly important
for the instrument used here because the long scan tube and AFM frame have low-fre-
guency resonances. A three-stage vibration isolation systemisused. First, the AFM is
suspended from the 3He cryostat by long weighted springs, in order to cut off vibrations
from He boil-off in the bath and acoustic coupling through the dewar. The dewar isthen
hung from aheavy air table, and finally the air table is supported by massive pillars sitting

on aternating steel and rubber plates.

The vertical spatial resolution of the AFM can be determined by measuring the
noise in the height z of the AFM tip above the sample. To do thiswe park thetip at a point

over the sample and bring it into contact with the sample. Any noisein zthen deflects the
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cantilever, so that the power spectrum of the cantilever deflection provides a direct meas-
ure of the noise spectrum in z. Such a measurement of the power spectrum of the canti-
lever in contact with the sampleis shown in Fig. 2.5, at T = 600 mK. Several strong
resonances are visible near 150 Hz, accounting for the largest part of the noise power.
There are no significant resonances above 200 Hz (not shown). Calculating the vibra-

tional noise amplitude 6z from the measured power spectrum P(w), using the definition:

oo

(57 = > I ORI @13

—00

wefind that the noisein zis dzy ~ 0.25 nm. The vertical spatial resolution isthus 0.25 nm.
The lateral spatial resolution, determined crudely from contact scans, is on the order of 10
nm or better. Note that since we measure only electrostatic forces, which are long range,

we do not have arequirement for very high lateral resolution.

Finally, we determine the force sensitivity of the AFM at resonance. The noisein

the detection system and electronics is sufficiently low that the sensitivity islimited by
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thermal oscillations (McCormick 1998b). We measure the thermal oscillation of the can-
tilever from a power spectrum near resonance of the cantilever deflection. Herethetipis
not in contact with the sample; rather, the cantilever is free to oscillate due to thermal
noise. A power spectrum of the cantilever deflection near resonance measured at T ~ 5 K
for one of the AFM tips used in subsequent chaptersis plotted in Fig. 2.6. The thermal
oscillation of the cantilever clearly rises out of the background noise at the resonant fre-
guency of the cantilever, 34 502 Hz. When we average several such measurements, we
observe an effective noise on resonance of 5zy g ~ 3.5 pm/HzY?at T~5K. Using Eq. 2.8
with the measured values for this cantilever Q ~ 31 000 and k ~ 3 N/m?, we calculate that

we achieve a force sensitivity of F,,, ~ 300 aN/HZY2.

The AFM thus has exquisite sensitivity when measuring forces on resonance, due

to the high Q of the cantilever. For purposes of comparison, the best force sensitivity that

1. The spring constant k of these cantileversis quoted by the manufacturer as1 N/m. Thisisonly anomina value, how-
ever, and k can vary significantly from one cantilever to the next. We determine k = 3+0.5 N/m for this cantilever
from the magnitude of the thermal deflection on resonance using Eqg. 2.7.
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has been reported using an AFM on resonance is 3 aN/HzY? (Stipe 2001), 100 times
smaller than the senstivity of our instrument. Thisimprovement in the sensitivity is
achieved by using extremely soft cantilevers with a spring constant k ~ 10> N/m, which

are not suitable for the measurements we perform.

The parameters describing the performance of the AFM for atypical tip and canti-

lever are summarised in Table 2.1 below:

TABLE 2.1

Par ameter Typical value
Resonant frequency wq 34500 Hz
Resonance width Aw 11Hz
Resonance Q factor 31000
Cantilever spring constant k 3N/m
Force sensitivity on resonance F, 300 aN/HZzY2
Vibrational noise amplitude 5z 0.2nm

2.6 Measurement Techniques. Electrostatic Force Microscopy

We use the AFM to make two broad classes of el ectrostatic measurements: elec-
trostatic force microscopy (EFM) and scanned gate microscopy (SGM). Inthis section we
will present the principles of EFM, discussing SGM in the following section. EFM senses
the electrostatic force on the tip from the sample, and can be used for such experiments as
measuring the force from localised charges (Stern 1988, Schonenberger 1990) or measur-
ing the local electrostatic potential in a sample (Martin 1988, McCormick 1998a). In this
work we use EFM to measure the potential distribution in quantum Hall conductors as

well as the force from single-electron motion in carbon nanotubes.
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There are two common classes of EFM measurements, shown schematically in

Fig. 2.7 below. Thefirstisdc-EFM, illustrated in Fig 2.7(a). In dc-EFM, avoltage Vi,

biasesthe AFM tip with respect to the sample. A dc bias V. is applied across the sample,

establishing in the sample a el ectrostatic potential distribution Vy.(X,y) which we would

liketo measure. The cantilever isthen driven mechanically at a frequency near the reso-

nance. Thelocal potential difference between tip and sample changes asthe tip movesin

the (x,y) plane, leading to spatial variationsin the force derivative (Eq. 2.10):

F0y) = (3)C7060y) - (Vyp = Ve ) =0 (% y)?

This causes a spatially-varying shift in the resonance frequency, which is monitored by

measuring the phase of the cantilever vibration. Since thisis adc technique, however,

there is no way to discriminate between the effects of a spatialy varying sample voltage

Fig. 2.7: Electrostatic Force Microscopy

piczo Jo e ATMUP diiven | (). (2) de-EFM. A voltage Vi is
phase mechanically applied to the AFM tip and the canti-

by piezo lever is driven mechanically near reso-
L nance. A dc source-drain bias V. is

applied across the sample, giving rise to
apotential distribution V(x,y) in the
sample. Thelocal potential difference
between tip and sample exertsaforce on
the tip, whose gradient changes the reso-
nant frequency. Thisis monitored via
the phase response of the cantilever. (b)

ac-EFM. A voltage Vy, isapplied to the

measure amplitude AFM tip driven tip. An ac source-drain bias at the reso-
clectrostatically nant frequency of the cantilever is

by sample applied to the sample. Thelocal poten-

X tial in the sample, V(X,y), exertsan ac

force onthetip that causesthe cantilever
to resonate. Here the amplitude rather
than the phase of the response is meas-
ured.
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and aspatially varying contact potential. Asaresult, dc-EFM isonly useful for measuring
sample voltage changes that are much larger than the typical contact potential variations.

For the samples studied here, local contact potential variations are on the order of 100 mV,
as previously mentioned, while the sample voltages being measured are on the order of 1

mV or less. Thus, dc-EFM is of little use.

Instead, the ac-EFM technique shown schematically in Fig. 2.7(b) isused. Here, a
dc potential Vy, is still applied to the AFM tip, but an ac voltage at the resonant frequency
of the cantilever, V,.cos(mgt), is applied to the sample. This ac voltage sets up a potential
distribution in the sample, V,.(X,y), which exerts an ac force on the tip that causes the can-
tilever to resonate. The force on the tip, neglecting the component at 2w, iS now:

F=Fgc* Fmocos((oot)

Facx ) = (3) €0y [ (V=@ ¥ + Vio(x )]

F(,)O(Xs y) = C,(Xa y) : [Vt|p _q)(xa y)]VaC(X, y) (2.19)

By measuring the component of the force at w using alock-in amplifier, we can measure
the potential distribution in the sample, V,:(X,y). In contrast to the dc-EFM technique, we
here monitor the amplitude response of the cantilever rather than the phase response. Note
that we must still remove the spatial variations due to the contact potential (and also the ca-
pacitance derivative). Because these contributions are multiplicative rather than additive

asin dc-EFM, however, they can be removed without difficulty by a normalisation proce-

dure described later.
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This ac-EFM technique works quite well and has been successfully applied to
measure the local electrostatic potential in 2D electron gases and in carbon nanotubes, as
will be discussed in subsequent chapters. There are two important subtleties, however,
regarding how thetip is driven into resonance by the electrostatic force. First, it is essen-
tial to ensure that the driving frequency remain on resonance at all times, in order to avoid
spurious signals in the amplitude response due to frequency changes (Eg. 2.4). In particu-
lar, as the tip moves, the resonant frequency changes due to spatial variations in the con-
tact potential or the capacitance derivative (EqQ. 2.14). In vacuum at low temperatures,
these frequency shifts can be significant compared to the width of the cantilever reso-
nance, whichistypicaly only 1 Hz. They can thusintroduce large amplitude modulations

that have nothing to do with the local el ectrostatic potential distribution we want to meas-

ure.
To avoid problems from the response
p &P phase shifter| |tip deflection
AQ ] amplifier M
of the cantilever to frequency shifts, we drive
the cantilever with the self-resonant positive- limiter

N o [ ——

Fig. 2.8: Self-resonant feedback loop for ac-
EFM. Thetip deflection isfed back as acon-
ion i i stant-amplitude driving signal to the sample
lever deflection is sent through a phase shift dloatrodes. A phase shifter 15 used to compen-
sate for phase changes in the feedback 1oop.

compensator and thence to alimiter, whose The cantilever oscillation amplitude is meas-
ured using an ac voltmeter.

feedback loop drawn in Fig. 2.8. The canti-

output amplitude is independent of its input
amplitude. The limiter output isthen applied to the sample electrodes to drive the canti-

lever electrostatically into resonance. The amplitude of the oscillation is measured
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directly from the tip deflection amplifier using an ac voltmeter. This feedback loop
ensures that the cantilever always remains on resonance as the tip moves over the sasmple
(Albrecht 1990, McCormick 1998a). Note that this method does have some disadvan-
tages. The feedback can be non-linear, especially at low amplitudes, so that care must be
taken to remain alwaysin the linear regime. A lock-in amplifier can not be used to meas-
ure the oscillation amplitude directly, since the frequency changes too rapidly. And
finally, the bandwidth of the amplitude response is only ~ 1 Hz, due to the narrow canti-

lever resonance, so that these measurements are very slow.

A second sublety involved in the ac-EFM measurement is that spatial variationsin
@ and C’ also give spurious amplitude responses, as can be seen from Eq. 2.14. We can
remove these by measuring the amplitude of the cantilever response at resonance when an
uniform ac voltage is applied to the sample, so that V(X y) = V.. Any variaionsin
the amplitude response to this uniform driving signal are then due to the prefactor in Eq.
2.14, C' (X, Y)(Vy D~ ®d(x,y)) . Thisreference signal can therefore be used to normalise
the response to the non-uniform potential distribution we desire to measure. When thisis
done, the only spatial dependence that remainsis due to the potential distribution in which
we are interested. For pratical reasons, the reference signal is measured at the same time
asthe desired signal by locking in to an amplitude modulation of the tip response at a dif-
ferent frequency (McCormick 1998b). Thistechniqueisused for the EFM measurements

of a2DEG presented in Chapter 3.
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A final consideration with EFM involves the issue of the perturbation of the sam-
ple induced by the measurement. In principle, EFM should be made as a non-perturbative
measurement, since we do not want to modify the electrostatic potential in the sample. In
practice, however, avoltage must be applied between tip and sample (Eg. 2.14), and hence
the sampleis perturbed. In order to minimise the perturbation, AV is kept as low as possi-
ble, consistent with a measurable EFM signal (typically around 500 mV or less). This

issue will be discussed in more detail in later chapters.

2.7 Measurement Techniques. Scanned Gate Microscopy

The second technique we usefor probing the el ectrostatic properties of our samples
is scanned gate microscopy (SGM). With EFM, as has been described, we use the AFM
tip to measure the electrostatic potential of the sample. With scanned gate microscopy
(SGM), on the other hand, we use the AFM tip to perturb the electrostatic potentia of the
sample. The basic ideaof SGM isthat the tip is not aforce sensor but rather a movable
local gate. We can therefore make transport measurements just as with samples that use a
fixed gate (such as a planar backgate) to change the el ectrostatic potential, except that now
we can choose which part of the sampleto perturb, sincethe gate (the AFM tip) will change
the electrostatic potential only in that part of the sample beneath the tip.

The measurement configuration for SGM isillustrated in Fig. 2.9. A dc potential
Viip isapplied to thetip, while acurrent is passed through the sample. The conductance of

the sample is then measured as the tip is scanned over it. Thetip biaslocally changesthe
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Fig. 2.9: Scanned gate microscopy
(SGM). A sourcedrain voltage Vg is
applied across the sample and the
sample conductance is measured. A
voltage Vi, isapplied to the AFM tip.
Changing Fhe tip voltage or position
changes the el ectrostatic potential of
the sample, atering the conductance.

electrostatic potential of the sample, altering the conductance. By scanning thetip over the
sample with afixed tip voltage, SGM can thus be used to make images revealing the loca-
tionsthat are particularly sensitive to changesin the electrostatic potential. By parking the
tip over one of these locations and varying the tip voltage, such sensitive areas can also be
studied individually. SGM has been used to study conduction orbits (Eriksson 1996, Crook
2000, Topinka 2000 and 2001), scattering centers (Bachtold 2000, Tans 2000, Bockrath
2001, Woodside 2001), and charging effectsin quantum dots (as we shall seein Chapter 6).
We can approximate the electrostatic potential perturbation from the AFM tip by
crudely modelling the tip as a charged sphere sitting at a height z above the sample. The
potential from this charge iswhat perturbsthe sample. For atip-samplebiasAV = Vy;, - ®

and capacitance C, the charge on thetip is q;; b= C- (Vyjp—®). The potential perturba-

ip

tion d¢ at the point (xg,Yp) When thetip islocated at the point (x,y) istherefore:

300639 = (52 JJ( C- (Vyjp—®)
X—

tip (2.15)
2 2 2
Xg) t(y=yg t2Z

Thistoy model captures several of the important features of SGM. For instance, it
is clear that the perturbation is not truly local, because of the long-range nature of electro-

static forces. We also seethat variationsin tip distance and tip voltage are in a sense equiv-
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alent in scanned gate measurements: the perturbation 6¢ can be changed equally well by
increasing Vi, at aconstant tip position as by moving thetip closer with a constant Vy;p,
Finally, when scanned gateimages are made at fixed V;;,, agiven perturbation 8¢ at (X,yo)
will occur not just for asingle tip location (X,y), but for the entire circle of points the same
distance from (Xg,Yg). Thiscircle describes the equipotential surfaces of the perturbation
for the given tip voltage. We thus expect that features in the scanned gate measurements

may show up as equipotential rings.

Because the AFM tip is employed only as a source of electrostatic potential, the
measurement is much simpler than with EFM. Thereisno need in SGM for complicated
feedback systems to monitor and maintain resonant cantilever oscillations, asthereisin
EFM. Because the amplitude response of the cantilever is not being monitored (the canti-
lever is not oscillating), the measurement bandwidth is not limited by the resonance Q and

the measurement is therefore much faster, too.

In practice, of course, the perturbation is much more complicated than the toy
model in Eq. 2.15 suggests, and this gives rise to some subtleties that must be considered
in actual measurements. For instance, this model neglects the effects of screening from
nearby conductors and dielectrics. The presence of dielectrics and conductors can alter
the shape and position of scanned gate features, in particular distorting the circular equipo-
tentials predicted by Eq. 2.15, aswill be seen in Chapters 4 and 6. Fixed chargeson or

near the sample surface also affect the measurements. For one thing, they produce their

40



The Low-Temperature Atomic Force Microscope

own electrostatic perturbation of the sample, which can be screened by the conducting tip.
The amount of screening changes as the tip moves, so that fixed charges can give rise to
featuresin the scanned gate images, as will be seen in Chapter 6. Another effect of fixed
chargesisto induce image charges on the tip which effectively change the local contact
potential and hence the electrostatic perturbation of the sample, as mentioned in section
2.4. Inaddition, large tip voltages can cause these charges to move around over time,
changing the properties of the sample. Care must therefore be taken to ensure that the per-
turbation from the tip is not so large that charges are constantly being moved around. In

practice, thistypically restricts the tip voltage to the range [AV]| < 1 V (Woodside 2001).

2.8 Summary

In this chapter, we have seen how an atomic force microscope can be used to
measure the force on the sensing tip by monitoring the motion of the AFM cantilever. We
have also described the AFM that was built to measure the local el ectrostatic properties of
mesoscopic systems at low temperatures, and we have discussed the two principal tech-
niques that will be used to measure these properties: electrostatic force microscopy, and
scanned gate microscopy. In the following chapters, we apply these techniques to two
systemswith different dimensionalities. In 2D, we study a 2D electron gasin the quantum
Hall regime, investigating non-equilibrium populations in the quasi-1D edge states and

inter edge state scattering (Chapters 3 and 4). Then in 1D, we study single-walled carbon
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nanotubes, exploring single-electron charging effectsin the OD quantum dots that form in

carbon nanotubes at low temperatures (Chapters 6 and 7).
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cnarrers:  NON-EQUIlibrium Edge Sate
Populations in Quantum Hall
Conductors

3.1 Introduction

Thefirst system we study isatwo-dimensional electron gas(2DEG) inthe quantum
Hall regime. The quantum Hall effect was one of the first experimental surprisesto bedis-
covered in the study of transport in low dimensions (von Klitzing 1980). It has been ex-
plored intensively over the two decades since its discovery, leading to many new insights
into the behaviour of electronsinlow dimensions (for reviews, see Prange 1990, Das Sarma
1997) and ultimately two Nobel Prizes. Nevertheless, the quantum Hall effect continuesto
provide important challenges to both experimentalists and theorists.

Some of the most interesting questions concern the non-uniform spatial structures
that can occur within the 2DEG in the quantum Hall regime. These structures arise from
competition between the effects of Landau level (LL) quantization, Coulomb interactions,
and external potentials and include striped phases (Lilly 1999) and insulating phasesin the
bulk (for areview, see Sondhi 1997) as well as conducting states localized at the edges of
the sample, known as edge states (Halperin 1982, Biittiker 1988) . Scanned probe tech-
niques offer a new approach to investigate these structures directly. They have recently
been used to probe the Hall voltage profile and the properties of the insulating state within

aquantum Hall plateau (Tessmer 1998, McCormick 1999, Yacoby 1999, Finkelstein 2000,
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Zhitenev 2000). Inthework presented in the next two chapters we use a scanned probe to
study the microscopic effects of the spatial structurein a2DEG on electron transport by in-
vestigating non-equilibrium edge state populations. We first measure the potential distri-
bution associated with them, and then investigate the scattering centersthat are responsible
for re-equilibration.

Thebasic physics of theinteger quantum Hall effect will bereviewed in section 3.2,
followed in section 3.3 by amore detailed discussion of the edge state structure in a quan-
tum Hall conductor. Section 3.4 describes the GaAs/AlGaAs heterostructure used in the
measurements. In section 3.5 we discuss how to create non-equilibrium edge state popul a-
tions. Measurements of the local voltage distribution due to non-equilibrium edge state
populations are then presented in section 3.6. This preparesthe way for an investigation of

equilibration and individual scattering centersin Chapter 4.

3.2 Integer Quantum Hall Effect

When athin conducting strip isplaced inamagnetic field B and acurrent | ispassed
through it, a transverse voltage Vi, devel ops across the conductor. Thisisthe well-known
classical Hall Effect (Hall 1880), arising from the L orentz force on charges moving in a
magnetic field. Thetransverse (“Hall”) voltage V isdirectly proportional to the magnetic
field. Expressed in terms of the transverse (“Hall”) resistance Ry, = V/l, wefind
Rey

= % , Where nisthe density of charge carriersand g istheir charge (Kittel 1986). At

low temperatures and high magnetic field, however, this linear relationship breaks down.
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Instead, R, develops plateaux whereits valueis quantised in termsthe resi stance quantum
h/e?: Ry = (1/N)(h/€%) , for integer N. These plateaux occur periodically in B,
whenever N = 2—2 . Atthesametime, thelongitudinal resistance R, devel ops pronounced
dips, becoming vanishingly small at the Hall resistance plateaux (Prange 1990). A meas-
urement displaying the typical behaviour of R, and Ry isshownin Fig. 3.1. Because of
the quantised Hall resistance at integer values N, thisisknown as the integer quantum Hall
effect (IQHE).

To understand the origin of the IQHE, we must consider the effect of strong mag-
netic fields on the electron motion. Classically, electronsin amagnetic field B movein cy-
clotron orbits with angular velocity w.= eB/nm*, where m* is the effective mass of the
electron. At high magnetic fields, these classical cyclotron orbits become quantised, with

energies Ej = (j—1/2)7w, forinteger j. Thesearethewell-known orbital Landau lev-

els (LLs) separated by the cyclotron energy 7m.. The spacing and degeneracy of the LLs
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0 ho, Landau levels Fig. 3.2: Electronic density of states g(E)
g(E) —> of a2DEG. AtB=0, g(E)isflat. Ina
magnetic field, the density of states splits
B>0 into discrete Landau levels (LLs) sepa-
rated by the cyclotron energy 7m.. The

order, so that there is alow density of
localised states betweentheLLs. The
only extended states lie at the core of the
LLs. When the Fermi level Eg lies
between LL energies, which occurs on
the quantum Hall plateaux, the states at
Er arelocalised.

i LLsare broadened by the presence of dis-

states states

extended localised

varies with B, and hence so does the number of occupied LLs, whichisgiven by thefilling
factorv = 2—2 . Plotting the electronic density of statesg(E) in Fig. 3.2, we seethat theflat
g(E) observed for 2D electrons at B=0 splits up into discrete LLs. In a perfectly ordered
2DEG, these LLswould be d-functions at the energies ;. The presence of disorder, how-
ever, broadensthe LLsand introduces alow density of localised states betweentheLLs, as
illustrated in Fig. 3.2. Note that the only extended states are at the LL energies; al other
states are localised. Asthefilling factor changes with B, then, the Fermi level Eg liesal-
ternately in regions of extended states (near half-integral v) and localised states (el se-
where). The sample should thus be conducting near half-integral v and insulating
elsewhere.

This pictureis not yet sufficient to explain the IQHE, because it neglects the finite
size of the sample, and it turns out that the sample edges play a very important rolein the
IQHE (Halperin 1982, Buttiker 1988). At the edges, thereisarapidly rising confinement

potential that keeps electrons inside the sample. This confinement potential raisesthe LL
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4 | Fig. 3.3: Confinement potential and edge
statesin afinite sample. At the edge of
the sample, the confinement potential
that keeps electrons in the 2DEG raises
the energy of the bulk LLs, until at some
point near the edge the LLs cross Eg .
These crossing points create extended
states at Eg called edge states. Each
edge state isa guasi-1D channel with
conductance e/h. In this non-interact-
ing model, the filling factor v (number
of filled LLs) changes abruptly by 1 at
each edge state.
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energies as the edges are approached, until at some point close to the edge the LLs cross
Er. Each occupied bulk LL thus givesriseto an extended state at Ex aong the edge of the
sample, called an edge state (Fig. 3.3). These edge states are effectively 1D channels that
contributeto the conductivity at all filling factors. Dueto the magnetic field, the edge states
circulate around the sample, travelling in opposite directions on opposite sides of the sam-
ple. Notethat aseach LL crosses Eg, the filling factor is reduced by 1.

We can now understand the central features of the IQHE. Near integral v ~ N, as
showninFig. 3.4(a), E liesbetween LLs, and the states at E- in the bulk are all localised.
The only extended states at Er are the edge states, of which thereare N. Since the edge
statestravelling in opposite directions are on opposite sides of the sample, i.e. they are sep-
arated by macroscopic distances, backscattering is suppressed and R, vanishes. TheN 1D
edge channels, however, result inaHall conductance of N(e2/ h) and hence aHall resistance

of ny = (1/N)(h/ e2) . Since the number of occupied extended states is unchanged as
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Fig. 3.4: Model of theinteger
Quantum Hall Effect. (a) On
the plateaux near integer v,
Er lies between bulk LLs
and the only extended states
at Eg arethe edge states.
Each edge state contributes a
conductance of €/,
accounting for the quantised
R, Currentsflowingin
opposite directions are phys-
ically separated by the width
of the sample, suppressing
backscattering and causing
Ry to vanish. (b) In the tran-
sition regions between pla-
teaux, near half-integer v, Ep
liesonabulk LL. Extended
states exist in the bulk as
well asthe edges, sO R,y i

no longer quantised. Current
can also backscatter, giving a
finite Ry

v variesnear N, we observe aplateau in R,y asin Fig. 3.1. The situation for the transition

regions between plateaux, wherev ~ N+%5, ispictured in Fig. 3.4(b). Here, Eg liesonall,

and there are extended states at E¢ in the bulk. Backscattering between edges now occurs,

making R, non-zero. The extended states at Er in the bulk also contribute to the Hall con-

ductivity, but the number of these states decreases as B increases, so that R,y increaseswith

B in the transition regionsas seenin Fig. 3.1.

3.3 Edge of the Quantum Hall Conductor

From thisdiscussion it is clear that the edge of the sample plays a central rolein

electron transport in the quantum Hall regime. For simplicity, we have assumed that the
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electronsare non-interacting. A better understanding of the structure of the edge statesand
their influence on the transport, however, requires that Coulomb interactions be taken into
account. Screening effectsin the 2DEG turn out to be particularly important, because the
screening ability of the 2DEG depends strongly on thefilling factor. From Fig. 3.2, we de-
duce that the 2DEG can effectively screen electric fields only near half-integer v: near in-
teger v, there are no extended states at Er and hence electric fields are unscreened. The
spatial variation inv at the edge (Fig. 3.3) thus|leadsto spatial variation in the electrostatic
screening which must be taken into account self-consistently.

Inthe absence of interactions, the electron density (and hencefilling factor) changes
with abrupt steps at the sample edge as shown in Fig. 3.3. These changesin the density
occur only at the locations where the bulk LLs cross Er. When el ectrostatic repul sion of
the electronsisincluded, however, asmoother changein density ispreferred energetically.
Screening of the confinement potential by the extended states at the edge broadens the re-
gions where the density changes, resulting in the situation illustrated in Fig. 3.5. The elec-
tron density is constant in regions with near-integer v, where the electrostatic potential is
unscreened. Because the density is constant, these regions are known as incompressible
strips. Theincompressible strips have only localised states at Er and arethusinsulating in
nature. Between the incompressible strips are regions with changing electron density,
where the electrostatic potential is screened and hence constant. These are known as com-

pressible strips, and are metallic in character. The compressible strips are the quasi 1D
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conducting channels responsible for the quantised conductance on the quantum Hall pla-
teaux.

This picture of alternating strips of compressible and incompressible el ectron fluid
(Beenaker 1990, Chang 1990) has been quantitatively elaborated to cal culate the positions
and widths of the strips under various conditions (Chklovskii 1992, Gelfand 1994, Larkin
1995). The widths of the strips are found to depend on the steepness of the confinement
potential gradient at the edge: the steeper the gradient, the narrower the strips. The strips
nearer the bulk of the sample are thus wider than those near the edge, and the innermost
strips are the widest of al (Chklovskii 1992). The widths of the incompressible and com-
pressible strips predicted by this model are on the order of 100 nm, with the compressible

strips always somewhat wider than the incompressible strips.
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Experimental results have largely confirmed thismodel of the edge of a quantum
Hall conductor. These measurements have used avariety of techniques, including transport
(Kane 1987, Komiyama 1989, van Wees 1989a and 1989b, Alphenaar 1990, McEuen
1990), magnetocapacitance (Takaoka 1994), edge magnetoplasmon excitations (Zhitenev
1994), inductive coupling (Y ahel 1996), photovoltage imaging (van Haren 1995, Shashkin
1997), andin situ single-electron transistor (SET) el ectrometry (Wel 1998). Morerecently,
novel scanned probe methods have been applied to the study of compressible and incom-
pressible stripsin the 2DEG, including scanned charge accumulation (Tessmer 1998, Fin-
kelstein 2000) and scanned SET (Y acoby 1999).

One of the experimental consequences of the insulating incompressible strips that
separate the conducting edge states (compressible strips) is the existence of non-equilib-
rium edge state (NES) populations. Using electrostatic gates to manipul ate the local elec-
tron density, adjacent compressible states can be filled to different levels, creating a non-
equilibrium population. Such a non-equilibrium population will persist until equilibrium
is re-established by scattering between the edge states. These disequilibrated edge states
are especially robust when it isthe innermost state that is out of equilibrium with the rest,
because the innermost incompressible strip is the widest and can effectively decouple the
innermost edge state from the others (Alphenaar 1990, McEuen 1990). The outer edge
states often equilibrate rapidly by inter edge state scattering, but non-equilibrium popula-

tions in the innermost edge state have been observed to persist over extremely long dis-
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tances, up to hundreds of microns, before eventual re-equilibration (van Wees 1989b,
Alphenaar 1990).

Previous studies of NES popul ations and the scattering processes responsiblefor re-
equilibration have all involved transport measurements. These provide much useful infor-
mation about the sample asawhole, but are not well suited to investigating what is happen-
ing at thelocal scale. Here, we use scanned probe microscopy to study the properties of the
edge of the quantum Hall conductor. We create a NES population and measure the local
Hall voltage distribution at the sampl e edge associated with the disequilibrated edge states.
We observe sharp voltage drops at the sample edges which are suppressed by removing the
NES population. We also observe re-equilibration of the edge state potentials due to inter
edge state scattering. Most of these results have been previously published in PhysicaE

(Woodside 2000).

3.4 2DEG Sample

The sample used for measurements in the quantum Hall regime is made from a
GaAg/AlGaAs heterostructure grown by molecular beam epitaxy. The physical layout of
the heterostructure is shown in Fig. 3.6. The 2DEG forms at the interface between the
GaAsand undoped AlGaAs layers, dueto a band gap mismatch between the two materials
(Bastard 1991). The electronsin the 2DEG come from Si dopants in the doped AlGaAs
layer, which is physically removed from the GaAs/AlGaAs interface to reduce scattering

from the dopants. The heterostructure is capped with alayer of GaAs, so that the 2DEG is
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NG e Fig. 3.6: 2DEG in a GaAJAlGaAs
Gass NN GaAs heterostructure. The band gap mis-
. 3 match between GaAs and AlGaAs
capping (% Spacer creates a quantum well at the inter-
layer |g227| layer bulk face in which a2DEG forms. Elec-
trons comefrom Si donorsin adonor
layer that is physically removed from
the interface to reduce impurity scat-
tering. In the sample used here, the
2DEG lies 90 nm below the surface

\ of the heterostructure.

4 Ep

2DEG

conduction band energy

vertical distance

used for measurementsin chapters
3and 4. The dark regions show
50 um where the 2DEG has been etched
e away. Transport measurements are
I made on Hall bars that are 10 and
Hall bars 20 um wide. Three metallic top

| gates are used to control the edge
state populations (thewide side gate
' isnot used here). The 2DEG den-

1— 2DEG —j, etched region Fig. 3.7: AFM image of asample

_ _ sity is 2.4x10 m and the mobil-
F B ity at 4K is19 m?/Vs,

gates

90 nm below the surface of the sample. Further details on the heterostructure from which
samples are made are described elsewhere (Maranowski 1996).

The heterostructure is patterned using standard photolithographic techniques (Wil-
liams 1984) into Hall bars 10 um and 20 um wide. The heterostructureis everywhere else
etched by awet chemical process to a depth of 100 nm, completely removing the 2DEG
except on the Hall bar. In addition, three 2 um wide gold gates are deposited on top of the
narrow Hall bar by e-beam evaporation. These are used to deplete locally the 2DEG and
mani pul ate the edge state populations. An AFM image of the finished sampleisshownin

Fig. 3.7. The density of the 2DEG in this sampleis 2.4x10'® m™, and the mobility at 4 K
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is19 m?/Vs. Notethat the mobility is chosen to be high enough to permit non-equilibrium
edge statesto persist over distancesthat are long enough to measure, but low enough to per-

mit sufficient scattering in the sample to be able to study equilibration.

3.5 Creating Non-Equilibrium Edge State Populations

The population of the edge statesin the sampleis manipulated by using the metallic
gateson top of the Hall bar (Fig. 3.7) to change the electron density beneath the gates. This
allows usto selectively backscatter some of the edge states and establish anon-equilibrium
population downstream of the gates, asillustrated in Fig. 3.8 (van Wees 1989a). Note that
to maximise the equilibration length, all measurements are taken at a bulk filling factor of
v=3, whichisknown to support disequilibrated states over long distances (van Wees 1989b,
Alphenaar 1990). AsshowninFig. 3.8, al three edge states coming out of the injector con-
tact are at potential V. Theinjector gate deflects the innermost edge state, so that down-
stream of the injector gate only the two outer edge states are at potential Vg, the inner edge

state is at ground, creating a NES popul ation.

Fig. 3.8: Creating nonequilibrium

edge state I i
potentials: II I v=3 edge state (NES) populations with
- gates. Theinjector gate transmits
Vo=1 mV b d Vo _ only the outermost edge states, creat-
> v 4 ing aNES population downstream of
Vo ‘ * 0 —@ the gate: the innermost edge state is
€ r‘ — I a0V, whiletheouter onesareat V.
- injector L] 0 detector
contact . contact
injector detector
gate N gate
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0.69 ! Fig. 3.9: Detecting the NES population. The
1 ! presence of disequilibrated edge states created
. asin Fig. 3.8 can be verified by measuring the

] potential of the detector contact as the detec-
0.68- tor gate isturned from transmitting the inner-

most edge state to reflecting it. When thereis
aNES population, the potential of the outer

detector gate

reflecting edge states is higher than that of the inner
] ~ . nermost edge state, causing the detector contact to
0.677 edge state measure a higher potential when the detector

gate only transmits the outer edge states. The
small increase in the detector potential seen
here indicates that there is significant inter
— T T+ T edge state equilibration over the 40 um dis-
50 100 150 200 tance between injector and detector gates.
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We can confirm the presence of a non-equilibrium population by measuring the po-
tential of the detector contact as a function of the detector gate voltage. The detector gate
is used to selectively transmit or reflect the inner edge state on its way to the detector con-
tact as shown in Fig. 3.8. If the edge states are disequilibrated, then the potential of the
outer two edge stateswill be higher than that of theinnermost state. Since the detector con-
tact measuresthe average of the potential of the edge statestransmitted by the detector gate,
the potential of the detector contact will riseif theinner edge stateisout of equilibrium with
the outer edge states.

When we perform this measurement, shown in Fig. 3.9, we see that the detector
contact does indeed measure a higher potential when the detector gate deflects rather than
transmits the innermost edge state, confirming the presence of a NES population. Inthe
absence of any mechanisms that re-equilibrate the edge state potentials, the detector poten-
tial should change from (2/3)Vy when transmitting the innermost edge state, to Vi when re-

flecting it. Thefact that the change observed in Fig. 3.9 is significantly smaller indicates
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that the edge states are being re-equilibrated during their passage across the 40 um distance
between the injector and detector gates.

The process by which re-equilibration takes place, scattering between edge states,
will be investigated in more detail in the next chapter, where we will examine individual
scattering sitesat the sample edge. Here, we simply parametrise the edge state equilibration
by an average equilibration length I If the difference between the edge state potentials
changesfrom A to An” when the edge states travel adistance d, then the equilibration

length | is defined by:
A _ _d
AL exp( i g (3.1)

e

From Fig. 3.9, we find that the edge states are 95% equilibrated after travelling 40 um,
yielding an equilibration length of ~ 13 um. Thisis quite short, due to the choice of alow
mobility sample, but it permits us to study the equilibration on length scales accessible to

scanned probe measurements.

3.6 EFM of Non-Equilibrium Edge Statesin a Quantum Hall Conductor

We now investigate the properties of non-equilibrium edge state populations by
studying the Hall voltage distribution to which they giverise. From previous measure-
ments of the local Hall voltage distribution in aquantum Hall conductor, we know that the
edge states have an important influence on the Hall voltage profile (McCormick 1999,
Weitz 2000). Sharp voltage gradients at the sample edges are observed when transport

measurements indicate the presence of edge states out of equilibrium with the bulk. Here,
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wefocus more closely on the behaviour at the sample edges by directly controlling the edge
state population using el ectrostatic gates on the sample.

We measure the Hall voltage profile using the ac-EFM technique described in
Chapter 2. An ac voltage Vo =1 mV isapplied to one contact of the Hall bar, driving the
AFM tip oscillation into resonance viaa self-resonant loop. Theforce onthetipisdirectly
proportional to thelocal ac voltagein the sample, so that by measuring the amplitude of the
tip oscillation we can measure the voltage distribution in the sample. Note that there are
significant variationsin space of the contact potential of the 2DEG, ontheorder of 100 mV.
Such contact potential variations have been observed previously (Yoo 1997, McCormick
1999), and are most likely due to chargesin the surface or dopant layers. To eliminate the
effect of these variations, we simulatenously measure areference signal by applying an uni-
formvoltageat adifferent frequency to all contacts, asdiscussed in Chapter 2. Normalising
the primary signal by the reference signal, we remove any spatial dependence resulting
from contact potential variations and end up with the desired local potential in the sample.

Having confirmed the presence of a non-equilibrium edge state population in the
previous section, we measure thelocal potential profile acrossthe Hall bar by scanning the
AFM across the Hall bar, 50 nm above the sample surface and about 5-10 um downstream
of theinjector gate. Theresultsare shown in Fig. 3.10 for three different injector gate volt-
ages. When the gateis open, all of the Hall voltage drops in the bulk of the sample with a
dlightly non-uniform distribution (Fig. 3.10(a)). When the gate backscatters the v=3 edge

state, the potential in the bulk flattens out somewhat and a sharp voltage gradient devel ops
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YAl Fig. 3.10: Hall voltage profiles across 10 um wide
Hall bar at v = 3, taken 5-10 um downstream of the
A\

«— edge of Hall bar ——>

injector gate. All traces are offset for clarity. (a)
With the injector gate open, the Hall voltage Vi
dropsin the bulk of the 2DEG. Voltage gradientsin
the bulk are due to the non-uniform local conductiv-
ity of the states at Er. (b) With the gate at v=2,
reflecting the inner edge state, a sharp voltage gradi-
ent develops at one edge of the Hall bar. Thisisthe
edge where the NES populations exist. Only half of
i M Vy drops at the edge, due to re-equilibration between
— T . r . T the edge states. (¢) When the gate is pinched off
0 2 4 6 8 10 ¢ 12 entirely so that no edge states are transmitted, Vi
Tip position (um) disappers. (d),(e) Close up view of the Hall voltage
d) : profile at the sample edge. (d) When the gateis
W open, thereis no gradient at the edge because thereis
no NES population. (e) With the gate at v=2, the Hall
ot voltage drops over a distance of ~300 nm, 200 nm
from the sample edge. Two traces are plotted to
show the reproducibility of the signa (small-scale
features are noise).
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at one edge of the Hall bar, the edge where the backscattered state flows (Fig. 3.10(b)). Ap-
proximately half of the Hall voltage drop occurs at this edge; the rest occurs in the bulk.
Finally, when the gate is entirely closed off, the Hall voltage profileisflat (Fig. 3.10(c)).
The effect of the gate voltage on the Hall voltage profile at the edge of the 2DES can be
seen more clearly in an expanded view of the edge (Fig. 3.10(e),(f)). The voltage gradient
arising from the back-scattering of the v=3 edge channel drops over a distance of 0.3 um,
about 0.2 um from the edge.

These observations can be readily understood in terms of the standard theory of the
edge of aquantum Hall conductor presented earlier in this chapter. When the gate is open
and all edge states passthrough, the edge states are all at the same potential, and thereisno
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m Fig. 3.11: Re-equilibrating NES popula-

tions at v=3 with adc Hall voltage. All
traces are offset for clarity. (a) At 0 dc
bias, the Hall voltage drop due to the NES
population is seen clearly. (b) At 5.5 mV
dc bias, close to fiw. = 5.5 meV, the volt-
age gradient at the edge is greatly dimin-
ished, as the edge states are mostly re-
equilibrated. (c) At 8 mV, thereisno gra-
dient left at the edge, and the edge states
are fully re-equilibrated.

Local Voltage
z

edge of
Hall bar

0 0.5 1.0 1.5
Tip position (Lm)

voltage drop at the edges (Fig. 3.10(d)). Instead, the Hall voltage dropsin the bulk of the
sample (Fig. 3.10(a)), where the Hall voltage distribution is determined by the local con-
ductivity of the states at Ex (McCormick 1999). When the gate isfully pinched off, all of
the edge states are reflected and hence no Hall voltageis observed (Fig 3.10(c)). Whenthe
gatereflectsonly the v=3 edge state, however, the outer edge states downstream of the gate
are at potential Vp while theinnermost state is at potential O, asin Fig. 3.8. Thisgivesrise
to a sharp voltage drop across the incompressible strip separating the v=2 and v=3 edge
states (Fig. 3.10(e)). Thelength over which the voltage drops suggests that the incompress-
ible strip isat most ~300 nm wide. Thisresult agreeswell with other measurements (Wei
1998), but it is close to the resol ution limit of the measurement and hence should be viewed
as an upper bound on the width of the incompressible strip.

It is known that non-equilibrium edge state populations can be re-equilibrated by
applying adc Hall voltage of the order of the LL energy splitting, 7w, (Komiyama 1992).

We next show that we can observe thisin the local potential profile at the edge of the sam-
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ple. Thevoltage near the sample edgein the presence of adc Hall voltageis shown in Fig.
3.11. The gatereflectsthe v = 3 edge state for all the linetraces here. Asthedc biasisin-
creased from O (Fig. 3.11(a)) to5mV (Fig. 3.11(b)), just below 7w, = 5.5 meV, the voltage
drop due to the disequilibrated edge states is reduced substantially, indicating significant
re-equilibation. At 8 mV dc bias, well above 7w, there is no voltage drop at the sample
edge (Fig. 3.11(c)), and the edge states are completely equilibrated.

Note that in Fig. 3.10(b) only about half of the Hall voltage drops across the incom-
pressible strip. Thisis because of edge state re-equilibration that occurs between the injec-
tor gate wherethe NES popul ation is created and the location where the Hall voltage profile
ismeasured. Asfound in section 3.5, the equilibration length | is only about 13 um, due
to the low sample mobility. The measurementsof Fig. 3.10 aretaken 5-10 um downstream
of theinjector gate, i.e. at adistance of between 0.5-1 | from the gate. The fact that only
half of the original potential difference between the outer and inner edge states remains
after this distance is therefore expected.

We can observe this re-equilibration of the edge state populations more clearly by
imaging the Hall voltage profile asthe AFM tip moves away from theinjector gate. InFig.
3.12, we measure the Hall voltage profile at distances from about 3 um downstream of the
injector gate to 12 um downstream. We can clearly see that the potential difference be-
tween the disequilibrated edge states falls off as the tip moves further away from the gate.
Fitting the change in the Hall voltage drop at the edge of the sample to an exponential de-

crease according to Eqg. 3.1, we find an equilibration length of 1o ~ 6 um.
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Fig. 3.12: EFM image of
edge of Hall bar (b) edge state re-equilibration at
v=3. (a) The Hall voltage
profile at the edge of the
sample at a distance of 3-12
um from the injector gate, in
the presence of NES popula-
tions. A sharp gradient is
seen at the edge when thetip
isclosetothe gate. Thisgra-
dient diminishes as the tip
moves away from the gate.
(b) Therelative size of the
drop in Vy within 1 um of
the edge as afunction of dis-
tance from the injector gate.
— The exponential fit to the
4 6 8 10 12 decreasein Vy resultsin an
rgate (3 wm away) Distance from injector gate (LLm) equilibration length of 6 um.

(@

oy
(e}
Ll

e
W
1

Relative Hall voltage drop at edge

o
o

Thisisonly half aslong asthe | o measured by transport (see section 3.5). Therea
son for the discrepancy isnot clear. One possibility isthat the model of equilibrationin Eq.
3.1 breaks down at these length scales. Eq. 3.1 assumesthat the inter edge state scattering
that equilibrates the edge state potential s occurs uniformly along the edge. Aswe shall see
in the next chapter, however, the scattering isin fact dominated by discrete scattering cent-
ersthat are distributed non-uniformly along the edge of the sample (Woodside 2001). The
amount of equilibration occuring at each scattering center may vary, so that the equilibra-
tion rateisfar from uniform along the edge. The average equilibration length | eq expected

from Eq. 3.1 thus may not correspond to the local equilibration rate measured with EFM.

3.7 Summary

In conclusion, we have measured the local Hall voltage across a quantum Hall con-

ductor in the presence of gate-induced non-equilibrium edge state populationsat v = 3. We
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observe asharp voltage drop at the edge of the sample along which the disequilibrated edge
statesflow. Thisvoltage gradient can be suppressed by equilibrating the edge states, either
with the gate or with adc Hall voltage of order 2m.. Dueto thelow mobility of the sample,
thereissignificant equilibration of the edge state potentials. Weimage the local changein
the non-equilibrium edge state popul ation with electrostatic force microscopy, finding the
local equilibration length. In the next chapter, we will investigate the source of this equi-

libration by studying individual scattering centers at the edge of the sample.
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cuaerera:  INAIVIdual Scattering Centersinthe
Quantum Hall Regime

4.1 Introduction

The incompressible strips separating the conducting edge states in a quantum Hall
conductor can support non-equilibrium edge state populations that persist over extremely
long distances before re-equilibrating, sometimes up to hundreds of microns or more (van
Wees 1989b, Alphenaar 1990). Measurements of the local Hall voltage distribution at the
edge of a quantum Hall conductor in the previous chapter (Woodside 2000) showed that
we can observe these non-equilibrium populations locally and watch them as they equili-
brate. Inthe present chapter, we study in more detail the process by which re-equilibration
takes place: inter edge state scattering.

Recall that the high magnetic field in the quantum Hall regime physically sepa-
rates counter-propagating edge states, suppressing backscattering between them. It hasa
similar effect on the scattering between co-propagating edge states on the same side of the
samplethat isresponsible for edge state equilibration. As discussed previously, edge
states belonging to different LLs are separated by incompressible strips. These incom-
pressible strips have awidth a » Ig, where |5 = J;/é is the magnetic length (Chklovskii
1992). The extent of the edge state wavefunction, however, isonly Ig. Thetunnelling rate

2

T between edge states, T o< exp[—a—2 « 1, ishencevery small and tunnelling directly
2l

between adjacent edge states is strongly suppressed (Martin 1990). Inter edge state scat-
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tering thus occurs principally through scattering from impurity potentials and phonons.
Possible sources of these impurity potentials include impurities in any of the heterostruc-
ture layers near the 2DEG, especially the donor layer; impurities at the face of the etched
sample edge; and impuritiesin the GaAgAlGaAs interface. In an effort to quantify the
contribution for various sources, several calculations of scattering rates have been per-
formed (Ohtsuki 1989, Badalian 1991, Palacios 1991, Komiyama 1992). One of the
important conclusions of thiswork is that scattering from long range potentialsis sup-
pressed due to the large momentum transfer needed to scatter from one LL to the next
(Ohtsuki 1989).

Inter edge state scattering has been explored with various transport measurements
using electrostatic gates to manipulate the edge state populations. In particular, Komi-
yama et al. (1992) determine from a comparison to their theoretical model that the contri-
bution from acoustic phonon scattering isinsignificant at temperatures of about 1 K and
below, concluding that equilibration is due only to impurity scattering. Muller et al.
(1992), Haug et al. (1993b), and van Haren et al. (1993) show that the equilibration rate
can be changed significantly by changing the confinement potential at the edge of the
sample using gates. They find that when the confinement potential is made shallower, the
equilibration rate decreases because the edge states are pushed further apart and moved
further from impurities at the edge of the sample. A few measurements also observe sharp

fluctuations in the equilibration as a function of gate voltage and/or magnetic field
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(Alphenaar 1991, Acremann 1999). These are interpreted as indirect evidence of scatter-
ing from individual scattering centers.

All of these measurements study the aggregate equilibration over distances of 10°'s
of microns, and therefore have difficulty investigating the properties of individual scatter-
ing sites. Basic questions remain about the nature of the scattering centers, their fre-
guency, and the amount of scattering at individual sites. Using an atomic force microscope
(AFM) tip as agate to influence inter edge state scattering, we address these issues by
imaging and characterising individual scattering centers, to our knowledge for the first
time. We find that scattering involves both tunnelling through weak links and scattering
from microscopic impurities. These measurements yield a clearer picture of the nature of
edge state scattering and also provide lessons about how a scanned probe tip influences a
sample. These results were previously published in Physical Review B Rapid Communi-

cations (Woodside 2001).

4.2 Scanned Gate Microscopy of Inter Edge State Scattering
The sample we study is the same GaAs/AlGaAs heterostructure as in the previous

chapter. It hasa2DEG lying 90 nm below the surface, with adensity of 2.4x10™ m and
amobility of 19 m%Vs. The low mobility ensures that there is enough scattering to allow
the study of intrinsic scattering centers. All measurements are made at temperatures

between 0.7 and 1 K and at filling factors between v=3 and v=2.5. At thesefilling factors

there are 2 spin resolved outer edge states and a single inner edge/bulk state, as shown in
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Fig. 4.1: Creating and detecting

(a) edge state scattering non-equilibrium edge state
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Fig. 4.1. Asshown inthe last chapter, these filling factors alow significant non-equilib-
rium edge state (NES) populations.

We use two different methods to establish and detect NES populations. The first
method (Fig. 4.1(a)) is the same as the one desribed in section 3.6: ametal gate on top of
the 2DEG (the injector gate) is used to selectively inject a non-equilibrium current distri-
bution into the outer edge states. A second gate (the detector gate) is then used to detect
the existence of the NES population by selectively transmitting the outer edge statesto a
voltage probe (van Wees 1989a). The second technique (Fig. 4.1(b)) uses the fact that
NES populations arise naturally in the transition regions between quantum Hall plateaux
when the edge and bulk states are decoupled (van Wees 1989b, Alphenaar 1990). The

non-equilibrium edge states carry excess current that depresses the longitudinal resistance
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R Additional equilibration between the bulk and the edges leads to an increase in Ry,
Changesin the NES population can thus be detected by measuring R,

Having established a NES population by one of these methods, we use scanned
gate microscopy (SGM) to study the local scattering in the sample. The AFM tip is metal-
lised with Ti and has a diameter of approximately 100 nm. When thetip is biased with a
voltage Vy;, as described in Chapter 2, it acts asalocal gate and perturbs the states at the
edge of the 2DEG. This alters the scattering between edge channels, changing the equili-
bration rate. We scan the tip 50-75 nm above the sample and measure the change in equi-
libration induced by the tip with one of the methods described above. Note that alarge
Viiip (outside the range +1 V) causes abrupt hysteretic changes in the scattering, and some-
timesirreversibly increasesthe scattering rate. Thisislikely dueto arearrangement of the
chargesin the donor or surface layersinduced by Vi, (Tessmer 1998). For this reason,
large tip voltages are not used in these measurements.

Fig. 4.2(a) displaysthe results for a 10 um long section of the edge of the Hall bar
where the NES population is established and detected using top gates. Thetip voltage
hereis Vi, = 0.9 vi Regions where the scattering is enhanced by the presence of thetip
are light, whereas regions where it is reduced are dark. Several bright features represent-
ing areas of increased scattering are visible along the edge of the sample. They are not

correlated with any topographic features, and they are not observed when the edge and

1. The contact potential, the potential at which the tip voltage does not perturb the sample, variesfrom 0-0.3 V at differ-
ent locations due to the effects of chargesin the surface and donor layers.
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& 04 Fig. 4.2: Scanned gate images of scat-
S 03 tering centers at the edge of the Hall
B bar. (a) An image of the equilibration
S 02 along a 10 um section of the Hall bar
= at v=3 using the method of Fig. 4.1(a).
g 01 The bright regions show where the
c AFM tip increases inter edge state
‘© 00 scattering. Thisimageistaken with
g Vip=0.9 V and an injector bias of 0.2
<01 mV rms. (b)-(d) Images of the equili-
© mesa bration-induced change in longitudi-
nal resistance R, a ong three different
ODEG ——— | etch . 15 um sections of the Hall bar at
i ' v=2.6-2.7, using the method of Fig.
AR (Q) - ’ 4.1(b). Several different types of fea-

tures are observed: bright spots of
increased scattering, dark spots of
decreased scattering, and bright rings
of increa-sed scattering surrounding
regions of decreased scattering.
These images are taken with V;;,=0.8
V and a current bias of 100 nA rms

bulk are in equilibrium. They are clearly associated with individual scattering centers,
separated on average by ~2 um.

Similar results are seen when the NES population is established by selective back-
scattering of the bulk state, asin Fig. 4.1(b). Since these measurements do not have to be
made between the gates, larger areas can be explored. Figs. 4.2(b)-(d) show the scatter-
ing-induced changein R, over three different 15 um long segments of the sample edge at
filling factor v ~ 2.6-2.7. In addition to bright spots of increased scattering, there are dark
spots of decreased scattering, and bright rings of increased scattering surrounding regions

of decreased scattering. Again, these are observed only along the edge of the sample and
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Fig. 4.3: Tip voltage dependence
10— of the scattering at one of the
bright spots of increased scatter-
ingin Fig. 4.2. (a) Cross section
through the center of the bright
spot as afunction of Vy;,. The
center of the scattering Peature is
located at the edge of the Hall bar
mesa. The scattering increases
monotonically with Vy,, but the
. width at half maximum remains

ChangeinR,, (Q2)
N .l|> » 0

0- (b) constant. (b) Linetrace at the
———T——T—T——T— Ccenter of the spot showing the
0 2 4 -02 00 02 04 06 08 increase in Ry, due to the scatter-
AFM tip position (um) AFM tip voltage (V) ing.

are separated on average by adistance of ~2 um. We find that the bright spots occur most
frequently, while the dark spots and the bright rings each occur only about one third asfre-
guently. On average, then, a positive AFM tip biasincreases inter edge state scattering,
but at any particular site it can either enhance or reduce the scattering.

The nature of these scattering centers can be probed further by examining the tip
voltage dependence of the scattering. A cross-section through the center of one of the
bright spots as a function of Viip isshownin Fig. 4.3(a). As Viip Is reduced from positive
values, the amount of scattering at the center of the spot decreases monotonically until the
spot disappears (Fig. 4.3(b)). The width at half-maximum of the spot remains roughly
constant as Vy;, is changed. 1n some cases, adark spot appears at negative Vyjj,, indicating
reduced scattering.

Figs. 4 and 5 show the tip voltage dependence of one of the rings of scattering. A
cross-section through the ring as afunction of Vi, (Fig. 4.4(a)) reveals strikingly different

behaviour from that seen in Fig. 4.3. Thereisastrong peak in the amount of scattering at
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Fig. 4.4: (a) Cross section
through the center of aring of
increased equilibration asa
function of Vy;,. The equilibra-
tionisincreased around the rim
of the ring but decreased in the
center. AsVy, isreduced from
large positive values, theradius
of thering shrinksuntil thering
disappears near 0 V. A spot of
reduced scattering appearsin
its place at negative V. (b) A
linetrace at the center of the
ring shows a peak in the equili-
bration.

Fig. 4.5: Images of the scanned
gate featurein Fig. 4.4 at dif-
ferent tip voltages. AsV;
decreases from positive vg—
ues, the ring of increased scat-
tering (@) first shrinks (b), then
collapses to a spot of increased
scattering (c). At negative Vyp,
it turnsinto a spot of decreased
scattering (d).

the center of the ring as V;, is changed, as seen in Fig. 4.4(b). The evolution of the scat-

tering with Vy, revealed by Fig. 4.4(a) is more clearly illustrated in Fig. 4.5 by a series of

images of the same scattering feature at different tip voltages. AsVy;, isreduced from

positive values, the radius of the ring shrinks linearly with Vy;, until the ring collapsesinto

aspot. The magnitude of the scattering peak remains constant during this process. AsVyj,

is reduced further, the spot of increased scattering first vanishes and then is replaced by a

spot of decreased scattering at negative Vi,
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4.3 Interpretation

To understand these results, we consider how an electrostatic perturbation at the
sample edge influences edge state scattering. Equilibration involves tunnelling across the
v=2 incompressible strip between edge and bulk states. As described earlier, the tunnel-
ling rate is proportional to exp(-a2/I BZ), where a is the width of the strip and Ig is the mag-
netic length. Because a « Ig, tunnelling is normally strongly suppressed (Martin 1990).
Previous work has shown that the scattering rate can be changed by using a gate alongside
the 2DEG to change the confining potential and alter the width of the incompressible strip,
asdiscussed in section 4.1. Positive side gate bias decreases the width of the strip,
increasing the equilibration rate, while negative bias has the opposite effect. I1n these
measurements, the AFM tip plays arole analogous to the side gate by changing the confin-
ing potential at the sample edge. This both moves the edge states and alters the width of
the incompressible strip.

We interpret the bright spots of increased scattering seen in Fig. 4.3 asweak links
in theincompressible strip. It isknown that potentia variations at the edge of the 2DEG
cause the width of the strip to fluctuate along the length of the sample (Chklovskii 1992,
van Haren 1993, Haug 1993a). Locationswherethe strip is especially narrow giverise to
weak links across which tunnelling occurs preferentialy, asillustrated in Fig. 4.6(a). Pos-
itive Vi, hardens the confining potential and further decreases the width of the strip,
increasing the tunnelling through the weak link (Fig. 4.6(b)). These results are thus con-

sistent with previous work showing an increase in equilibration rates with more positive
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) Fig. 4.6: Scattering through weak
increased tunneling links (bright spotsin Fig. 4.3). (a)
Variations in the width of the
incompressible strip create narrow
regions (weak links) through which
tunnelling occurs preferentialy. (b)
Positive V;
ment poten{)i al gradient, decreasing
the width of the weak link and
increasing the tunnelling between
edge states. Vi, also movesthe
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Fig. 4.7: Scattering from micro-
scopic impurity (bright ringsin
Figs. 4.4 and 4.5). (a) The
AFM tip voltage causes the
edge states to move. Peaksin
the scattering occur when the
AFM tip pushes the edge states
over the potential gradients
associated with a microscopic
impurity. (b) If an impurity
lying between the edge chan-
nels supports bound states, then
peaks in the scattering will
occur when Vi, brings the
energy level of the impurity
state into resonance with Eg.

side gate bias. The high spatial resolution of the AFM tip, however, reveals that the

increased scattering occurs only at specific sites along the edge.

The different behaviour seen in Fig. 4.4 indicates a different type of scattering

center. We interpret the bright rings as scattering from potential fluctuations with asize

scale smaller than the edge state structure. Such microscopic impurities may arise from an

individual defect or dopant atom near the heterostructure interface. Thetip can changethe

scattering from these impurities in two ways, as shown in Fig. 4.7. First (Fig. 4.7(a)), the

tip moves the edge states around the impurity. When the tip pushes the edge states across
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an impurity, the large potential gradients associated with the impurity narrow the incom-
pressible strip and increase the tunnelling between edge states, causing a peak in the scat-
tering. Second (Fig. 4.7(b)), if the impurity supports bound states, then the tip will also
change the energy of theimpurity states. Scattering peaks can then occur when Vy;, brings
the impurity states into resonance with the Fermi level (Jain 1988, Main 1994, Cobden
1999), as long as the impurity remains between the edge states. 1f more than one electron
can occupy the site, single-electron charging may produce multiple concentric rings
around the scattering site.

We have studied 7 annular scattering -
a

(a) §0.8 (b)
features, and most have asinglering asin E’:) 0.6
<
Figs. 4.2 and 4.5. Thisis consistent with s%0.4
=

e
[\

both of the mechanisms described above. [ — : : ]

. . . -5 0 5 10 Tip position (um)
Only one showed evidence of multiplerings,  Change in Ry, (Q)

Fig. 4.8: Double ring feature in the scattering.

afaint doublering showninFig. 4.8. The (a) A faint double ring of increased scattering is
seen next to abright spot of increased scattering.
fact that more multiple rings are not seen (b) A cross section through the middle of this

feature as afunction of Vy;, shows that both
ringscontract at the samerateas Vy;p isreduced.

may be due to the limited range of V;;, that
can be used without rearranging charges in the donor layer or on the surface. Further
study of the dependence of the scattering on temperature, bias, and magnetic field will be

required to clarify the relative importance of these mechanisms®.

2. Impurities located on opposite sides of the incompressible strip should cause scattering similar to Fig. 4.5 but at
opposite Vy;, polarity (thisis also true for bound states having energies on opposite sides of the Fermi level). We
believe thisis the origin of the dark spots of reduced scattering at positive Vi, in Fig. 4.2. 1t also explains why such
dark spots occur with the same frequency as the rings of increased scattering.
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We now turn to the question of how much equilibration occurs at each site. This
can be determined from the results of Fig. 4.2(a), where top gates are used to measure the
non-equilibrium potential difference Ay between the v=1, 2 and v=3 edge states. In the
absence of thetip, the total equilibration rate over the 30 um distance between top gatesis
~90%. Since scattering sites are located every ~2 um, the average scattering probability p
needed to account for the measured equilibration rate (Acremann 1999) isp ~ 0.15. The
NES population is therefore reduced by ~15% at each microscopic scattering site.

We can also determine from Fig. 4.2(a) the amount of extra scattering caused at
each scattering site by the AFM tip perturbation. The change in the scattering probability
Ap induced at a particular siteis given by the fractional change in Ay caused by thetip at
that site. For the scattering sites observed in Fig. 4.2(a) with Vy;, = 0.9V, we find that Ap
= 0.1-0.3, with an average value of Ap = 0.2. The amount of scattering induced by thetip
at thistip biasisthus of the same order as the scattering already present in the sample.

These experiments are, to our knowledge, the first direct measurement of the
amount of edge state coupling at individual scattering sites. They show that the equilibra-
tion is dominated by strong scattering centers separated by afew um. This contrasts with
the results of a previous study, which inferred the existence of scattering siteswith p ~
0.006-0.02 separated by ~ 90-600 nm based on a statistical analysis of scattering between
the v=2 and v=1 (spin-polarized) edge states (Acremann 1999). The origin of the differ-
ences between these two experimentsisnot clear. However, the momentum and spin con-

servation issues for scattering between edge states of different orbital LLs are very
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different from those for scattering between different spin states within the same LL (Haug
1993a).

The measurements presented here clearly probe individual scattering centers. We
emphasize, however, that the relation between the observed features and the underlying
scattering centersis not straightforward, due to the complex tip-sample electrostatics. As
discussed above, the rings seen in Fig. 4.5 correspond not to annular scattering centers, but
rather to equipotential contours around a single scattering center. Thering of scattering in
Fig. 4.5isalso not circular, as might naively be expected, but flattened on the side over the
mesa. Thisisdueto the spatial variation in the dielectric properties of the sample near the
mesa edge. The high-dielectric GaAs (e~13) and the 2DEG screen the AFM tip more
effectively when the tip is over the mesa than when it is over the etched region, flattening
the side of the ring over the mesa. We note as well that the scanned gate featuresin Figs.
4.2-4.5 are very near the physical edge of the sample. Previous theoretical (Chklovskii
1992, Larkin 1995) and experimental work (Wei 1998), however, indicates that the edge
states reside several hundred nm inside the mesa due to depletion of the 2DEG near the
sample edge. We again attribute this to the non-uniform screening properties near the
sample edge: thetip hasits greatest effect near the edge of the mesawhere the 2DEG and
the GaAs are less effective in screening it. Thisfurther illustrates the complexitiesin
relating features observed in scanned probe images to the underlying spatial structuresin

the 2DEG..
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4.4 Summary

In this chapter, we have investigated the scattering between edge states in a quan-
tum Hall conductor, studying the mechanisms responsible for re-equilibrating non-equilib-
rium edge state populations. We have seen that the scattering occurs at discrete sitesalong
the edge, and we have for the first time imaged and characterised these individual inter
edge state scattering centers. By studying the dependence of the scattering on tip voltage,
we have found that the scattering involves tunnelling across weak links and scattering
from microscopic impurities.

This concludes our study of the electronic properties of 2DEGs in the quantum
Hall regime. In the coming chapters, we turn from looking at electronsin 2D to looking at
electronsin 1D, exploring the properties of carbon nanotubes in the single-electron

regime.
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5.1 Introduction

In the previous chapters, we used alow-temperature AFM to investigate the local
electronic properties of 2D electron gases in the quantum Hall regime. We found that we
could study in detail microscopic aspects of the transport such as the Hall voltage distribu-
tion, non-equilibrium edge state populations, and individual scattering centers at the sam-
ple edges. We now move from systems where electron motion is confined to two
dimensions systems to a system where electrons are confined to only one dimension: spe-

cifically, carbon nanotubes.

Carbon nanotubes are cylinders of covalently bonded carbon atoms that were first
discovered in 1991 (lijima1991). They have since been the subject of very intense scru-
tiny (for areview, see Dresselhaus 1996 and Ebbesen 1997). Partly thisis due to the beau-
tiful model system nanotubes provide for 1D physics. Mainly, however, the interest in
nanotubes has been inspired by the many promising applications that have been identified
in areas as diverse as materials design (Dressel haus 1996), electronics (Dekker 1999),
nano-electromechanical systems (Kim 1999) and sensor technol ogies (Collins 2000, Kong
2000). Herewewill concentrate on the electrical properties of carbon nanotubes, studying

in particular electron transport through individual single-walled carbon nanotubes.
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Note that carbon nanotubes actually exist in two principal forms: single-walled
nanotubes and multi-walled nanotubes. Single-walled nanotubes consist of asingle iso-
lated cylinder of carbon, while multi-walled nanotubes consist of sets of multiple, nested
cylinders (Dresselhaus 1996). Each form isinteresting in its own right and has been the
subject of much study. For simplicity, however, we ignore multi-walled nanotubes in this

work and confine our investigations to individual single-walled nanotubes.

This chapter will present a brief overview of the electronic properties of carbon
nanotubes. In section 5.2, we describe the band structure of carbon nanotubes and how it
affectstheir basic electronic properties. Previous electron transport measurements will be
discussed in section 5.3. Finally, section 5.4 will review what has been learned from pre-
vious scanned probe measurements of the electronic properties of nanotubes. Thiswill set
the stage for an account of new work on scanned gate microscopy in the single-electron

regime in Ch. 6 and single electron force miscroscopy in Ch. 7.

5.2 Band Sructure of Carbon Nanotubes

Carbon nanotubes, the most recently discovered form of elemental carbon, are
cylindrical macromolecules of carbon that form under specia conditions. They typically
have a diameter on the order of afew nanometers, and alength of up to many microns.
Their structure is very similar to graphene (a single sheet of graphite). In fact, we can

image a nanotube as just a piece of a graphene sheet that has been rolled up along its axis
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(a) Band structure of graphene:

Fermi
points

Hexagonal Brillouin zone

Semiconducting
nanotube

Fig. 5.1: Band structure of carbon nanotubes. (a) Band structure of graphene, the parent
materia of carbon nanotubes. The first Brillouin zone is hexagonal, and the Fermi sur-
face consists of the K, K™ points at the zone boundary. The dispersion at each point is
conical. (b) Periodic boundary conditions create 1D subbandsin the transverse axis.
When the subbands cross the Fermi points, the nanotube is metallic. (c) When the chi-
rality of the nanotube is such that the subbands do not cross the Fermi points, the nano-

tube is semiconducting.

and then stitched together along the seam. The C atoms in the nanotubes are bonded by

spz-hybridi$d orbitals just as in graphene, and the band structure is hence essentialy the

same asthat of graphene (Saito 1992).

Graphene is a semimetal whose band structureisillustrated in Fig. 5.1(a). The

Fermi surface of undoped graphene consists of only 2 inequivalent points at the Brillouin

zone boundary (the K and K™ points), with conical band dispersion dispersion around each

of these points as shown. In carbon nanotubes, this pictureis modified principally by the

imposition of periodic boundary conditions due to the cylindrical symmetry of the nano-

tubes. These periodic boundary conditions give rise to 1D subbands perpendicular to the

longitudinal axis of the nanotube (Hamada 1992). The orientation of the axis of the nano-
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tube relative to the graphene lattice structure (known as the chirality of the nanotube)
determines how these 1D subbands intersect the 2D conical band surfaces at the Brillouin
zone boundary. Thisin turn determines the electrical properties of the nanotube. If the
subbands cross the Fermi points at the zone boundary, then the nanotube isa 1D metallic
conductor with linear subband dispersion, as shown in Fig. 5.1(b). Becausethere are only
two inequivalent Fermi points, the nanotube has only two 1D conducting channels. If the
subbands do not cross the Fermi points, then there is a bandgap at the Fermi energy and

the nanotube is a 1D semiconductor as shown in Fig. 5.1(c).

The electronic properties predicted from the band structure have been confirmed
directly by experiment. For example, scanning tunnelling microscopy (STM) has been
used to image the lattice of individual nanotubes with atomic resolution and measure den-
sity of states spectra (Odom 1998, Wildoer 1998). Fig. 5.2 shows STM images of two
nanotubes, one semiconducting (Fig. 5.2(a)) and one metallic (Fig. 5.2(b)). The atomic
lattice can be clearly seen, alowing the chirality of the nanotubes to be determined. The
density of states spectra from the nanotube expected to be semiconducting because of its
chirality do indeed show abandgap at the Fermi energy (Fig. 5.2(c)). The spectrafrom the
nanotube that is expected to be metallic, on the other hand, show that thereisno gap (Fig.
5.2(d)). These measurements also provide clear evidence of the 1D nature of conduction:
the edges of the subbands reveal the van Hove singularities that are expected for 1D con-

ductors (Kittel 1986). In other experiments, STM has been used to image directly the spa-
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Fig. 5.2: STM images of single-walled nanotubes. (a) Semiconducting nanotube. The
atomic latticeis clearly visible. (b) Metallic nanotube. (c) Electronic density of states
(DOS) spectra at several points on the nanctubein (a). Thereisaenergy gap at the Fermi
level. (d) Electronic DOS spectra from the nanotube in (b). Thereisno gap at the Fermi
level. Images and spectrafrom Odom et al. (1998), courtesy of P. Kim.

tial structure of electronic wavefunctions in a carbon nanotube, again confirming the

picture of Fig. 5.1 (LeMay 2001).

5.3 Transport Measurements of Nanotubes

Simple electron transport measurements through gated nanotubes at room temper-
ature are consistent with the picture described above. The two types of transport behav-
iour that are expected for metallic and semiconducting nanotubes are indeed observed. In

semiconducting nanotubes, thereisagap in the density of states. A voltage applied to the
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Fig. 5.3: Room-temperature
transport measurements of
nanotubes. (a) Semicon-
ducting nanotube. The con-
ductance decreases by
Ep| many orders of magnitude
asincreasingly positive gate
voltage moves the Fermi
level into the bandgap. The
nanotube is p-doped by the
contacts and/or substrate.
(b) Metallic nanotube. The
conductance varies little
with gate voltage, since
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thereisno energy gap at the
Fermi level. Figures cour-
tesy of M. Bockrath.

gate can be used to move the Fermi level Eg of the nanotube, depleting the carrier concen-

tration as Ex moves into the gap and causing an exponential decrease in the conductance

(just asin semiconductor field-effect transistors). This behaviour is shown in Fig. 5.3(a).

In metallic nanotubes, on the other hand, there is no energy gap, and hence the conduc-

tanceis not very sensitive to the gate voltage. Thisbehaviour isshownin Fig. 5.3(b). The

gate voltage dependence of the conductance can thus be used as a simple test to determine

whether ananotube is metallic or semiconducting. Note from Fig. 5.3(a) that the nanotube

is p-doped by the gold contacts and/or the substrate due to differences between the work-

function of these materials. Thisis generally observed to be the case in nanotube devices'.

1. Similar p-doping of nanotubes by gold is observed in STM measurements of nanotubes (e.g. Wildter 1998).
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When the two-terminal conductance of carbon nanotubes is measured, it is found
to vary significantly from one device to the next, by many orders of magnitude (McEuen
1999). Thisisattributed to two reasons. First, as mentioned, the conductance depends
strongly on whether the nanotube is metallic or semiconducting. Second, there are often
difficulties in making proper Ohmic contact to the nanotube, so that electrical contact fre-
guently occurs through tunnel barriers between the electrodes and the nanotube. When
good contact is made to a nanotube, the conductance can approach the value G = 4e?/h (R
~ 6 kQ). Thistruefor both metallic nanotubes (Bockrath 1997) and semiconducting nan-
otubes that are heavily doped (Park 2001). Note that this conductance is the value
expected for ballistic conduction in a 1D wire with 2 spin-degenerate channels (see Eq.

1.2), which is precisely the situation expected from the discussion in the last section.

New behaviour is observed in the gate voltage dependence of the conductance
when nanotubes are cooled down to low temperatures. Quasi-periodic peaks appear in the
conductance, between which the conductance becomes vanishingly small, as shown in
Fig. 5.4 (Bockrath 1997, Tans 1997). Thisisthe classic signature of single-electron charg-
ing in aquantum dot, as described in Chapter 1, indicating that OD quantum dots form
within the 1D nanotube due to the presence of tunnel barriers. In some nanotubesasingle
guantum dot is found to span the entire length of the nanotube, up to several microns,
showing that the only tunnel barriers are at the contacts (Fig.5.4(a)). Thisoccursin both
metallic (Bockrath 1997, Tans 1997) and semiconducting (Park 2001) nanotubes. In other

nanotubes, multiple quantum dots in series are seen, indicating the presence of multiple
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Fig. 5.4: Low-temperature transport measurements of nanotubes. (a) A single ~1 um
long quantum dot forms in the nanotube over its entire length, due to tunnel barriers at
the contacts. (b) Multiple quantum dots form in the nanotube, producing Coulomb
oscillations with many periods. Figures courtesy of J. Park and M. Bockrath.
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tunnel barriers within the nanotube (Fig. 5.4(b)). Again, this occursin both metallic
(Bockrath 2001) and semiconducting (McEuen 1999) nanotubes, but it is especially com-

mon in semiconducting nanotubes near turn-on.

The transport measurements described above reveal important information about
scattering in nanotubes. The microns-long quantum dots and the conductance on the order
of the conductance quantum indicate that the mean free path in nanotubes can be many
microns in length, with conduction essentially ballistic over the length of the nanotube.
Thisisattributed to several causes. Structural defects are thought to be rare, and scattering
from short range disorder is suppressed by the non-zero diameter of the nanotube, which
results in the effective short range disorder being averaged over the circumference of the
nanotube (White 1998). In metallic nanotubes, scattering from long range disorder isalso
suppressed by conservation of momentum (McEuen 1999). Semiconducting nanotubes

are more sensitive to long range disorder due to less stringent constraints from conserva-

84



Electron Transport in Nanotubes

tion of momentum, accounting for the fact that near turn-on they have much shorter mean

free paths and more numerous tunnel barriers.

5.4 Scanned Probe M easurements of Nanotubes

Aswe have seen in the brief review above, transport measurements have revealed
many important details about conduction in nanotubes. Nevertheless, traditional transport
measurements suffer from the same disadvantage found when studying 2DEGs in the
guantum Hall regime: they have very little spatial discrimination, and are thus not ideal
for exploring the microscopic properties underlying the behaviour that is observed. This
isparticularly true when studying defects and scattering centers. Just as with the Quantum
Hall Effect, various scanned probe techniques have been applied to study the electronic
properties of nanotubes on alocal scale. These scanned probe measurements have con-

firmed and extended the picture of conduction in nanotubes presented above.

For instance, electrostatic force microscopy (EFM) has been used to measure the
voltage distribution along individual nanotubes (Bachtold 2000). This allows usto deter-
mine where the voltage dropsin the nanotube. Such measurements show that thereisvery
little voltage drop across metallic single-walled nanotubes, as expected for a ballistic con-
ductor; instead, the voltage drops at the contacts (Fig. 5.5(a)). The two-terminal resistance
is thus dominated by the contact resistance, which can be measured for each contact. Tun-

nel barriers within the nanotube that give rise to scattering centers causing large voltage
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Fig. 5.5 EFM measurements of nanotubes at room temperature. (a) The local voltage dis-
tribution in a metallic nanotube shows that conduction is ballistic. Most of the voltage
drops at the contacts, whose resistance can be measured. (b) EFM image of a semicon-
ducting nanotube showing a sharp voltage drop across a defect in the middle of the nano-
tube. (c) EFM images of a broken nanotube. The nanotube can be clearly seen in the EFM
images, even though there is no conductance through it. The location of the break can eas-
ily beidentified. Images courtesy of A. Bachtold and M. Fuhrer (adapted from Bachtold et
al. (2000) and unpublished).

drops can also be identified. An exampleisshown in Fig 5.5(b), where a strong defect in
the middle of a semiconducting nanotube can clearly be seen. Finally, in contrast to tradi-
tional transport measurements, with EFM even broken nanotubes through which thereis

no conduction can be inspected. Thisallows, for example, the location of the break to be

determined (Fig. 5.5(c)) (Bachtold 2000).

Scanned gate microscopy (SGM) isalso useful for probing transport in nanotubes.
It has been used to locate the potential modulations that give rise to tunnel barriersin
semiconducting nanotubes and hence identify individual scattering centers (Bachtold
2000, Tans 2000, Tombler 2000b). An example of a scanned gate image of a semicon-

ducting tube is shown in Fig. 5.6. The tunnel barriers are visible here as bright spots
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scattering centers Fig. 5.6: Scanned gate image of a semi-
conducting nanotube at room tempera-
ture. Many locations where the cond-
uctance is very sensitive to the AFM
tip voltage can be seen along the length
of the nanotube. Adapted from
McEuen (2000).

demarking regions of the nanotube that are easily depleted. Individual scattering centers
have also been observed with SGM in metallic nanotubes. Here, resonant scattering from
microscopic defects was discovered, and the transmission coefficients of the defects were

measured (Bockrath 2001).

These scanned probe studies have allowed us to look at what is happening inside
nanotubes with high spatial resolution, providing valuable insight into their microscopic
properties. Most of these measurements, however, have been carried out on samples at
room temperature. This makes them easier to perform, but the high thermal energy (~25
meV) limits the energy resolution of the measurements. In particular, the thermal energy
is much too high to detect single-electron charging. In the following chapters, we present
scanned probe measurements of nanotubes that overcome this limitation by using our low-
temperature AFM. This provides uswith both high spatial resolution and high energy sen-
sitivity, allowing us to investigate the local properties of nanotubes in the single-electron

regime.
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6.1 Introduction

We begin our scanned probe studies of the electronic properties of carbon nano-
tubeswith scanned gate measurementsin the single-electron regime. 1n Chapter 4, we used
scanned gate microscopy (SGM) to study the scattering between 1D conducting channels
at the edge of a quantum Hall conductor. The principal effect of the AFM tip in that case
wasto change the scattering by altering the tunnel barriers coupling the channels. Now, we
use SGM to investigate transport within asingle metallic nanotube. Similar measurements
have been made before (Bachtold 2000, Bockrath 2001), as mentioned in the previous
chapter. The novel element we add hereisto perform the measurement at temperaturesin
the single-electron regime, where the techniques and results of single-electron transport
spectroscopy can be brought to bear. Aswe shall see, the effect of the AFM tip is here not
so much to change the tunnel barriersasit isto change the charge states of the OD quantum
dotsthat form within the nanotube. These are, to our knowledge, the first scanned gate im-

ages of quantum dots in the single-electron regime.

The nanotube device used in these measurements is described in section 6.2.  Sec-
tion 6.3 presents scanned gate measurements revealing the presence of two quantum dots
in the nanotube. The properties of one of these dots and the characteristics of the interac-

tion between the dot and the AFM tip are studied quantitatively in section 6.4. Thetip volt-
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age dependence of the scanned gate images is explored in section 6.5, leading to an inter-
pretation in terms of the el ectrostatic environment of the nanotubein section 6.6. The chap-
ter concludes in sections 6.7 and 6.8 with a phenomenol ogical model accounting for the

major features of the scanned gate images.

6.2 Device Fabrication and Properties

The samples we study in this chapter and the next consist of individual single-
walled carbon nanotubes grown by chemical vapour deposition (CVD) and electrically
contacted by gold leads. These nanotube devices are fabricated by standard procedures on
adegenerately-doped Si wafer with a 700 nm thick surface oxide. First, Fe-alumina cata-
lyst islands are deposited on the oxide using a lift-off resist technique. The wafer isthen
placed in a CVD growth furnace at 900°C through which flows methane gas. This causes
nanotubesto grow from the catalyst islands (Kong 1998, Hafner 1998). The nanotubesare
subsequently located by AFM, and 50 nm Cr/Au |leads are deposited on the sample by elec-
tron-beam lithography. These leads contact the nanotubes electrically at each end of the
nanotube. Finally, the sampleis glued to the sample holder with silver epoxy and con-
nected electrically with wire-bonds. Note that an additional layer of gold 125 nm thick is
added to the bonding pads to prevent the oxide from breaking during the wire-bonding

process.

Nanotubes can also be grown by other techniques, such as laser ablation (Thess

1996) and arc discharge (Ebbesen 1997). The CVD growth method is used here because
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of the high proportion of single-walled nanotubesthat it tendsto produce (Kong 1998). An
equally important advantage of CVD growth is the ability to direct the growth of the nan-
otubesin situ through the placement of the catalyst islands. Thisavoids additional process-
ing steps to deposit and position the nanotubes that may damage them by introducing
defects. One disadvantage of CVD-grown nanotubes is the presence of large catalyst is-
lands. Nanotubes are known to grow straight up from the catalyst particles, and can catch
on an AFM tip (Hafner 2001). Thiswas found to be amajor problem on preliminary sam-
ples: nanotubes protruding from the catalyst can impede the oscillation of the AFM canti-
lever. Thisdifficulty is mitigated in the sample studied here, however, by subjecting the
catalyst islandsto sonication during lift-off. Many small (<10 nm) particles break off from
the island and are redeposited el sewhere on the oxide surface. Typically only one or two
nanotubes grow from these small particles, and they tend to lieflat on the substrate, creating

ideal conditionsfor AFM measurements.

A total of six nanotubes prepared as described above are measured in the next two
chapters, but only one of theseis measured using scanned gate microscopy in this chapter™.
AFM images of this nanotube are shown in Fig. 6.1. In Fig. 6.1(a) we see an image of the
nanotube just after CV D growth, before contacts are put on the sample, whilein Fig. 6.1(b)
we see an image of the nanotube after 6 months of scanned probe measurements. The sur-

faceisvery dirty in the latter image because of resist residue left over from fabrication and

1. Of the other five nanotubes, 3 are electrically contacted on only one side (the other contact is floating), and 2 are con-
tacted on both sides but broken due to damage suffered during a cooldown attempt.

90



Single-Electron Scanned Gate Microscopy of Carbon Nanotubes

Fig. 6.1: AFM images of the nanotube sam-
ple used for scanned gate measurements.
(a) Image taken at room temperature just
after CVD growth. The nanotubeis 1.3 nm
" nanotube| .| tall. (b) Image after completion of all meas-

fnotube)

urements. The gold contacts are visible on
the left and right sides of the image. The
nanotubeis 2.5 um long and horizontal
between the contacts. The many spotsin
theimages are resist residue and particles
deposited during several months of scan-
-—contacts—> s ning.

because of dirt deposited by the AFM tip during many months of scanning over the same
area. From these images, we find that the nanotube is about 2.5 um long, and has a height
of 1.3 nm, confirming that it is aimost certainly single-walled. Transport measurements
show that there is very little gate voltage dependence of the conductance, so that the nano-

tube is metdlic.

6.3 Scanned Gate Imagesin the Single-Electron Regime

The scanned gate measurements are performed as described in Chapter 2 (see Fig.
2.9). The nanotube is biased with a source-drain voltage Vg4, and its conductance is meas-
ured as afunction of the position and voltage of the AFM tip at atemperature T = 600 mK.
We begin by fixing the AFM tip in place 120 nm above the nanotube and measuring the
conductance as a function of thetip voltage. Theresultisshownin Fig. 6.2: aseries of
sharp quasi-periodic peaks in the conductance that are separated by regions of vanishing
conductivity. Theselook just like the Coulomb oscillations seen in the measurements of
samples with extended backgates described in the previous chapter, where the nanotube

forms one or more quantum dots at low temperatures. The only differenceisthat hereitis
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Fig. 6.2: Coulomb oscilla-
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the AFM tip rather than the backgate that gates the quantum dot, changing the el ectrostatic
potential of the dot and modulating its conductance. We thus seethat at least one quantum
dot forms in this nanotube.

Knowing that the nanotube has formed at |east one quantum dot, we next use the
AFM tip to take a scanned gate image and determine the position of the dot(s). Fixing the
tip voltage and then scanning the tip over the sample at a height of about 120 nm, we ob-
servetwo distinct setsof concentric rings of maximain the conductance, showninFig. 6.3.
Theserings are centered directly over the nanotube, as determined from topographic imag-
es of the nanotube. We relate the rings of conductance peaks seen in Fig. 6.3 to the Cou-
lomb oscillations seen in Fig. 6.2 by noting that in Fig. 6.3 the change in the potential of
the quantum dot is no longer due to changes in the voltage on thetip, but rather to changes
in the position of thetip. Recall that the expression presented in Chapter 2 for the scanned
gate potential perturbation 6¢ that occurs at the point (Xg,yg) when the AFM tip is located

at the point (x,y) is (Eq. 2.15):
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Fig. 6.3: Scanned gate images of the nanotubeat T~ 6 K. Vg =0.1mV, V;, =-300 mV,
and z= 120 nm. (a) Two sets of concentric Coulomb oscillations reveal the presence of two
quantum dots. The gold contacts and the nanotube are overlaid on top of the scanned gate
image. (b) Charge states of the two dots as a function of the AFM tip position.
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Asdiscussed in Chapter 2, featuresin the scanned gate image follow equipotential contours
surrounding the quantum dot. The quasi-periodic Coulomb oscillations of Fig. 6.2 thus be-
come, in Fig. 6.3, concentric rings around the quantum dot with quasi-periodic spacings.

Theseimages represent to our knowledge the first scanned gate measurements of Coulomb

oscillations in a quantum dot.

Thefact that there are two separate sets of rings, each clearly centered around a dif-
ferent part of the nanotube, indicates the presence of two quantum dots. Asmentioned in

the previous chapter, quantum dots often form in nanotubes due to tunnel barriers between
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the contacts and the nanotube. 1n order to form two quantum dots as seen here, yet another
tunnel barrier must exist in the nanotube, this time in the middle of the nanotube between
the two sets of circlesin the scanned gate image (Fig. 6.3). Thistunnel barrier does not

appear to be associated with any of the bent sections of the nanotube that are visiblein the
topographic image overlaid on the scanned gate imagein Fig. 6.3. It may instead be due to

adefect in the nanotube or a potential fluctuation due to interaction with the substrate.

By comparing the spacing between the Coulomb oscillations around the two dots,
as described in Chapter 1, we can compare the tip-dot capacitances and hence the sizes of
the quantum dots. We find that the left-hand dot is about 2 times smaller than the right-
hand dot. We can also see that while the left-hand dot is sufficiently small for the equipo-
tential countoursto be closely circular, the equipotential contours around the right-hand dot
areobvioudly elliptical. Thisagain betraysthe latter’ slarger size. Asafinal observation,
we note that we can label the occupancy of each dot, since each Coulomb oscillation cor-
responds to changing the occupancy by asingle electron. Thisis shown for amagnified

view of the Coulomb ringsin Fig. 6.3(b).

These images weretaken at T ~ 6 K, where the Coulomb oscillations are just start-
ing to become visible. At thistemperature, the conductance minimaare not very strong,
and the rings of conductance peaks can be very clearly seen around both dots. When the
sampleis cooled down further, the conductance minimabecome much closer to true zeroes

and the peaks become much better defined. Because finite conduction is only measured
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2.2 Fig. 6.4: Scanned gate image of the
nanotube at T =600 mK and z=120
nm with Vi, = -300 mV. A log
scaleisused for clarity. The min-
ima of the Coulomb oscillations are
much stronger at lower tempera-
ture. Significant current flows only
near the intersection of the Cou-
lomb rings.

(Vu) yua1mo

when neither quantum dot is blockaded, the scanned gate signal is significant only at the
intersection of the Coulomb rings around the two dots. A scanned gate image using the
same Vy;, but taken at T=600 mK isshownin Fig. 6.4 (alog scaleis used for clarity). Here
we can see that the concentric rings around the dots are broken up by strong conductance
minima. Note that the left-hand dot, which is smaller and thus has a higher charging en-

ergy, has much stronger conductance minima than the right-hand dot.

6.4 Charaterising A Quantum Dot and the Tip-Dot Interaction

The previous section showed that we can image Coulomb oscillations around quan-
tum dots in a nanotube with scanned gate microscopy. In the nanotube studied here, we
find two dots (Figs. 6.3 and 6.4). We now explore the properties of this nanotube further
by quantitatively characterising one of the quantum dots in the nanotube (the dot on the
right side of the nanotube in Fig 6.3) and itsinteraction with the AFM tip. Thiswill prove
helpful in understanding not only the scanned gate images in this chapter, but also the

scanned force measurements in the following one.
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Fig. 6.5: (&) Conductance plot as afunc-
tion of source-drain and gate voltages.
Coulomb oscillations and excited states
15 can be clearly seen. (b) High-resolution
~7 conductance trace as a function of back-
105, gatevoltage. The Coulomb oscillations
~  aremodulated by the larger period of the

5 second quantum dot. All measurements
made at 600 mK. The device paramaters
0 are summarised in Table 6.1.
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Wefirst obtain the parameters describing the quantum dot. The current through the
device is measured while sweeping both Vg and the voltage on the backgate, Vi, There-
sultisthen numerically differentiated to produce the conductance plot shownin Fig. 6.5(a).
A higher-resolution plot of the zero-bias conductance is aso shown, in Fig. 6.5(b). From
these plots, we determinethe charging energy, aswell asthelevel spacing, the peak widths,
and theratio o of the gate capacitance to the total capacitance, in the standard manner de-
scribed in Chapter 1 and elsewhere (Sohn 1997). These parameters are summarised in

Table6.1. For comparison, some of the same parameters have been determined from Fig.

96



Single-Electron Scanned Gate Microscopy of Carbon Nanotubes

6.2, wherethe AFM tip isused to gate the dot instead of the backgate, and also listed in the

table?.

TABLE 6.1
Parameter Dot gated by backgate Dot gated by AFM tip

Coulomb peak height (maximum) 0.25 é2/h 0.25 €2/h
Coulomb peak spacing AV 7.8mV 26 mV
Coulomb peak width AV 1.5mv 4.6 mvV
Addition energy Eggq=AE+U ~3meV
Excitation energy AE ~1meV
Charging energy U=¢€%/Cyy ~2meV
Total capacitance of dot Ci 80 aF
Capacitance to gate Cg4 30aF 9aF
Ratio of capacitances o = Cy/Cyyt 0.35 0.12
Thermal peak width at 600 MK 4kgT/o 0.6 mV 1.7mVv

There are two points worth noting about these results. First, we see that the AFM
tip isonly about one third as effective as the backgate at coupling to the dot: the period of
the Coulomb oscillationsis 3 timeslarger when using thetip instead of the backgate. This
is because the tip, with adiameter of 100 nm, is considerably smaller than the dot, and
hence only couples well to part of the dot at any onetime. Second, we see that the width
of the Coulomb oscillation peaksis about 3 times the value expected from thermal noise,
given by 4kgT/o.. Thisindicates that the peaks are being broadened by coupling to the

leads, which is not surprising given the fact that the peak conductance is quite high.

2. Note that the conductance plot in Fig. 6.5 is dominated by the effects of the (larger) right-hand quantum dot. Thisis
because the conductance of the left-hand dot in Figs. 6.3 and 6.4 was changed shortly after these images were taken.
Charged particles accidentally deposited near the nanotube during an AFM tip crash opened up the left-hand dot so
that it had much weaker conductance oscillations.
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Fig. 6.6: () Tip-dot capacitance C(2) as afunction of the height of the tip z above the dot, meas-
ured from the periodicity of the Coulomb oscillations. The power law fit showsthat C ~ 704,
(b) First derivative of the tip-dot capacitance C’(z), calculated from the fit to the capacitance.
Thiswill be useful for the force measurements in Chapter 7.

We next look at the interaction between this quantum dot and the AFM tip. From
Fig. 6.2, we are able to determine the capacitance between the tip and the quantum dot,
listedin Table6.1. Another quantity that we can determine using scanned gate microscopy
is the dependence of the tip-dot capacitance on the height of the tip abovethedot. Thisis
done by measuring the average separation of the conductance oscillations as a function of
thetip voltage asthetip islowered towards the sample. TheresultisshowninFig. 6.6(a).
Fitting the capacitance C to a power law in the tip height z as discussed in Chapter 2, we
findthat C o< 2_0'4, close to the expected power of -0.5. We also plot in Fig. 6.6(b) the
derivative of the capacitance, C’, as calculated from the fit to the capacitance. Thiswill

prove useful in Chapter 7 for measurements of the electrostatic force.

Finally, weinvestigate the effect on the scanned gate measurements of the noise 6z

in the height of the AFM tip above the sample. Since the tip-dot capacitance changes as
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the tip moves up and down, as we have just seen, noise in z broadens the Coulomb oscilla-
tion peaks. We can express the broadening due to the tip motion as an effective charge
noise dgy on the quantum dot:

dqy = Clozy(V D) (6.2)

tip~
Here @ isthe contact potential between the tip and the dot, and C’ isthe derivative of the
tip-dot capacitance. Wejust measured C’ in Fig. 6.6, and we know that 8z s ~ 0.25 nm
from measurements in Chapter 2. Hence we find an rms charge noise due to vibrations of
about 0.02 efor atypical tip voltage of (Vy, - @) = 500 mV. The charge resolution of the
scanned gate measurement istherefore 0.02 e or lessfor typical values of V. Thisismuch
less than the average width of the Coulomb oscillation peaks determined from Table 6.1,

0.2 e, and also less than the expected thermal width of the peaks, 0.07 e. The vibrational

noise of the AFM therefore does not contribute significantly to the width of the Coulomb

oscillation peaks.

We can study the effect of the AFM tip motion on the width of the Coulomb oscil-
lationsin greater detail by deliberately oscillating thetip. We drive the cantilever mechan-
icaly to oscillate the tip by a known amount, and then measure width of the Coulomb
peaks. The width of the Coulomb oscillations as a function of tip voltage, AV e, can be
approximated as the sum in quadrature of the natural peak width AV, and the peak width

induced by the tip oscillation, dqy/C:

2 [C 2
AV gy = JAVO +[E(vtip—c1>)a‘>z} 6.3)
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In Fig. 6.7 we plot the peak width versus the product of the tip voltage and the os-
cillation amplitude (full width) for anumber of peaks near (Vyjp, - @) ~500 mV. Thisshows
precisely the behaviour expected from Eq. 6.3. At small oz (small tip oscillation ampli-
tudes), the peak widths show little increase in response to the tip oscillation, while at large
Voz (large oscillations) the peak widths increase linearly with Véz. The turning point be-
tween these behaviours occurs near Voz ~ 0.9 nm, i.e. near an rms oscillation amplitude
(half-width) of 6z~ 0.7 nmfor thetypical V;, used here. This correspondsto an induced
charge dq = C'(V; 0~ ®)56z of ~0.07 e, about 1/3 of the natural peak width. Thusaslong
asthe oscillation amplitude of the AFM tip iskept lessthan ~ 0.7 nm, the motion of thetip
does not induce significant broadening of the Coulomb oscillation peaks for this quantum

dot.

The measurements presented in this section demonstrate that we can quantitatively

characterise the properties of the quantum dot using scanned gate microscopy. By exam-
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ining the effect of the tip on the quantum dot, we see that we can also determine how much
thetip is perturbing the dot and develop criteriafor minimal perturbations. These results
will be useful when investigating the sample using other scanned probe techniques such as

EFM.

6.5 Tip Voltage Dependence of Scanned Gate | mages

Having demonstrated the ability to image Coulomb oscillations from individual
guantum dots in the nanotube, we next explore the evolution of the scanned gate images
with changing tip voltage Vy;,. We do this by scanning over the same area repeatedly,
changing thetip voltage each time by 25 mV, to create amovie of the scanned gate images.
A selection of eight frames from this movieis shownin Fig. 6.8. The full set of frames
from the movie can be seen in the Appendix. Eachimageistaken at T =600 mK and atip
height of z=120 nm, with adc source-drain bias of Vg =200 uV across the nanotube. For
clarity of presentation, the current is shown on alog scale. The positions of the nanotube
and the gold contacts, determined from topographic images, are superimposed over the

image of the current in each frame.

Naively, wewould expect that asthetip voltage increases from large negative Vp,
the circular Coulomb oscillations seen in Fig. 6.3 would simply shrink in towards the dot
as Vi approaches the contact potential of the nanotube, and then grow outwards again as
Viip becomes increasingly positive.  Thisis the expectation from Eg. 6.1, since agiven

equipotential ring around the quantum dot will have a smaller radiusas AV = Vy, - @ is
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Fig. 6.8: Frames from movie showing evolution of scanned gate images with Vy;,. Thetip

voltage is noted in each frame, asis the position of the nanotube and the contacts. The
current is shown on alog scale (red is high, blue low). All images are taken at T=600 mK
and z=120 nm, using a source drain bias of 0.2 mV.

decreased. Thingsare evidently more complicated than this simple picture would suggest,
however. At large negativetip bias, all of therings do indeed shrink as Vy;, increases (e.g.
-100 mV frame), and at large positive tip bias they all do grow with increasing Vy;, (e.9.
+250 mV frame), as expected from Eq. 6.1. At small positivetip voltages, however, there
isalot more going on. For these values of V;,, some of the Coulomb oscillation rings ex-
pand with increasing Vi, while others contract. The Coulomb oscillation circles also dis-
tort considerably, growing “mouths’ and sidelobes (e.g. +0to +150 mV frames), and there
is even the development of Coulomb oscillations that are not centered over the nanotube

(e.g. the“eye” inthe frame at +100 mV).

By observing which rings grow with increasing Vi, and which ones shrink, we can

distinguish between Coulomb oscillationsthat correspond to adding an el ectron to adot and
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Fig. 6.9: Charge states
associated with the right-
hand dot at 150 mV tip
bias. Asthedotis
approached from the upper
left corner, first thetip
removes el ectrons from
the dot, then it adds them
on. The current is shown
on alog scale. Note that
the left-hand dot is barely
affected by thetip at this
tip bias.

Coulomb oscillation that correspond to removing an electron. We can thus assign charge
states to the dots between the Coulomb oscillations, just asin Fig. 6.3. The charge states
associated with the scanned gate image measured at Vi, = 150 mV are shownin Fig. 6.9.
At thistip voltage, the AFM tip scarcely affectsthe left-hand dot, and aimost all of the fea-
tures in the scanned gate image are due to the right-hand dot. Whereasin Fig. 6.3 at large
negative Vyj, the charge on the dot changes monotically as the tip approaches the dot, here
we see quite clearly that the charge on the dot can change non-monotonically asthe tip ap-
proaches. Approaching from the right hand side of the dot, the electron occupancy of the
dot increases monotonically, but approaching from the top of the dot, the occupancy first

decreases before it increases.

6.6 Qualitative Interpretation of Scanned Gate | mages

We can understand the behaviour observed in the scanned gate movie (Fig. 6.8) by
considering the effects of the el ectrostati c environment of the nanotube on the conductance.

We have seen in Chapter 4 that the presence of dielectrics and conductors can distort fea-

103



Single-Electron Scanned Gate Microscopy of Carbon Nanotubes

turesin scanned gate images and complicate their interpretation. Similar mechanisms are
responsible for the complex features observed here. The system we are measuring consists
of not just anisolated AFM tip and carbon nanotube, but also two gold electrodes, asilicon
backgate beneath a dielectric oxide (e = 3.8), and various charged particles lying on the

oxide surface near the nanotube. All of these contribute to the el ectrostatic potential of the
guantum dots in the nanotube and hence influence the conductance of the nanotube in the

scanned gate images.

Consider first the influence of the many different conductors present near the nano-
tube quantum dot. Each conductor is made of adifferent material and therefore has a dif-
ferent workfunction. Workfunction differences between el ectrically-connected conductors
giveriseto an electrostatic potential between the conductors called the contact potential, as
described in Chapter 2. Contact potential differences therefore exist not just between the
nanotube and the AFM tip (analogous to the contact potential between the 2DEG and the
tip seen in Chapters 3 and 4), but also between the nanotube and the gold contacts, the na-
notube and the backgate, and the tip and the backgate. Associated with each of these con-
tact potential differences are electric fields between the two conductors involved that can

lead to complicated behaviour in the scanned gate images.

The effect of the contact potential difference between the nanotube quantum dot
and thetip, @y, isjust to shift the electrostatic potential felt by the dot from Vi, to AV =

Viip~ Pyt (asdiscussed in Chapter 2). Thisisan uniform factor, and therefore does not pro-
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Fig. 6.10: Electric field lines dueto the
contact potential difference between the
nanotube and the backgate and contacts.
The contacts and backgate p-dope the
nanotube. When thetip is closeto the
nanotube, it shields these field lines,
reducing the p-doping of the nanotube
and changing its conductance.
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duce structure in the scanned gate image. The contact potential s between the nanotube and
the backgate and contacts, on the other hand, produce effects that change as the AFM tip
moves over the sample. Thisisillustrated in Fig. 6.10. Asmentioned in Chapter 5, itis
known empirically that the contacts and backgate frequently p-dope the nanotube, because
the workfunction of the nanotube is lower than either that of the gold contacts or the S
backgate®. In Fig. 6.10 we therefore show electric field lines due to these contact potential
differences that come out of the nanotube and terminate on the backgate and contacts.
When the AFM tip approaches the nanotube, it screens these electric fields as illustrated.
Thisreducesthe amount of p-doping caused by the contact potential differences, increasing
the electron occupancy of the quantum dot and hence changing the conductance of the na-
notube. Note that this effect is only observed when the tip is close to the nanotube, as

shown in Fig. 6.10, because the extended planar backgate screens the electric fieldsin the

3. The calculated workfunction of carbon nanotubesis~4.5 eV (Saito 1998), while the value measured for gold is5.1-
5.3 eV and that for n-doped silicon is~4.9 eV (Lide 1990).
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Fig. 6.11: Fixed charges on the oxide surface induce image charges on the AFM tip. Thefield from the
image charges couples to the quantum dot, changing its electrostatic potential and hence its conductance.

sample at alength-scale | ~ 200 nm (the screening length) given by the apparent electro-

static depth of the oxide (700 nm/e ~ 200 nm).

We next consider the effect on the scanned gate images of charged particles sitting
on the oxide near the nanotube. Sources of such fixed chargeincluderesist residueleft after
fabrication, detritus deposited by the AFM tip during scanning, impuritiesin the oxide, and
dirt collected during sample preparation. The position and/or charge of these surface im-
purities has been observed to change on the time scale of hours to days, causing abrupt
switching behaviour in the scanned gate images. Thisisespecialy truewhen largetip bias
is used, which iswhy all measurements here are confined to |AV] < 500 mV. On thetime
scale of theimagesin the scanned gate movie (Fig. 6.8), however, these particles are essen-
tially fixed in charge and location. Nevertheless, they still affect the scanned gate images

of the nanotube, in two ways.

The first way in which fixed charges can affect a scanned gate image of the nano-
tube quantum dot is through their effect on the potential difference between the tip and the

sample. Asdiscussed in Chapter 2, fixed charges on the surface induce an image charge
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Screened by
AFM tip

Fegl2: Fixeuhrimsief suiaenotubé uerddectrostabaterith
quantum dot. The conducting AFM tip screensthe electric field from the fixed charges, changing the total
electrostatic potentia of the dot. Only charges close enough to the quantum dot to contribute to its elec-
trostatic potential have this effect.

onthe AFM tip. This establishes adipole field between the tip and the charge which
changes the potential difference AV between tip and quantum dot, as shownin Fig. 6.11.
Thisissimilar to the spatial variationsin the effective contact potential of the 2DEG ob-
served in Chapters 3 and 4. The magnitude of the changein AV depends on the amount of
charge, the distance between the charge and the tip, and the distance between the tip and
the quantum dot. Because of the screening from the backgate mentioned earlier, this effect

is suppressed at length scales greater than |.

The second way in which fixed charges can influence the scanned gate imagesis
through the screening properties of the AFM tip. Thisisdemonstrated schematically inFig.
6.12. If afixed chargeislocated very close to the nanotube quantum dot, thenit contributes
to the electrostatic potential of thedot. When the AFM tip isfar away, field linesfrom the
fixed charge terminate on the dot as shown. When the tip approaches the charge, the tip
screens the quantum dot from the field of the fixed charge, changing the electrostatic po-
tential of the dot and hence its conductance. Thus even if the potential difference between

thetip and the dot is set to zero, so that the direct effect of the tip on the dot conductanceis
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nulled, therewill still be an indirect scanned gate signal due to the screening of the electric
field from thefixed charge. Asbefore, sincethefield from thefixed chargeis screened by
the backgate, only charges close to the quantum dot can have this effect on the scanned gate

images.

This discussion of the effects of the electrostatic environment of the quantum dot
on the scanned gate measurementsis quite simplistic. Nevertheless, we believeit captures
qualitatively the essential physicsof the problem, although it may be difficult to distinguish
between these effects experimentally. Giventhat all of the effects of fixed chargesand con-
tact potential differences mentioned above are going on at the sametime, it isnot surprising
that the scanned gate images do not show just simple circlesof Coulomb oscillations. there
isno value of Vy;, at which the tip has no effect on the nanotube conductance for all tip po-
sitions. This explains why the scanned gate imagesin Fig. 6.8 are never everywhere flat
and featureless. Instead, the Vy;, at which the tip does not affect the conductance changes
asthe tip moves around, depending on the local influence of fixed charges and contact po-
tential screening. Thisiswhat givesriseto the complex structure seen in the scanned gate
movie. Because these effects are screened by the backgate, much of the structure is ob-

served close to the quantum dots.

6.7 Phenomenological Model of Scanned Gate M easurement

The interpretation presented in the previous section explains qualitatively the fea-

tures seen in the scanned gateimages. To go beyond aqualitative description of theresults,
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we model the el ectrostatics of the scanned gate measurement. Thefull self-consistent elec-
trostatic problem represented by the scanned gate imagesis very difficult to solve, dueto
the non-trivial geometriesinvolved. We can use the results of the previous section, how-
ever, to construct asimple phenomenol ogical model that captures the most important phys-
ical elements. We do this by noting that for each location of the AFM tip, thereisatip
voltage @g;(x,y) for which the tip does not affect the occupancy of quantum doti. At Vy;,
< Bgi(X,y) electrons are removed from the dot and at Vyj, > ®g;i(X,y) electrons are added to
the dot, but for Vy;, = @g;(x,y) the occupancy is unchanged. The voltage ®g;(x,y) therefore
defines an effective local contact potential between the dot and thetip. This effective con-
tact potential incorporates all the effects of the electrostatic environment of the dot that
were discussed in section 6.6, in addition to the intrinsic contact potential between the tip

and the dot.

Asdiscussed in Chapter 1, the conductance of the nanotube depends on the contin-
uous charge induced on the quantum dots by the gate, 6g. To model the scanned gate im-
ages, we express the continuous charge on the dot i induced by the AFM tip at position
(xy), 8gi(xy), &s:

80;(%.Y) = Ci(%Y) - [Vijp—Ppi(% ¥)] (6.4)

Here, Ci(x,y) is the capacitance between the tip and the quantum dot and ®g;(x,y) is the ef-
fective contact potential difference between the tip and the dot. In this simple model, all

the spatial dependence of the scanned gate images is contained in two parameters for each
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Fig. 6.13: Movie of scanned gate
images of the nanotube conduct-
anceat T =600 mK and z=120 nm,
using Vg=0.2 mV . Images with
Viip ranging from 60 mV to 415 mvV
in5 mV steps have been stacked on
top of each other to create a data
cube. The capacitance between the
quantum dot and the AFM tip at
each point (x,y) is determined by
taking a Fourier transform of the
cube in the Vi, axis.

quantum dot, the capacitance C;(x,y) and the contact potential ®g;(x,y). Once we know
these parameters, we can cal cul ate the charge induced on the dots, and hence the conduct-

ance of the nanotube.

The capacitance Cj(xy) is determined from the periodicity in V;;, of the Coulomb
oscillations of dot i when thetipisat the position (x,y), using Eq. 1.6. To calculate the pe-
riodicity in tip voltage, amovie of scanned gate images with 5 mV stepsin tip voltage be-
tween framesis used to create a three-dimensional data cube, shown in Fig. 6.13 (the
framesare shown inthe Appendix). The Fourier transform of this cubein the V;, axisthen
allows the period of the Coulomb oscillations to be identified and the capacitance calcu-
lated. Once Cj(x,y) has been determined, the contact potential ®g;(x,y) isfound by exam-
ining the charge state of the dot in asingle frame of the movie, e.g. asdonein Fig. 6.9. The
continuous charge 8g;(x,y) isinferred from the patterns of Coulomb oscillation minimaand

maxima, and Eq. 6.4 isinverted to determine ®g;(X,y).
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Notethat the physical nature of thetwo parametersin the model, C(x,y) and ®y(X,y),
isquitedifferent. The capacitance C(x,y) dependsonly on the geometry of the AFM tip and
the sample, in particular the distance between the tip and quantum dot. We expect it to be
a smoothly decreasing function of the tip-dot separation. The effective contact potential
Dy(x,y), on the other hand, contains all of the spatial information on the detailed configu-
ration of fixed charges and contact potential differences. We therefore expect it to be a
much more complicated function of the tip position. We also expect that it may change

from time to time as charges move on the surface, e.g. due to forces applied by thetip volt-

age.

We also note that in principle, the calculation described above is far from straight-
forward for amulti-dot system, as the capacitances and charges for each dot have to be un-
tangled. The calculation performed here, however, is aided by a fortuitous accident.
Before the fine-scal e scanned gate moviein Fig. 6.13 was made, the AFM tip accidentally
crashed into the sample surface, depositing a large amount of charge near the nanotube
(partly right next to the nanotube, mostly about 1-2 um above the nanotube). This greatly
increased the conductance of the left-hand dot seenin Figs. 6.3-6.5. Asaconsequence, the
left-hand dot became much less sensitive to the AFM tip, and the scanned gate imagesin
the movie shown in Fig. 6.13 are dominated by the quantum dot on the right side of the na-
notube. The calculations that follow are therefore al performed exclusively for the right-

hand quantum dot.
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6.8 Quantitative Interpretation of Scanned Gate I mages

When we perform the calculation of the model parameters for the quantum dot on
the right side of the nanotube, the resultswe obtain for C(x,y) and ®g(X,y) are showninFig.
6.14. InFig. 6.14(a) we show a contour plot of the continuous charge dq(x,y) on the dot,
asinferred from the scanned gate image in Fig. 6.9 (where V;j, = 150 mV)%. The tip-dot
capacitance C(x,y) extracted from the moviein Fig. 6.13 is displayed as a contour plot in
Fig. 6.14(b). InFigs. 6.14(c) and (d) we show results for the effective contact potential
do(x,y), again as contour plots. Thefirst isfrom the scanned gate image of Fig. 6.9 (for
which we have shown the associated charge dq(x,y) in Fig. 6.14(a)), and the second isfrom
one of the framesin the movie of Fig. 6.13 (V;j, = 200 mV). Thisallows usto comparethe
effective contact potential before and after the tip crash and investigate the effect of the

deposition of extra charges.

Looking first at C(x,y) (Fig. 6.14(b)), we see that the tip-dot capacitanceisa
smooth, monotonic function that peaks over the center of the dot. The contour lines are
only dlightly oval far from the dot, but become progressively more elongated as the dot is
approached. Asexpected, none of the complicated behaviour observed in the scanned gate
image shows up in the capacitance—it is symmetric and slowly-varying. Note however
that the capacitance does not go to zero as the tip moves far away; rather, it goes to about

3 aF. Thisindicatesthat there isa substantial part of the capacitance to the dot that is due

4. When inferring the charge dq for the model Eq. 6.4, care must be taken to ensure that 5q be set to O far away from the
nanotube, where the AFM has little effect on the quantum dot.
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Fig. 6.14: Model of the scanned gate images. All images shown as contour plots. (a) Continuous
charge 6q(x,y) on theright-hand dot as determined from Fig.6.9, in units of e. (b) Tip-dot capacitance
C(x,y) calculated from the Coulomb oscillation periodicity. The capacitance is smooth and monoton-
ic. (c) Effective contact potential of the dot dg(x,y) calculated from (&) using Eqn. 6.4. All of thefine
spatial structurein (a) isdueto ®q(x,y). The effects of screening the fields from the backgate and con-
tactsare clearly visible. (d) Effective contact potential calculated after the AFM tip crashed into the
sample. There are noticeable changes due to the deposition of charged particles during the tip crash.

to the cantilever rather than thetip itself. Thisisnot a surprise, as the same effect was ob-

served earlier in the experiments with 2D electron gases.

We consider next the effective contact potential ®q(X,y) calculated from the
scanned gate imagein Fig. 6.9 (Fig. 6.14(c)). Asexpected from the discussion in previous
sections, thisfunction varies strongly with tip position and isthe source of all the complex-
ity in the scanned gate images. There are three featuresto note in thisimage. First, far
away from the nanotube, the effective contact potential difference ®q between the tip and
the nanotube is fairly flat, at about 150 mV. Thisfar-field contact potential representsin
some sense the intrinsic contact potential difference between the tip and the dot, ignoring
all the effects of the electrostatic environment: we are far enough away from the dot that
the backgate should screen out almost all of these effects. We note that the far-field @
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found hereisthe same asthe Vy;, used to take the scanned gate image (Fig. 6.9) from which
D(x,y) iscalculated. This explains why the charge plot 8q looks essentially the same as
d,: thetip isonly affecting the conductance through screening and image charges, not

through the applied tip bias.

The second important feature we see in Fig. 6.14(c) isthat when the tip iswithin a
few hundred nm of the nanotube, thereisasharp dip in @ of about 30-40 mV, resulting in
acontact potential over the quantum dot of 100-120 mV. Thisdip occurs along the whole
length of the quantum dot and has a half-width at half-maximum of ~ 200 nm, equal to the
screening length of the backgate. These observations strongly suggest that the dip in @
arises from screening by the AFM tip of the contact potential difference between the nano-
tube quantum dot and the backgate/contacts. As discussed in section 6.6, this screening
lowers the p-doping of the nanotube, which effectively decreases ®,. We can calculate
from Figs. 6.14(b) and (c) the amount by which the screening from the tip reduces the p-

doping of the nanotube, finding that it amountsto ~ 1-1.5 electrons added to the dot.

The third feature we see in Fig. 6.14 (c) isthat there are two irregularly-shaped
peaks in @ in the center-left part of the image. One of these peaksis above the nanotube
and the other is below it, both about 500 nm away from the nanotube. We attribute these
peaks in the effective contact potential to the effects of fixed fixed charges lying on the
oxide and/or the contact potential difference between thetip and the backgate, as discussed

in section 6.6. We are not able to distinguish which of these effects contribute to this part
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of the observed local contact potential. We can, however, specify what the net effect is:
since @ isincreased, the fixed charges and/or backgate contact potential are effectively p-
doping the quantum dot viathe AFM tip. Calculating the change in the charge on the dot

using Fig. 6.14(c), we find that the tip induces up to ~ 1.5 e on the dot at the two peaks.

Thisinterpretation of the factors contributing to @ is reinforced by examining the
effectivelocal contact potential in Fig. 6.14(d), calculated from ascanned gate image taken
after atip crash deposited charge on the sample. Comparing Fig. 6.14(d) to Fig. 6.14(c),
we see some of the same broad features, such asadip in @ of about 20-30 mV when the
tip is over the quantum dot. There are, however, some significant differences between the
figures. For example, in Fig. 6.14(d) @ has everywhere increased by an average value of
~ 160 mV. Becausethisincreaseis close to uniform, we attribute it to charges on the tip
that were picked up during the tip crash. The contact potential along the quantum dot has
increased even more, to around 300-340 mV. Finaly, an especially noticeable change oc-
curs near the top of the scan range, where @ increases by an additional ~ 40-50 mV. We
interpret thisin terms of additional fixed charge deposited by thetip. Thisinterpretationis
corroborated by the observation of new dirt-like features in the topography (not shown) at

the same locations as the new feature in @,

By analysing the scanned gate measurements in terms of the ssmple model pre-
sented in EQ. 6.4, then, we find that we can attribute al of the complex structure in the

scanned gate images (Figs. 6.8, 6.13) to spatial variations in the effective local contact po-
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tential dp(X,y). We can account for the principal features in ®g(x,y) within this model in
terms of image charges induced on the tip by fixed charges on the sample surface and
screening of contact potential differencesby the AFM tip. By depositing additional charges
from the tip, we find that we can change the local contact potential ®q(X,y), demonstrating
its dependence on fixed charges. We thus see that our phenomenological model success-
fully expressesthe principal effects of the electrostatic environment of the quantum dot on

the scanned gate measurements of the nanotube.

6.8 Summary

In this chapter we havefor thefirst time demonstrated scanned gate miscroscopy of
aquantum dot in the single-el ectron regime, imaging Coulomb oscillationsin quantum dots
in ametallic carbon nanotube. By using asimple model of how the AFM tip interactswith
the electrostatic environment of the quantum dot, we have shown that the scanned gate im-
ages are sensitive to perturbations from fixed charges and conductors lying near the quan-
tum dot. Single-electron scanned gate measurements can thus be a useful tool for
characterising quantum dots and their electrostatic environment. In the next chapter, we
will use what we have learned about the dot and the tip-dot system from scanned gate meas-

urements to investigate force measurements in the single-electron regime.
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7.1 Introduction

In the previous chapter, we showed that we can use the AFM to characterise aquan-
tum dot in ananotube and extract information about its el ectrostatic environment, by using
the tip as a perturbative tool to change the el ectrostatic potential of the quantum dot. Now,
we make use of the exquisite force sensitivity of the AFM to sense the motion of single
electrons going on and off the nanotube. We find that the electrostatic force from single-
el ectron motion causes not just a deflection of the cantilever, but also a shift in the reso-

nance frequency of the cantilever, and even adegradation of the Q-factor of the resonance.

In section 7.2 we present EFM measurements of the same nanotube measured with
SGM inthe previous chapter, which weinterpret quantitatively in section 7.3. Section 7.4
presents EFM measurements of several nanotubes that are contacted on only oneside. In
section 7.5 we turn to measurements of the frequency shift, which we interpret in section
7.6. We conclude with an investigation of the degradation of the cantilever Q, with meas-

urements and interpretations presented in sections 7.7 and 7.8.
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Fig. 7.1: ac-EFM images of the nanotube stud-
ied in Chapter 6, driving both electrodes self-
resonantly (with 2.5 mV rmsin (a) and (b),
1.2mV in(c) and (d)). (&) At T~ 7K, the
nanotube appears as a bright line between the
electrodes. The position of the nanotube and
electrodesisindicated in theimage. V;j;=-300
mV and z=60 nm. (b) Close-up of nanotube
showing that the EFM signal at 7 K is almost
featureless. The width of the EFM signal
from the nanotube is ~130 nm. V;;,=-400 mV
and z=40 nm. (c) At T = 600 mK, concentric
rings around the nanotube appear in thetip
response. V;j,=-400 mV and z=100 nm. (d)
Close up image of the rings around the nano-
tube. Vjjp=-400 mV and z=60 nm.
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7.2 Electrostatic Force M easurements

We begin by measuring the force on the AFM tip from the nanotube using the ac-
EFM technique describedin Ch. 2 (seeFig. 2.7). Weapply adc voltage Vy;, to thetipwhile
driving the contacts on both sides of the nanotube with an ac voltage of 2.5 mV rms, and
we measure the resulting amplitude of the cantilever oscillation. Because the effective
local contact potential varies considerably near the nanotube, as shown in the previous
chapter (section 6.8), the resonant frequency of the cantilever changeswithtip position. To
ensure that the cantilever oscillation remains on resonance as thetip scans over the sample,
a self-resonant circuit is used to drive the nanotube and the amplitude of the cantilever re-

sponse is measured with an ac voltemeter, as discussed in Chapter 2 (see Fig. 2.8).

An EFM image of the nanotube at atemperature of T ~7 K isshowninFig. 7.1(a).
Thisis the same nanotube that was measured using SGM in the previous chapter. The po-
sition of the nanotube and the contacts (determined from topographic scans) is overlaid on

the EFM image. The nanotubeisclearly visible in thisimage as a bright line between the
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Fig. 7.2: Variation of EFM
images with tip voltage. All
images taken at T=600 mK
and z=60-80 nm, driving
both electrodes self-reso-
nantly. (a),(b) 2.5 mV rms
driving voltage. (c) 1.2 mV
rms driving voltage.

0.5 1.5 1.5 20 06 1.4
tip response (nm)
electrodes. A higher-resolution image taken 40 nm above the sample shows that the EFM
signal from the nanotube is essentially featureless, with a full width at half maximum of

~130 nm (Fig. 7.1(b)).

Similar pictures have been seen previously in EFM images of nanotubes (Bachtold
2000). Atthiselevated temperature, thethermal width of Coulomb oscillations (4kgT = 2.5
meV) is similar to the charging energy of the quantum dot in the nanotube (2 meV, see
Table6.1). Thedriving biasof 2.5 meV isalso similar to the charging energy. Single-elec-
tron effects are therefore smeared out, and the nanotube appears essentially featureless!.
The apparent width of the nanotube, 130 nm, isabout what we expect when measuring with

atip of ~100 nm diameter sitting ~40 nm above the nanotube.

When we cool down the nanotube, the EFM image develops alot of fine structure,
which can be seenin Figs. 7.1(c) and (d). Where the nanotube appears as ssimply a bright

linein the amplitude response of the cantilever at T~ 7K in Figs. 7.1(a) and (b), at T = 600

1. Inthe previous chapter, scanned gate images at T~6K showed weak Coulomb oscillations (Fig. 6.3) in contrast to the
featureless AFM images at T~7K here. We believe the difference is because the source-drain biasin the scanned gate
imageissmall (V= 0.1 mV). Thedriving signal inthe EFM imageis large (V,c = 2.5 mV), and thus smears out fur-
ther the already weak Coulomb oscillations.
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Fig. 7.3: Correspondence between scanned
gate images and EFM images. All images
taken at T=600 mK and z=60 nm. (a) EFM
image of the center of the nanotube at
Vip=300 mV, driving both sides of nanotube
self-resonantly with 2.5 mV rms. (b) Scanned
gateimage at the same Vy;, asin (a), shownon
alog scalefor clarity. The Coulomb oscilla
tion peaks occur at the same locations as the
peaksinthe EFM response. (c) EFM image of
the same part of the nanotube at V;;, = 400
mV, driving with 1.2 mV rms. (d) gcanned
gate image at the same V;;, asin (c). Again,
the Coulomb oscillations occur at precisely
the same locations as the peaks in the EFM
response.

tip response (nm)

tip response (nm)

mK the EFM images contains two sets of multiple, concentric, quasi-circular peaks. Both
sets of concentric rings are centered on the nanotube, one over the left 1/3 of the nanotube,
the other over the right 2/3 of the nanotube. The magnitude of the amplitude response on
the rings decreases monotonically as the tip moves further from the nanotube, until the

rings fade away entirely ~300 nm away from the nanotube. The pattern of rings changes

asthetip voltage is changed, as demonstrated by the series of imagesin Fig. 7.2.

These patterns of peaks in the response to the electrostatic force on the tip look re-
markably like the patterns of peaks in the conductance measured in Chapter 6. In fact,
when we measure ascanned gate image at the same location and under the same conditions
as an EFM image, we find that the peaks in the force are aligned precisely with the Cou-
lomb oscillation peaks in the conductance. Thisis demonstrated in Fig. 7.3 for two scans
over the same part of the nanotube at different tip voltages. We therefore attribute these
peaks to single-electron charging effects in the quantum dots studied with SGM in the pre-

vious chapter.
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Fig. 7.4: EFM response of the AFM canti-
lever asafunction of Vy;,. The nanotube
isdriven on both sideswith 0.7 mV rms
at 34503 Hz, and the amplitude response
ismeasured with alock-in amplifier. The
conductance of the nanotube as a func-
tion of Vi, isshowninred. The EFM
response vanishes near -50 mV, growing
linearly on either side. Thereare periodic
modul ations in the response that line up
with the Coulomb oscillations in the con-
ductance asindicated. Below -50 mV,
these modul ations represent an increase
in the net force on the tip, while above -
50 mV they represent a decrease in the
. net force. The modulations decreasein
=200 -100 0 100 200 amplitude linearly as Vy, increases.
Viip(mV) T=600 mK and z=120 nm.
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A more complete picture of the electrostatic force on the AFM tip can be obtained
by measuring the force on the tip as afunction of the tip voltage, shown in Fig. 7.4. Here,
wefix the position of the AFM tip over the quantum dot on the right-hand side of the nano-
tube. We drive both sides of the nanotube directly with 0.7 mV rms at afixed frequency
near the resonant frequency of the cantilever, instead of using the self-resonant feedback
loop®. We then measure the amplitude response of the cantilever with alock-in amplifier
asthetip voltage is changed. The conductance of the nanotube is also measured, under

identical conditions, and is plotted beneath the tip deflection.

We can identify from thisfigure several characteristics of the EFM response. First,

theamplitude of thetip oscillation iszero near -50 mV, and growsroughly linearly with the

2. Driving at afixed frequency provides two advantages. first, low-noise measurements can be made with alock-in
amplifier; and second, the oscillation amplitude can be kept small. A small oscillation isimportant both to ensure
that the amplitude response remains in the linear regime, and also to ensure that the tip motion does not perturb the
Coulomb oscillations too much (see Fig. 6.7). The self-resonant feedback loop requires a minimum oscillation
amplitude of ~0.5 nm to function, and operates best at an oscillation amplitude of >1 nm, which is large enough to
change the width of the Coulomb oscillations.
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tip voltage on either side of -50 mV. On top of this linear background, thereis a periodic
modulation in the amplitude which lines up precisely with the Coulomb oscillation peaks
in the conductance. This correspondence is shown by the dotted linesin Fig. 7.4. Attip
voltages lower than -50 mV, the modulations are all increases in the amplitude above the
linear background, representing an increase in the net force on thetip. For tip voltages
above -50 mV, on the other hand, they are all decreases below the linear background, rep-
resenting a decrease in the net force on the tip. The size of these modulations decreases

roughly linearly as Vi, becomes more positive, becoming difficult to see above 200 mV.

7.3 Interpretation of EFM Measurements

We can understand the observations in the previous section in terms of asimple
model of theforcesonthe AFM tip, illustrated in Fig. 7.5. Thetip isdriven into resonance
by two sources of electric field: the electrodes and the nanotube quantum dot. Because of
the Coulomb oscillations in the conductance of the quantum dot, however, its ability to
drive the tip depends sensitively on the tip voltage. Just asin the scanned gate measure-
ments, the dot opens and closes as the AFM tip approaches or the tip voltage changes, al-
ternately allowing current to flow and then blockading it. When the dot is blockaded and
no electrons can jump on or off, the dot exerts little ac force on the tip, and the cantilever
is deflected mainly by the force from the electrodes. When the dot is open, however, an
electron can hop on and off the dot at the driving frequency ;. This changes the electro-

static potential of the dot at the driving frequency, exerting an additional force on the tip.
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Fig. 7.5: Coulomb oscillationsin the electrostatic force on the AFM tip. (a) When the dot is block-
aded, no electrons can hop on or off, and there islittle ac potential on the dot. The EFM signal comes
mainly from the electrodes. (b) When the dot is open (i.e. on the conductance peaks), asingle electron
can hop on and off each cycle of the driving frequency. This causes an ac potential on the dot, which
contributes to the EFM signal. Coulomb oscillations are therefore observed in the force on the tip.

The periodic modulationsin the tip response thus represent the force on the tip from single

electrons moving on and off the dot. This picture explains the exact correspondence be-

tween the scanned gate images and the EFM images.

Expressing this model mathematically, the total force on the tip F;; consists of

components from the electrodes, F, and the quantum dot, Fy. If the sampleisbeing

driven from both electrodes with avoltage at the resonant frequency of the cantilever,

V =V, cos(mgt), then the force on thetipis:

F

el ~ C,eI (V.

I:tot = I:el + I:dot

tip_q)el) Vac (4
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— ’ dot
l:dot =C dot(Vtip_q)dot) ' Vac (7:2)

Here, Cq4 is the capacitance between the electrodes and the AFM tip, ®4 is the contact po-
tential between the tip and the electrodes, Cy; is the capacitance between the tip and the
dot (which until now has been called just C), and @ is the contact potential between the
tip and the dot.

Theterm Vggt repesents the ac electrostatic potential of the quantum dot. Thisis

not the same as the ac potential of the electrodes, since the potential of the dot changes
abruptly near a Coulomb oscillation. We calculate Vggt from the total electrostatic poten-
tial of the quantum dot, ¢ (see Chapter 1, Eq. 1.3), by noting that applying the ac potential
V4 to both electrodes is to agood approximation equivalent to applying the same potential
V, to the backgate®. Assuming that V. islessthan the width of the Coulomb oscillations,

we obtain:
dot _ (d¢
Vac = (aq)cgvac (7.3)
- d
Faot = € dot(Viip = Paot) - (a_g) CqV 74)

where Cg isthe capacitance between the backgate and the dot and g isthe continuous charge

on the dot, defined in Chapter 1.

We recall from Chapter 1 that the el ectrostatic potential ¢ of the dot decreases

slowly in the Coulomb blockade regime as q builds up on the dot due to the gate voltage,

3. Inthis approximation, we neglect the capacitive coupling between the tip and the quantum dot.
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but then jumps abruptly at each Coulomb oscillation by an amount equal to the charging
energy €/C (seeFig. 1.4). Thechangeintheelectrostatic potential g% isthushighly peaked
at the Coulomb oscillations. Infact, it has the same shape as the peaks in the conductance.
It can therefore be calculated by simply scaling the conductance peaks so that the integral
over one Coulomb oscillation is equal to the charging energy, and then offsetting the result
from O to account for the decrease in ¢ between Coulomb oscillations. A plot of g—?; calcu-
lated in this way from two typical conductance peaksisshowninFig. 7.6. Notethat itis
because the change in the electrostatic potential of the dot g—g isso highly peaked at the
Coulomb oscillations that the dot causes peaksin the force on the AFM tip at the Coulomb

oscillations.

Using Egs. 7.1-7.4, we can now account for all of the features in the EFM meas-
urement of Fig. 7.4. Thelinear backgroundistheforcefromtheelectrodes. Thisforce goes
to zero at the contact potential of the electrodes, ~-50 mV, creating a“V” shape centered

on the electrode contact potential. The peaks and valleys on top of the linear background
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are the force from single-electron charging eventsin the dot. This goesto zero at the con-
tact potential of the dot, ~ 300 mV, which is not the same as the contact potential of the

electrodes (as discussed in Chapter 6). It is because the two contact potentials are not the
samethat the force from the dot causes apeak in thetip response for sometip voltages, and
adipfor others. When thetip voltageis below the contact potentials of both thetip and the
dot, then theforce from the dot and the force from the el ectrodes have the same sign, giving
rise to apeak in the response. When the tip voltage is between the two contact potentials,

however, the forces have opposite signs, giving rise to adip in the response.

We can quantitatively analyse the EFM signal in Fig. 7.4 using Egs. 7.1-7.4. In
order to do this, however, we must first correct for the fact that the driving frequency is not
on resonance at all tip voltages: the driving frequency isfixed, while the resonance fre-
guency varies with tip voltage, as described in Chapter 2. Recall that the transfer function

of the cantilever response (from Eq. 2.2) is.

1

(7.5)

H(w, 0g) = Q.
k [ 2 2.2 2
Q(1-(0/wy) ) +(w/0p)
We calculate this transfer function from the measured Vy;, dependence of the resonant fre-
quency mg (not shown). The measurements of Fig. 7.4 are then scaled by the transfer func-
tion, so that the response becomes what would be expected if cantilever were on resonance
at all Vijp. Theresultis plotted in Fig. 7.7 (&) along with the transfer function as an inset.

Notethat the slopes of thetwo arms of the“ V" -shaped background are now equalised. The
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Fig. 7.7: (a) EFM response measured in Fig. 7.4, scaled by the transfer function of the cantilever reso-
nance (shown ininset). Thetransfer function (EqQ. 2.2) gives the frequency-depedent amplitude response
of the cantilever. Here the EFM signal is scaled so that it isasif the cantilever were on resonance at all
Viip- (b) Magnitude of the Coulomb oscillations in the force. The Coulomb oscillations go to zero at the
contact potential of the dot.

scaled heights of the peaks and dipsin thetip response are extracted and plotted separately

inFig. 7.7 (b).

Wefirst look at the part of the force from the electrodes alone, the V" -shaped back-
ground. From the position of the zero of the tip response (the apex of the “V”) we deter-
mine the contact potential of the electrodes, finding g ~-50+10 mV. From the slope of
the background, we determine the derivative of the tip-electrode capacitance. On reso-
nance, the amplitude response to the force from the electrodesis z = (% Fg - Using Eq.
7.1, the slope of the linear background with respect to Vy;, is therefore just:

dz _ (Q\, ~,
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Knowing V4. = 0.7 mV, Q = 31 000, k = 3+0.5 N/m, and using the slope measured from

finding C’,, = 2.5+0.4x101°

Fig. 7.4 of dz/dVy;, = 1.8+0.1 nm/V, we can calculate C’ o =

el
F/m.

Next we consider the force from the quantum dot. From the linear fit to the force
peaks shown in Fig. 7.7(b), we obtain the contact potential of the dot, finding ®y,; = 330
+50 mV. Thisisthe same asthe value of the effective local contact potential ®(x,y) de-
duced from the phenomenological model of SGM in Chapter 6, where we found that ©
~300-340 mV over the quantum dot*. The derivative of the tip-dot capacitance C’ ;; is
determined from the slope of the linear fit to the force peaks shownin Fig. 7.7 (b), similarly
to theway that C’ iscaculated. Now, however, the slope of the amplitude response

_dz_ isgoverned by Eqg. 7.4, and we have:

Vi
dz_ _ (Q\ ~ 0
d_Vtip = (k)(c dot* Vao) - (a C, @.7)

We know from Fig. 7.6 that the height of the peaksin 3—% is~ 5+0.5x1016 V/C for typical
Coulomb oscillationsin this quantum dot, while from Table 6.1 we know find that the back-
gate capacitance is Cy = 30 aF. Given the measured slope of the amplitude response,
0.23+0.03 nm/V/, we calculate that C’ g, = 2.1+0.5x10™ F/m for thetip height of 120 nm

used in this measurement®. Thisis similar to the result obtained from scanned gate meas-

4. The EFM measurementsin this chapter were all taken after the tip crash mentioned in Chapter 6, so that we compare
them to the scanned gate results after made after the tip crash.

5. Note that due to the dependence of Fyy; on el , we expect there to be variations in Fyq; from peak to peak arising

9q
from variations in the conductance peak shapes. This contributes to the scatter of peak heightsin Fig. 7.7(b).
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urements in Chapter 6 (Fig. 6.6(b)), where we found C’ ., = 2.9+0.2x10 F/m at atip
height of 120 nm. This agreement between the scanned gate results and the EFM results

gives us confidence in the accuracy of our model.

Note that the picture we have presented here says that the quasi-periodic peaksin
the EFM imagesin Figs. 7.1-7.4 areall dueto the force exerted by single-electron charging
eventsin the quantum dot. Each of these peaks that we observe so clearly corresponds to
the force exerted by a single electron moving onto or off of the dot. Thisisreally quite
remarkable: the AFM isfeeling the motion of individual electrons! The magnitude of this
single-electron force can be determined from the amplitude of the peaksin the EFM signal
(Fig. 7.4). Wefindthat at atip-samplevoltage Vjj, - ot ~ 300 mV, theforceis only about
10fN. Small asthisis, it istill 1.5 orders of magnitude larger than the force sensitivity of
the AFM, 0.3 fN/HZ”* (see Table 2.1). We thus have more than enough sensitivity for de-

tecting the force exerted by single electrons moving on and off the quantum dot.

7.4 Investigating Other Nanotubes

Until this point, all of the measurements (both SGM and EFM) have been on the
same nanotube, the one shown in Fig. 6.1. All of the other nanotubes are broken or have
contactsthat are not electrically connected. To make EFM measurements, however, we do
not need to have conduction through the whole nanotube; it is sufficient to have electrical
contact to only one side of the nanotube, as mentioned in Chapter 5. Thisallows usto use

EFM to investigate nanotubes with only one accessible contact. Recall that we have shown
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Fig. 7.8: EFM images of a semiconducting nano-
tube contacted on only one side (upper right
contact). The EFM signal is shown on alog
scale for clarity. The location of the nanotube
and contacts is shown overlaid on the EFM
image. Two quantum dots of roughly equal size
arevisible. Theimagesaretaken at T = 600 mK
and z=100 nm, driving with V,=2.5 mV rms.

in the previous section that the Coulomb oscillationsin the force on the AFM tip corre-
spond precisely to the Coulomb oscillationsin the conductance measured by scanned gate.
We can therefore use EFM to image quantum dotsin nanotubesthat are broken or have only
one contact and learn the same type of information that we learned with SGM: the number
of dots, their locations, their capacitances to the AFM tip, their contact potentials, etc. In
this section we present a brief survey of EFM images from four of the other nanotubes on

the sample.

ShowninFig. 7.8 aretwo EFM images of a1.5 um long nanotube. The location of
the contacts and the nanotube determined from topographic images are overlaid on the
EFM image. Thelower contact on thisnanotubeisgrounded because of abrokenlead wire.
Transport measurements made before the contact was broken indicate that this nanotubeis
semiconducting. The EFM imagesin Fig. 7.8 show clearly that there are two quantum dots
in this nanotube. Neither dot is associated with an obvious defect in the nanotube like a
bend. The Coulomb oscillations around both dots are dightly oval in shape, indicating that
thedotsare quitelarge. From their shapes and their positions on the nanotube, they appear

to be roughly equal in size, and hence about 0.75 um long.
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Fig. 7.9: EFM images of a hanotube contacted on only left side. The positions of the con-
tact and the nanotube are overlaid on the image. Several dots (4 or 5) can be seen in this
nanotube with careful inspection. (a),(b),(c) Evolution of EFM images with V;;,. Behav-
iour such as rings off the axis of the nanotube is seen, suggesting that the el ectrostatic envi-
ronment of the nanotubeis not simple. All images taken at T=600 mK and z=100 nm, with
V,c=2.5mV rms ((a) and (c)) or 1.2 mV rms (b).

Another nanotube isimaged with EFM in Fig. 7.9. Thisoneis3.5umlong andis
connected electrically only on the left-hand side. We show only the left half of the nano-
tube in these images because there is no EFM signal from the right half of the nanotube
(presumably due to alarge tunnel barrier or break in the middle of the nanotube). The lo-
cations of the contact and the nanotube determined from a topographic image are overlaid
on the EFM images. Once again, we see that there are multiple quantum dots in the nano-
tube—in this case, close inspection reveals 4 or possibly 5. Some of these dots have Cou-
lomb oscillations that are quite circular, indicating that they are fairly small (e.g. the left-
most dot in Fig. 7.9(a)), while others have distinctly elliptical Coulomb oscillations, indi-
cating that they arelarger (e.g. theright-most dot in Fig. 7.9(a)). Again, none of these dots
seems to be associated with obvious structural defects like bends in the nanotube. 1f we
look at the evolution of the Coulomb oscillations with Vy;p,, shown for two different values

of Vyip in Figs. 7.9(b) and (c), we find that the images are reminiscent of the complex be-
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Fig. 7.10: EFM images of a broken metallic nano-
tube at two different tip voltages. This 800 nm
long nanotube has two quantum dots. The Cou-
lomb oscillations around the dot on the | eft are
more elliptical in shape and more closely spaced
than the Coulomb oscillations around the dot on
theright, indicating that the dot on the left is
larger. Imagestaken at T=600 mK and z=100 nm,
driving with V,c=1.2 mV rms.

haviour observed in scanned gate measurementsin the previous chapter. Thissuggeststhat
screening by the AFM tip of fields from contact potential differences and surface charges

plays an important role, just asit did in Chapter 6.

EFM images of two more nanotubes are shown in Figs. 7.10 and 7.11. Both nano-
tubes are contacted on each side, but they are broken and do not conduct. Y et again, we
see multiple quantum dots. The nanotubein Fig. 7.10, which is known to be metalic, has
two quantum dots even though it is only 800 nm long. The Coulomb oscillations around
the dot on the |eft are dlightly elliptical while those around the dot on the right are more
closely circular, indicating that the dot on the left islarger. In the nanotube shown in Fig.
7.11, aso only 800 nm long, we see even more quantum dots: about 4-5. The Coulomb
oscillations around these dots have avery large periodicity, indicating that the dotsare very
small; in fact, in many cases we only see one or two rings around each dot’. Notethatin

Figs. 7.11(a) and (b) some Coulomb oscillations are observed in the upper left corner of the

6. In both of these nanotubes, some Coulomb oscllilations produce a positive force on the tip and some produce a nega-
tiveforce (e.g. Figs. 7.10(a) and (c)). This could be due to the dots having quite different contact potentials. Another
possibility isthat it results from a degradation of the Q of the cantilever at the Coulomb oscillation for certain dots.
This effect will be discussed in detail in section 7.6.
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Fig. 7.11: EFM images of another 800 nm long broken nanotube at three differ-
ent tip voltages. This nanotube has ~4-5 dots with very large Coulomb oscilla
tion periods, indicating that the dots are very small. Some dots have only one
Coulomb oscillation visible around them. The Coulomb oscillations seen in
the upper left corner come from a nearby nanotube connected to the upper con-
tact. Images taken at T=600 mK and z=80 nm, driving with V,.=1.2 mV rms.

image, coming from a point outside of the scan range. These are due to a second nanotube

nearby that is contacted by the electrode on the right.

In this section, we have restricted oursel vesto simple EFM images of the quantum
dots, to get afeel for the variety of behaviour that can occur. In principle, though, we could
go beyond this and characterise the individual quantum dots in these nanotubes with EFM
in much the same way we did with SGM in Chapter 6. For example, by placing the AFM
tip over the dot and measuring the Coulomb oscillationsin the EFM response as afunction
of Viip aswas donein Fig. 7.4, the tip-dot capacitance Cyq; and contact potential @y can
be determined. Repeating such measurements at different tip heights then yieldsthe capac-
itance derivative C’; , asinFig. 6.6. The capacitance between the dot and the backgate
Cy can be found similarly, by varying the backgate voltage rather than the tip voltage7.

Knowing these parameters, the height of the single-electron force peaks can be used to cal-

7. Thismay be difficult if there are many dotsin the nanotube. In this case, C; may be determined indirectly by com-
paring the amplitude of the Coulomb oscillation in the force (Eq. 7.4) to the amplitude of the Coulomb oscillationsin
the frequency (to be discussed later, Eq. 7.9).
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culatethefunction %g from Egs. 7.4-7.6, yielding the charging energy of thedot. Although
we do not perform such a characterisation of aquantum dot with EFM here, the procedure

isin principle straightforward.

This completes our brief survey of single-electron EFM of quantum dots in nano-
tubes. One of the important conclusions from the collection of images shown here is that
all of the nanotubes we investigate form multiple quantum dots. Tunnel barrierswithinthe
nanotube, and not just at the contacts, thus seem to occur generically. None of the tunnel
barriers defining the quantum dots that we observe is associated with a bend in the nano-
tube, even though afew of the nanotubes do have bends in them. The dots thus appear to
result from microscopic defects in the nanotubes or local potential fluctuations. The aver-
age frequency of these defects, determined simply from the number of quantum dots ob-

served in the EFM images, appears to be about 1 every 500 nm®.

7.5 Frequency Shift M easurements

The previous sections have investigated the force on the AFM tip from single-elec-
tron charging in nanotubes. We have seen that Coulomb oscillationsin the occupancy of a
guantum dot in the nanotube cause peaks in the force on the tip due to the sharp changein
the electrostatic potential of the dot. Single-electron charging of a quantum dot should af-

fect not just the force on the tip, however, but also the derivative of theforce. Asaresult,

8. Thisisactualy an overestimate of the actual frequency of defects, since in the broken nanotubes some of the
“defects’ that define the quantum dots are actually the breaks in the nanotube.
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Fig. 7.12: Measuring Coulomb oscillations in the cantilever resonance frequency. (a) Direct measure-
ment. The cantilever is driven into resonance mechanically using the self-resonant feedback 1oop, and
the frequency of the resonance is measured with a counter. (b) Indirect measurement. The cantilever is
driven mechanically at afixed frequency near resonance. The change in the amplitude of the cantilever
response due to changes in the resonant frequency are measured with alock-in amplifier. The frequency
isinferred from the transfer function of the cantilever resonance (Eg. 7.5).

we might al so expect to see shiftsin the resonance frequency o of the cantilever whenever

there are Coulomb oscillations in the conductance.

We detect these frequency shiftsin two equivalent ways, illustrated schematically
inFig. 7.12. Thefirst method isto count directly thefrequency of the cantilever oscillation.
In this measurement, the sample is grounded while the cantilever is driven into resonance
mechanically by a piezoelectric driver (Fig. 7.12 (a)). When the AFM tip voltage causes
Coulomb oscillations in the occupancy of the quantum dot, the changing force derivative
shiftsthe resonant frequency, which is measured directly by the frequency counter. To en-
surethat the oscillation remains on resonance at all times, a self-resonant positive feedback
system is used asin the EFM measurements. The second method technique is similar, ex-
cept that the cantilever isdriven at afixed frequency instead of self-resonantly. The ampli-
tude of the tip response is then measured by alock-in amplifier instead of counting the

frequency of oscillations. In the linear response regime, the amplitude depends on the res-
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onant frequency only viathe transfer function of the cantilever (Eqg. 7.5). Shiftsin the fre-
guency due to the Coulomb oscillations are thus observed as peaks or dipsin the response
amplitude®. Note that for these measurements, just asfor EFM, it is not necessary to meas-
ure the Coulomb oscillations in the conductance, nor isit even necessary to have conduc-
tion through the nanotube: wejust need to be able to change the occupancy of the quantum
dot using thetip voltage. Therefore we can once again study nanotubes which are broken

or only contacted on one sidet®.

A measurement of the frequency shift in the cantilever oscillation, taken when the
tip isover the same quantum dot we studied in sections 7.2 and 7.3, isshown in Fig. 7.13.
The conductance of the nanotube is aso measured simultaneously, to verify the positions
of the Coulomb oscillation peaks. Here, we use the amplitude response to afixed driving
frequency to deduce the frequency shift (method (b) in Fig. 7.12). The driving frequency
isonresonanceat Vi, =-200mV. TheVy;, dependence of the resonant frequency isknown
from previous measurements (not shown), and the resulting transfer function is plotted as
ablueline. We see that the amplitude response of the tip oscillation follows the expected
curve everywhere except at the Coulomb oscillations. For Vy;, below -200 mV (i.e. when
the cantilever is driven above resonance), the amplitude on the Coulomb peaks decreases

from the expected response; for tip voltages above -200 mV (i.e. when the cantilever is

9. We can aso use the phase of the cantilever response to measure the frequency shifts, but for practical reasons this
turns out to be the least convenient method.

10. Note that the nanotube participates in this measurement only passively, unlike the case for EFM. In principle, we
therefore do not need to have any electrical contact to the nanotube to make this measurement, as long as the charge
has somewhere to go (such as another dot on the nanotube). M easurements of hanotubes that are not electrically con-
tacted have not yet been attempted.
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Fig. 7.13: Freguency shift measured from the amplitude response of cantilever to afixed driving fre-

guency, for quantum dot studied in sections 7.2 and 7.3. (a) The amplitude response as a function of

Viip is shown in black, the simultaneously-measured conductance is shown in red. There are peaks

and dipsin the amplitude response at the location of the conductance peaks, due to a reduction of the

cantilever resonance frequency at the Coulomb oscillations. This frequency shift at the Coulomb

oscillations moves the normal transfer function of the cantilever (shown in blue) to higher Vy;, (shown

in green). (b) The shift in frequency at the Coulomb oscillations varies quadratically with tip voltage.
driven below resonance), the amplitude increases from the expected response. The peaks
and dipsin the amplitude response coincide precisely with the Coulomb oscillationsin the

conductance.

Itisimportant to notethat although Fig. 7.131ooksvery similar to Fig. 7.4, showing
peaks and dips in the amplitude response of the cantilever at the positions of the Coulomb
oscillations in the conductance, the physical meaning of these peaks and dipsis quite dif-
ferent. Inthe EFM measurement of Fig. 7.4, the peaks and dips result from the dot exerting
aforceonthe AFM tip. InFig. 7.13, we are not directly applying any electrostatic potential
to the nanotube: it isgrounded. The peaksand dipsresult from achangein the dynamical

properties of the cantilever, i.e. its resonance frequency .
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7.6 Interpretation of Frequency Shift Measurements

We can understand this behaviour in terms of the effect of the motion of the tip on
the electrostatic potential of the quantum dot. Asthe tip oscillates, the voltage on the tip
causes the electrostatic potential of the dot to oscillate, too. Away from the Coulomb os-
cillations, the dot occupancy isfixed, and hence the potential of the dot isinsensitiveto the
tip oscillation, as described in section 7.3. Thetip response therefore follows the expected
transfer function for the cantilever. At the Coulomb oscillations, however, the potential of
the dot is very sensitive to changes in the electrostatic potential felt from thetip (see Fig.
7.6). Asthetip approaches the dot during each cycle of oscillation, an electron hops onto
the dot and the attractive force between the tip and the dot isincreased. This effectively
softens the cantilever, reducing the spring constant k and hence mg. In terms of the ampli-
tude response measured in Fig. 7.13, this means that the transfer function shifts to a more

positive Vy, at the Coulomb oscillations, shown as agreen linein the figure.

Expressing this mathematically, we recall that the force on the cantilever has two

components, one from the electrodes and one from the quantum dot:

1 2.1 2

F = éc,e|(vtip_q)e|) +§C,d0t(vtip_q)dot) (7.8)

The force derivative thus also has two components. The potential of the electrodes does

not change as the tip moves, but the potential of the dot does. The force derivative isthus:
’ 1 ” 2 1 ” 2 ’ a
F" = {QC ol (Vtip = Per) + 5C got(Viip = Poot) }*C dot(vtip_q)dot)£ (7.9)
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where ¢ isthe electrostatic potential of thedot. Thetermsin the brackets arejust the stand-
ard force derivative terms that produce a continuous frequency shift quadratic in tip volt-
age. These are the termsresponsible for the Vy;, dependence of wg that leadsto the regular
transfer function of the cantilever response (blueline) in Fig. 7.13. The last term, which
wewill call AF”, istheonethat isresponsiblefor the additional frequency shift on the Cou-
lomb oscillations. Expanding the dot potential in terms of the continuous charge g induced

on the dot by the tip, we obtain:

' = e 29
AF” = (Clyor- Viip~ Pyot)) é% (710

Asdiscussed in section 7.3 and shown in Fig. 7.6, 3—2 is highly peaked, having the
same shape as the peaks in the conductance. The additional force gradient AF” dueto
changing the occupancy of the dot thus contributes only on the Coulomb peaks, and Cou-
lomb oscillations in the resonant frequency of the cantilever are observed at the same loca

tions as oscillations in the force on the tip and oscillations in the conductance of the dot.

This model of the frequency shifts due to the Coulomb oscillations can be tested
guantitatively by comparison to the datain Fig. 7.13. To calculate the quadratic curvature
in Vyip of the frequency shiftsthat is expected from Eq. 7.10, we use the values C’ , =
2.9+0.2x10"1! F/m (determined in Chapter 6) and g% = 5+0.5x10%0 V/C (obtained from
section 7.3). The expected curvature in the force gradient is then 80+10 uN/VZm, produc-

ing afrequency shift of -0.5+0.1 Hz/V2.
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Fig. 7.14: Frequency shift measured by
frequency counting above one of the
dotsin the nanotube imaged in Fig. 7.9.
Again, quasi-periodic dipsin the fre-
guency are observed. The normal fre-
guency shift due to the dc electrostatic
potential difference between the tip and
the sample is shown in blue; the
enhanced frequency shift at the Cou-
lomb oscillations is shown in green.
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The measured shifts in the resonance frequency are plotted in Fig. 7.13(b), along
with aquadratic fit according to Eq. 7.10. We find that the fit produces a frequency shift
of -0.7+0.2 Hz/VV?, in good agreement with the theoretical value. The contact potential of
the dot obtained from the fit is @4, = 200+70 mV, close to the value obtained in section
7.3 (Pyot = 33050 mV). We thus have confidence that Eq. 7.10 correctly describes the
frequency shift due to single-electron charging. To show the effect of the change in the
force gradient due to the single-electron motion, in Fig. 7.13(a) we plot the amplitude re-

sponse expected at the Coulomb oscillations as a green line.

We can perform similar measurements on dots in nanotubes which are only con-
tacted on one side. In Fig. 7.14, we measure the frequency shifts from Coulomb oscilla-
tions in one of the dots in the nanotube that was measured by EFM in Fig. 7.9, using a
frequency counter asdescribed in Fig. 7.12(a). The resonant frequency is plotted asafunc-

tion of Vy;, along with aquadratic fit to the Coulomb peaks according to Eq. 7.10. Thefit
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yields a contact potential @4, = 280+30 mV, and afrequency shift of -1.0+0.1 Hz/V?,

about twice the value seen in the other dot (Fig. 7.13).

Our model for the frequency shift successfully describes the shiftsin the resonance
frequency produced by the Coulomb oscillations. We see that by studying the effects of
single-electron motion on the dynamics of the cantilever oscillation, we can measure details
of the electrostatics of quantum dots on the nanotubes without even having good electrical
contact. Inthesameway asdescribed for EFM in section 7.3, in principle we can use meas-
urements of these frequency shifts at the Coulomb oscillations to characterise a quantum
dot, determining thetip-dot capacitance and capacitance derivative, the contact potential of
the dot, the capacitance to the gate, the width of the Coulomb oscillation peaks, and the
charging energy. Interestingly, we note that the frequency shift from the dot depends on
the dot parametersin adifferent way than does the force from the dot. Measuring both the

frequency shift and the force can therefore be used to check the consistency of the results.

7.7 Q Degradation M easurements

So far, we have seen that the Coulomb oscillations affect the el ectrostatic force on
the AFM tip and the resonant frequency of the AFM cantilever. These are not the only ef-
fects of the Coulomb oscillations, however. In particular, wefind that often the Q factor of
the cantilever resonance is also affected, being reduced on the Coulomb oscillations from
its nominal value, sometimes substantially. This effect has been briefly noted in section

7.4, wherewe presented asurvey of EFM images of several nanotubes. Wenow investigate
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l—|self—resonant loop]«——»ac voltmeter] ~ Fig. 7.15: Measuring the Q degradation

with scanned dissipation microscopy
(SDM). The cantilever isdriven into res-
onance mechanically, using the self-reso-
nant feedback loop so that the oscillation
stays on resonance at all times. The
amplitude of the oscillation, measured
with an ac voltmeter, is then proportional
to the Q of the resonance (assuming lin-
ear response).
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the Q degradation in more detail, presenting measurements on several nanotubes. Because
the Q of the resonance measuresthe energy dissipated by the cantilever motion, we call this

measurement technique scanned dissipation microscopy (SDM)™.

Conceptually the most straightforward way to image the Q degradation isto meas-
ure the Q of the cantilever resonance at each position of the AFM tip by directly measuring
the width of the resonance as a function of frequency. Some measurements of the Q have
been madein thisway, but it isavery cumbersome method. In practice, we most often use
asimple shortcut, illustrated in Fig. 7.15. The cantilever is driven mechanically by a self-
resonant feedback loop, and the amplitude of the response is measured with an ac voltme-
ter. Since the oscillation is always on resonance, the response amplitude in the linear re-
gimeisjust z = (F,;,e/K)Q. ThedrivingforceF e isfixed and k changesby only very
small amounts (as seen in the previous section), hence variations in the amplitude of the
oscillation aredue principally to variationsin the Q of the oscillation. Notethat thismethod

for measuring the Q degradation assumes that the cantilever oscillation isalwaysin thelin-

11.A similar technique has been used previously to measure dissipation in magnetic systems (Grutter 1997) and doped
semiconductors (Stowe 1999).
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Fig. 7.16: Scanned dissipation images of semiconducting nanctube imaged by
EFM in Fig. 7.8. T=600 mK, z=100 nm. (a),(b) SDM images shows concentric
rings of strong Q degradation (dark areas) around the two dots known to bein this
nanotube. The maximum Q degradation is ~35% of the normal Q. V;;,=-300 mV
in(a), -400 mV in (b). (c) EFM image of the same area as (b) taken under the same
conditions. The rings of Q degradation occur at precisely the same locations asthe
peaks in the force, indicating that they arise from single-electron charging effects.

ear responseregime. Deviationsfrom linear response will appear as changesinthe Q. Em-
pirically, wefind that when the cantilever amplitudeis~1 nm, it isclose to the onset of non-
linear behaviour at typical tip voltages. Artifacts from non-linearities are thus sometimes

observed!?.

A scanned dissipation measurement of the 1.5 um long semiconducting nanotube
that isimaged by EFM in Fig. 7.8 isshown in Fig. 7.16. In these images we plot the am-
plitude response of the cantilever to the mechanical driving force, so that |ocations where
the amplitude is diminished by Q degradation show up as dark areas. In Figs. 7.16(a) we
observe two sets of concentric rings centered at different locations along the nanotube
where the Q is strongly degraded. Theserings of Q degradation occur at exactly the same
spots asthe force peaksin the EFM signal, as can be seen by comparing the Q degradation

imagein Fig. 7.16(b) to the EFM imagein Fig. 7.16(c). The Q isthus being decreased at

12. As an example, the Q appearsto be degraded over the contactsin all the Q degradation measurements. Thisis
because the contacts are tall and hence thetip is much closer to the surface, increasing the nonlinearity of the oscilla-
tion.
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Fig. 7.17: Variationin Q degradation on different dots. T=600 mK. (a) SDM image of the nanotube meas-
ured by EFM in Fig. 7.10. The EFM image is repeated in (b) for ease of comparison. There are two dots
seen in the EFM image, but only the dot on the right has a sizable (~50%) Q degradation at the Coulomb
oscillations. The SDM signal from the dot on the left is barely detectable. Theringsinthe SDM and
EFM images do not align precisely because the images were taken at different tip heights. (c)-(f) SDM
and EFM images of the nanotube measured in Fig. 7.11. The dotsin the lower left show asmall Q degra-
dation, while the dots in the upper right show alarge (~30-40%) degradation. Vy;, indicated on images.

the Coulomb oscillations by some dissipation process. Measuring the magnitude of theam-
plitude decrease on the Coulomb oscillations, we find that at the maxima of the Coulomb
oscillations the Q decreases by as much as 35% from itsnormal value Qy, i.e. to aslittle as

0.65Q,.

In these images we can see that the Q degradation is about the same for both quan-
tum dots on the nanotube. M easurements on other nanotubes, however, show that the Q
degradation can vary significantly from one dot to the next. In Fig. 7.17 we show images
of the Q degradation around the nanotubesthat wereimaged by EFM inFigs. 7.10and 7.11.

For ease of comparison, the EFM images are shown here once again. InFig. 7.17(a), we
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Fig. 7.18: Comparison of Q inferred from SDM to Q measured directly. (a) The resonance Q as afunction
of V4, inferred from an SDM measurement over a single quantum dot is plotted as a fraction of its normal
value (black line). At various Vi, Q is measured directly from the width of the resonance in frequency
(red squares, dotted red line). The changesin Q inferred from SDM correspond to actual decreasesin the
measured Q. The SDM measurement underestimates the true Q reduction because of the large tip oscilla
tion used. (b) Resonance Q near a single Coulomb oscillation at another dot. The Q inferred from SDM
follows the measured Q (red squares) along the profile of the peak. SDM gives a better measure of the true
Q reduction here because the tip oscillation amplitude is smaller.

see that the Q degradation for Coulomb oscillations around the right-hand dot is very
strong, as much as 50% of Qg, but around the left-hand dot it is only just barely visible.
Similarly, in the images of the other nanotube (Figs. 7.17(c) to (f)), the dots that have Cou-
lomb oscillations in the lower |eft corner of the EFM images do not show much Q degra-
dation. Thedotsin the upper right corner, on the other hand, do show asignificant decrease
of Q at the Coulomb oscillations: in Fig. 7.17(c) Q falsaslow as 0.7Qq, whilein Fig.

7.17(e) it fallsas low as 0.6Q.

In the scanned dissi pation measurements presented above, we have assumed that
the reductions in the amplitude response are due only to reductionsin Q. We now check
this assumption by comparing the putative Q obtained from an SDM measurement to the Q

obtained from adirect measurement of the width of the resonance. Wefirst fix the position
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of thetip over aquantum dot with astrong SDM signal and measure the amplitude response
of the cantilever as afunction of Vy;,. We then measure the resonance curve of the canti-
lever at various values of Vy;, and extract the Q factor directly from the height:width ratio
of the resonance as a function of frequency. Theresult is plotted in Fig. 7.18 for two dif-
ferent quantum dots. The SDM amplitude signal is shown as black, while the directly
measured Q is shown asred squares. Both are plotted as a fraction of the Q away from a

Coulomb oscillation.

Itisclear from Fig. 7.18 that the decrease observed in the amplitude of the canti-
lever oscillation isindeed due to adecrease in the Q of the resonance. In Fig. 7.18(a), sev-
eral Coulomb oscillations with different amounts of reduction in the SDM signal are
shown. At each peak inthe SDM signal, the Q of the resonanceisreduced fromits normal
value: small SDM peaks correspond to small reductionsin Q, while large SDM peaks cor-
respond to large reductionsin Q. The main difference between the measurements is that
SDM actually understates the true reduction in Q, by as much as 50%. Thisis due to the
large oscillation amplitude used in the measurement, ~1.5 nm, which isinto the regime
where the tip motion widens the Coulomb oscilation peaks (see Fig. 6.7) aswell asthere-

gime where the cantilever motion is non-linear.

The correspondence between the SDM signal and the Q degradation is confirmed
by a more detailed measurement of Q along the profile of asingle SDM peak at adifferent

dot (Fig. 7.18(b)). Herewe seethat the Q inferred from the SDM measurement very closely
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L0.15 Fig. 7.19: SDM measurement of the
- gquantum dot studied in sections 7.2-
7.3. The SDM signal isshownin
black, the conductanceis shown in
red. The peaksin the Q degradation
occur at the same location asthe
peaks in the conductance. The Q
degradation in this dot is much
smaller than the dots measured ear-
lier, only ~ 2-3%. Thereisno obvi-
ous correlation between the height of
the conductance peaks and the
amount of Q degradation in this dot.
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follows the actual Q of the cantilever resonance, all along the peak. Once again, the main
differenceisthat the Q degradation measured by SDM isreduced dueto thelarge cantilever
oscillation amplitude®. Note that the agreement between the SDM measurement and the
actual Q ismuch closer in Fig. 7.18(b) than in Fig 7.18(a), due to the use of asmaller os-

cillation amplitude in the SDM measurement.

Thefinal aspect of the Q degradation we investigate is its dependence on the sam-
ple conductance. To do this, we return to the nanotube studied in sections 7.2 and 7.3. In
Fig. 7.19 we plot the scanned dissipation signal measured as afunction of Vy;, whenthetip
is over the quantum dot on the right side of the nanotube (the same dot studied in sections
7.2 and 7.3). The conductance of the nanotube is measured simultaneously. There are sev-
eral notable featuresinthisfigure. First, we confirm that the peaksin the Q degradation do

indeed line up with the peaks in the conductance, as expected. Additionally, we see that

13. Shiftsin the phase of the cantilever response on resonance can also cause the oscillation amplitude to decrease.
When thisis checked it is found not to occur, except for nonlinear cantilever oscillations. In that case, the phase of
the amplitude response on resonance changes, and the phase contributes a small amount of the SDM signal.
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the magnitude of the Q degradation at this dot is much smaller than at the dots measured

earlier. Here, thetypical Q degradation is~ 2-3%, compared to as much as 50% seen pre-
vioudly. Finally, although thereissome variation from one Coulomb oscillation to the next
in both the height of the conductance peaks and the magnitude of the Q degradation, we do

not find any obvious correlation between the two in this dot.

7.8 Interpretation of Q Degradation Measurements

In order to understand the physical origin of the Q degradation, we recall that the
Q-factor of the resonance describes the energy dissipated by the cantilever motion. More
precisely, the Q is defined as the ratio of the energy stored in the cantilever oscillation to
the energy dissipated in one cycle of oscillation. Any decrease in Q must thus be dueto
some process causing additional dissipation of energy from the cantilever. Note that the
additional energy dissipation that we are measuring hereisreally very small. For atypical
cantilever oscillation amplitude 8z of 1 nm, the energy stored in the cantilever is (1/2)kdZ>
~1.5al Withanormal Q of ~ 30000 and frequency of ~ 30 kHz, the power dissipated
naturally in the cantilever is 1.5 aW. When we measure a 2% degradation of the Q, asin

Fig. 7.19, we are therefore measuring an additional power dissipation of only 3x10°2° W.

To understand the source of this additional energy dissipation, we note that the Q
degradation observed in the SDM measurements occurs only at the Coulomb oscillations,
where the charge state of the quantum dot changesby 1. The additional energy dissipation

causing the Q degradation istherefore clearly related to single-electron motion in the quan-
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(a) AFM tip Fig. 7.20: Degradation of cantilever
* Sz > o Q dueto energy dissipated by sin-
Vi e ' [ ﬂ gle- electron motion. (a) The
tip motion of thetip causes an oscilla-
= — * O0E — tion SE of the electrochemical
Ep- — 4 potential of the quantum dot with
= respect to the Fermi level of the
U I:I |:| |:| contacts. In the Coulomb blockade
. _T regime, thereis no motion of charge
Tip moves dot energy levels on/off the dot. (b) When the dot
(b) y potential isnear Eg, 8E causesasin-
T Y 5z > @0 gle electron to jump on and off the
) ' dot once per cycle of tip motion.
e The resulting current flow that is
— _¥OE ~ pushed by the tip dissipates energy
EF—U ----- I:I T|:| — |:| from the cantilever, reducing the Q.
[ ]
electron pushed on and off dot

tumdot. Itisnatura to attribute this energy dissipation to the energy dissipated by the elec-

trons as they move on and off the dot under the influence of the AFM tip motion.

Thebasic pictureisillustrated in Fig. 7.20. The voltage on the tip changesthe elec-
trostatic potential and hence the electrochemical potential of the dot, so that the tip oscilla-
tion causes an oscillation of the dot potential. When the dot potential isin the Coulomb
blockade regime, the oscillation of the dot potential does not change the charge on the dot
and there is no current flow between the electrodes and the dot. Thusthereisno energy
dissipation in the dot, and the cantilever Q hasits normal value. When the dot potential is
near the Fermi level Eg of the electrodes, however, the oscillation of the dot potential
causes an electron to hop on and off the dot once each cycle. This current flows acrossthe
resistive barrier between the electrodes and the dot dissipates energy. Since the current is
being pushed by the AFM tip, the energy dissipated comesfrom the energy of the cantilever

oscillation, degrading the Q.
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We can calculate the energy dissipation expected in this picture from simple phys-
ical considerations. For small tip oscillations 6z(t) = dzcos(wt), the change in the el ectro-

chemical potential of the dot E due to the effect of thetip is given by:

E(t) = E+3E(t) ~ CL AV + (CLeAV) dz(t) (7.12)
tot tot

Here C isthetip-dot capacitance, Cyy isthetotal capacitance of the dot, and AV = Vy, - @
isthe net dc voltage between tip and dot. Thefirst term in this equation represents the dc
electrochemical potential change dueto the tip voltage, and the second term the ac change
due to the oscillation of thetip. This ac changein the electrochemical potential of the dot
causesacurrent | to flow on and off the dot, dissipating an rms power P = (1/2)1%/G, where

G isthe conductance.

To determine the current flow caused by the tip motion, consider for simplicity the
case of an electron moving back and forth from an electrode to asingle energy level on the
qguantum dot. Then, we know that the additional charge on the dot, eN, isgiven by eN =

-1
ef(E—-Ep), where f(E) isthe Fermi distribution function: f(E) = (1 + exp(i_l_)) :

k
B
The current flow in this mode! is therefore;
_edN_ o g, dE
| = e ef' (E-Ep) pm
- ~—ef (E-Ep) - ®3E (7.12)

Here f’'(E—E) isthederivative of the Fermi distribution function, whichishighly peaked

at Eg. The conductance G can also be expressed in terms of the Fermi distribution function:
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G = =G, (4kg D' (E—Ep) , where G,y isthe height of the conductance peak (Grabert

1992). The power P dissipated by the current | isthus:

2
1,2 1(ew)” (SE)2 ,
P=z=(1"/G)~z A== [k Tf"(E-Ep)] (7.13)
2 2G ax (kBT) B F

Note that thisresult is derived in the limit of small excursions of thetip, OE « kgT, and tip

oscillation frequencies m much lower than the tunnelling rate’4.

This expression captures the essential physics of the energy dissipation. The first
term expresses the power dissipation we would expect for a charge e moving moving back
and forth at afrequency w with aconductance G, This represents the maximum power
that can be dissipated from single-electron motion. The second term expresses in some
sense the amount of charge that movesfor agiven tip amplitude. Finally, thelast term ac-
counts for the fact that charge only moves when the dot is not blockaded, so that all the
power is concentrated at the Coulomb oscillation. It isthislast term that ensures that the

lineshape of the Q dissipation will be highly peaked at the Coulomb oscillations.

From Eq. 7.13 we can calculate the peak power dissipation expected at the Cou-
lomb oscillations due to single-electron motion:

2 , 2
) ( C eA\O 522 (7.14)
Ctot kBT

(em

1
I:)max - 8 ’ Gmax

14. Note that there are some subtleties involved with the definition of the conductance used in Eq. 7.13. We have written
it in terms of the measured conductance pesk Go. A more precise cal culation would express the power in terms of
an effective conductance for hopping off the dot to either of the contacts. This may differ by from the measured con-
ductance by some prefactor. For the purposes of an order of magnitude calculation as presented here, we simply
approximate the effective conductance by Gygy.
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Since we measure the resonance Q rather than the power, we want to calculate the change

in Q caused by this power dissipation. The Q isexpressed in terms of the total power Py

2
asQ = (4_1rr) OJIL(SZ . If the cantilever hasanatural Q of Qg due to apower dissipation Py,
tot

then Pyt = Py + Py and the Q measured at the dissipation peak is given by:

1 _ 1 (1)
== —+Al= (7.15)
Q Q Q
2 , 5
A(é) _ (7_t e w (C eA
= : (7.16)
kaax Ctot kBT

Egs. 7.15 and 7.16 thus describes the Q degradation signal we expect to observe dueto sin-

gle-electron motion in the quantum dot.

To seeif thisresult is reasonable, we investigate what peak conductance would be
needed to produce a Q degradation on the order of 50%, the largest observed in theimages
shown in the previous section. Using typical valuesfor the parametersin Eq. 7.16 (k=3
N/m, ® = 2x10°s%, kgT=0.05meV, eAV~ 0.5V, C’ ~3x101 F/m, C ~ 8x10"Y F), we
find as an order-of-magnitude estimate that Q ~ (1/2)Qq for Gyax ~ 2x107° S (i.e.adot re-
sistance of ~ 500 MQ). Thisisalow conductance, but it is certainly within the range of

values that has been observed for such quantum dots.

From this estimate we can now understand why the Q degradation signal is so small
inFig. 7.19: it's because the conductance of the dot being measured is so high. Since we
know the conductance of thisdot, we can attempt to get quantitative agreement between the

measured Q degradation and the Q degradation expected from Eq. 7.16. The peak conduct-
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Fig. 7.21: Measurements of the EFM
34504 signal (black), frequency shift (red),
and Q degradation (blue) as afunction
of Vi, for the same dot. All three
effects occur simultaneoudly. Large
peaks in the Q degradation affect the
amplitude response at the Coulomb
oscillations. Inthe EFM measurement,
this depresses the height of the single-
electron force peak (green stars).
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ance of this dot is Gy ~ 0.1 €?/h ~3x10° S, Using the same parameter values as previ-
ously, we predict a Q degradation of ~0.05%. Thisisabout 50 times smaller than what we
actually observein Fig. 7.19. The origin of this discrepancy isnot clear. It would bein-
structive to measure the Q degradation as a function of the conductance in very resistive

devices, to develop a better quantitative understanding of this effect.

As aconcluding remark, we note that the degradation of the Q at the Coulomb os-
cillations can have a noticeabl e effect on the other types of measurements we have studied
in this chapter that rely on measuring the amplitude of the cantilever response. Changesin
the Q change the amplitude response of the cantilever to the driving forces, masking the
“true” signal that we are trying to measure. For example, the height of the single-electron
EFM signal from aquantum dot will be reduced by any degradation of the Q. For dotswith
small Q degradation, such as the dot studied in sections 7.2 amd 7.3, we can safely ignore
the effect that changes in the Q have on the EFM response. When the Q degradation is

large, however, thisis definitely not the case. Thisisillustrated in Fig. 7.21, where we
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show the EFM signal and the SDM signal asafunction of V;, on the same graph. Wehave
marked with a green star several Coulomb oscillations on this dot that have alarge Q deg-
radation. We can clearly see that the peaks in the EFM signal at these particular Coulomb
oscillations are suppressed compared to their neigbours, in some cases substantially so.

Care must therefore be taken when analysing EFM measurements to ensure that the effects
being observed are truly due to the electrostatic force, and not just changesin the Q of the

resonance.

7.9 Summary

In this chapter we have used an AFM to sense single-electron motion on quantum
dotsin acarbon nanotube in several different ways. We first measure the force from asin-
gle electron jumping on and off aquantum dot by using el ectrostatic force microscopy. We
observe clear peaksin the force whenever there are peaks in the conductance, allowing us
to image Coulomb oscillations in the force exerted by the quantum dot. We obtain quanti-
tative agreement between the measured force and the force expected from single-electron
motion. Inaddition to creating peaksin the force on the AFM tip, we find that single-elec-
tron charging creates peaks in the frequency shift of the cantilever resonance. This pro-
vides us with a second method for sensing the motion of single electrons on and off the
guantum dot. Thefrequency shift we measure agrees quantitatively with the shift expected
dueto single-electron charging of thedot. Finally, wefind that single-electron motion also
changes the Q-factor of the cantilever resonance, so that we can image Coulomb oscilla-
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tionsthrough their effect on the energy dissipation in the cantilever. We obtain qualitative
agreement between the observed Q degradation and the energy dissipation expected from

single-electron motion on the quantum dot.

What we have measured in this chapter arethe effectsfrom asingle el ectron moving
on and off a quantum dot. Needlessto say, these effects are very small: thetypical force
from single-electron motion is only about 1014 N, the typical shift in the resonance fre-
quency about 1 part in 10°, and the typical power dissipation about 101° W. Thefact that
we can seethese effectsis atestament to the exquisite sensitivity of the AFM, proving once
again its power as atool for studying the microscopic properties of low-dimensional sys-

tems.
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CHAPTER 8: Conduson

8.1 Summary

In thisthesis, we have explored the local e ectronic properties of low-dimensional
systems using scanned probe microscopy. Specifically, we have used alow-temperature
atomic force microscope sensitive to el ectrostatic forces to study two particular systems:
two-dimensional electron gases in the quantum Hall regime, and carbon nanotubes.

In the qguantum Hall regime, we investigated the properties of non-equilibrium
edge state populationsin a quantum Hall conductor. We first used electrostatic force
microscopy to measure the local Hall voltage distribution associated with disequilibrated
edge states. As expected, we observed a sharp Hall voltage gradient across the incom-
pressible strip at the sample edge, which could be eliminated by deliberately equilibrating
the edge state populations. We also measured the local rate at which equilibration
occured.

We next used scanned gate microscopy to study in more detail the inter edge state
scattering responsible for the equilibration of the edge state potentials. We found that
scattering between the edge states was dominated by a small number of strong, discrete
scattering centers that were well separated along the edge of the sample. Investigating the

nature of the individual scattering centers by looking at the tip voltage dependence of the
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scattering, we discovered two types of scattering centers: weak links in the incompressi-
ble strip between the edge states, and microscopic impurities near the edge.

Turning to one-dimensional electrons, we investigated the local properties of car-
bon nanotubes in the single-electron regime. Scanned gate measurements provided
images of Coulomb oscillationsin the conductance due to quantum dots that formed in the
nanotube. We used these measurements to characterise a quantum dot and its interaction
with the AFM tip. We found that the el ectrostatic environment of the quantum dot played
avery important role in determining the structure of the scanned gate images. We mod-
eled the scanned gate measurements phenomenologically to take into account the effects
of fixed charges on the sample surface aswell as screening of contact potential differences
by the AFM tip.

Finally, we performed single-electron force measurements on carbon nanotubes.
We measured peaks in the force exerted on the AFM tip at the locations of the Coulomb
oscillations in the conductance. We also measured peaks in the resonance frequency of
the AFM cantilever at the Coulomb oscillations in the conductance. In both cases, quanti-
tative agreement was found with the force and force derivative expected from the abrupt
change in the electrostatic potential of the quantum dot due to single-electron motion.
Both of these measurements were found to provide another way of characterising the
properties of the quantum dots on the nanotubes, with the advantage that good el ectrical
contact needed to be made only to one side of the nanotube. Lastly, we observed areduc-

tion of the Q-factor of the cantilever resonance at the Coulomb oscillations. We attributed
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thisto the energy dissipated by the single-electron motion on the dot, obtaining qualitative

agreement with the measurements.

8.2 FutureDirections

The success of the scanned probe studies of low-dimensiona systems presented in
this thesis suggests many avenues for future research. Some of these are questions raised
by this work that remain to be answered, while others involve different phenomena about
which much could be learned using scanned probe techniques.

Looking first at 2DEG systems, one interesting question raised by the work on
edge state equilibration in Chapter 3 and 4 is the correlation between the local rate of equi-
libration of the edge state potentials and the location of the individual scattering centers.
We were able to measure the local equilibration rate with EFM and locate the scattering
centers with SGM, but we were not able to correlate the two, possibly because the scatter-
ing rate was too high. It would be interesting to repeat the experiment on a sample with
much higher mobility (i.e. much lower scattering rate), so that we could study scattering
sites that are isolated by much longer distances and observe how the local equilibration of
the edge state potentials evolves around asingle site. It would aso be interesting to ook
at scattering between spin-polarised edge states, to see if the different momentum conser-
vation considerations give rise to different types of scattering centers.

Looking next at carbon nanotubes, more study of the Q degradation at the Cou-

lomb oscillations would be helpful. The energy dissipated by the single-electron motion
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on and off a quantum dot does not appear to be sufficient to account for all the energy dis-
sipation observed in the measurement, at least for the nanotube we analysed quantitatively
here. Further studies of nanotubes with low conductance would be helpful in developing a
better understanding of this phenomenon. 1t would be especially nice to measure the Q
degradation from a semiconducting nanotube while changing the conductance with the
backgate. Armed with a quantitative understanding of the scanned dissipation measure-
ment, we could then use it to study dissipation not just in carbon nanotubes, but also in a
variety of other resistive systems. In particular, scanned dissi pation measurements of
DNA might prove very interesting.

Several other aspects of carbon nanotubes would provide fruitful avenues of
research. For instance, in nanotubes with several quantum dots, sometimes dots can be
made to merge using the backgate or AFM tip voltages. Such behaviour was observed in
afew measurements (not reported in thisthesis), but it was not explored in any depth. It
would be interesting to study this in more detail, especially in semiconducting nanotubes
where the conductance can be changed significantly. Another interesting experiment
would be to look for Fabry-Perot-type interference effects using scanned gate measure-
ments, as were recently observed in 2DEG systems (Topinka 2001). Yet another avenue
of research would be to investigate the properties of nanotubes when they are suspended

above the surface of the substrate, so that interactions with the substrate are much reduced.
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8.3 Concluding Remarks

The work in this thesis demonstrates that scanned probe microscopy provides a
powerful tool for exploring the local electronic properties of low-dimensional systems.
Given the versatility of scanned probe techniques, and the novel techniques and applica-
tions that continue to be developed, it is clear that scanned probe measurements will con-

tinue to be a source of important discoveriesin the years ahead.
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Appendix

A.1 Scanned Gate Movie: Fig. 6.8
Frames spaced by 25 mV:
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A.2 Scanned Gate Movie: Fig. 6.10

Frames spaced by 5 mV:
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